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Abstract: A micro-assembling task using an image-servo positioning system is sindfgd work. To improve the micro-assembling
efficiency using manual operations, an image-servo automatic absgisystem is established using a XYQ stepping positioning stage
with a self-developed image recognition system. The circle outlines anddhe marks of the micro parts are used for this proposed
system to control the XYQ-stepping stage to achieve assembling tasktheHoroposed image-servo system, the coarse positioning
task and the fine positioning task are designed. First, the Sobel operasediso find circle outline of positioning mark for the coarse
positioning. Second, calculating the centre and radius of the positionirig osmng a least-mean-square error is to guide the XYQ-
stepping stage to perform the positioning. After performing the coarsiéignuing task, Artificial Neural Network (ANN) systems are
studied to improve the positioning precision via compensating positioningsedte to the image distortion. The main contributions
of this paper are using BP and RBF neural networks to perform the mamlgeometry transformation from image coordinates of the
pixels to the actual positions in the global coordinate system.

Keywords. Micro-positioning Stage, Image Recognition, Vision guidance, Line Detediiticro-assembly, Neural network.

1 Introduction the positioning mark was used to achieve the automatic
positioning process.The positioning mark is created by

For the tasks of assembling micro components made b@tching processes, so there are many blur in the outline of
micro electro- mechanical system (MEMS) technology, the image. To solve this problem, a sub-pixel method of
manual Operation is too slow and makes theoutllne processing |'S proposed to Improve geometrlc
mass-producing for micro systems difficult in the pattern. In the visual-servo system designs, the
industry. There are two major limiting factors of the micro Positioning task is separated into two steps, which are the
assembling process for the manual operation. One is théoarse positioning task and the fine positioning task. For
quantity problem, because the speed of the automati€he coarse positioning task, the Sobel operator is used to
assembling system is larger than the manual system. Thénd outline of circular positioning mark and then to
other is the quality problem, because the manualcalculate circle center and rad_lus by using the way of
operation cannot be guaranteed the assembling precisiof¢ast-mean-square error algorithr8].o increase the

As assembling minute parts, the manual operation isPrecision of the coarse positioning task by the image
unstable due to the workers eye strain. Therefore, thgecognition, the neural network systems are studied to
automatic micro assembling with high precision and highcorrect the twisting image errors of the CCD camera. For
speed is very necessary for the industry. There are twdhe fine positioning task, the Hough transform is applied
types of micro-systems and they are monolithic andto find the straight line of the cross positioning ma# [
hybrid micro-systems1]. In this study, an automatic S|- Finally, a computer integrated micro-assembling
optical inspection (AOIl) system is proposed for Systemis Implemgntgd for achieve micro-assembling of a
assembling micro systems via a designed image-serv&ZT inkjet head with image-servo system.

system. In literatureZ], the micro-assembling task of the

micro system was discussed and the image recognition of
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Fig. 2: Micro components for assembling and its positioning-
aided mark 2].

Fig. 1. Automated micro assembling system diagrain [

The coarse positioning uses the image captured by the
global visual CCD camera equipped witk 2vide lens.
2 Experimental Setup However, the distorted image from the wide lens (as
shown in Fig. 4) may degrade the precision of the
In this paper, the same automated micro assembling)roposed system. The relation between the CCD-matric
system studied in literature][ is used to investigate the and the field of view can be described in Fig. 3, where its
image servo task based on the artificial neural networksoptical axis is orthogonal to the ground plane. After
The system (shown in Fig. 1) consists of the assemblingobtaining the image coordinates of the positioning mark
mechanisms and the visual system. The assemblingenter inthe image domain, there exist a mapping relation
mechanisms are a upper clamping apparatus and a lowé@etween the image coordinates of the pixe/\) and the
XYQ-stepping stage. The XYQ-stepping stage consists ofjlobal coordinateXg,Yr) as follows.
XY positioning stage (NAPLES COOMBE 29000 and

5000, 100mnx100mm travel, 1mm pitch, 0.72 stepping X — (u-w/2)-w y— (v—H/2)-H @
angle) and the rotary stage (NAPLES COOMBE 5000, w ’ i

with 90:1 gear system, 0.008 per pulse, 500 pulse/round).

The XYQ-stepping stage’s motors are actuated by the Xr = Xc +Xcosbc —ysinc @)
micro-stepping drivers (Panasonic KR-535M). The Yr = Yc + XSinBc + ycosbe

motion command is produced using a four axes motion

card (GALIL DMC-1842) and the control code is matrix, andW andH are the dimensions of the field of
developed in Borland C++ builder to integrate the motion .~ "/ . : o
view; (u,v) are the image coordinates of the positioning

control with the vision system. The vision system consistsmmk,S center;:Xc — | 8T is the vector of the

of a global visual CCD camera equipped with Zvide camera ositibn ;ndxcc’)?/i%ntation in the global frame;

lens and a micro vision via a CCD camera equipped with(x YR) aF;e the actual coordinate in the global frame’

600x micro lens. The visual images are captured via thex ** 'R o GeRd . 9 '

MATROX Meteor-1l capturing card. The global vision is Once the positions in Image coordinates are known, they

used to amend the position and orientation of micro partsC2" D€ computed by using the known dependence
etween the dimensions in the image and in the reality.

The_ _image-s_ervo proce_dures are as follows. First, th owever, the distorted image from the wide angle (or
positioning circle mark is captured by the global CCD ﬁsh-eye)’ camera is shown in Fig.6][The mapping

and the positioning marks are recognized from the work elation is usually nonlinear and can be
space by the designed code. Second, the micro vision jcelatonis u uh 3; I ! | form:
used to achieve precision positioning via the cross mark written in the following general form:
in the positioning circle mark. If the cross mark has the Xe u

smaller line width (as shown in Fig. 2), the proposed {Y ] =F QV} ,XC)
computer-integrated system can guarantee the more R

precision for the micro-assembling tasks.

, wherew and i are the dimensions of the CCD

®3)

, where F(e) is a nonlinear mapping function
between the image and the global coordinates. Therefore,
o L the image-servo system using the vision-based sensor is
3 Vision-based Positioning needed to be calibrated with respect to the global

coordinate system. The main contributions of this paper
As discussed in the literature][ the positioning task are using BP and RBP neural network methods to
consists the coarse positioning and fine positioning tasksperform the nonlinear geometry transformation from
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Fig. 3: Overhead vision system geometry. Fig. 5: The self-developed Ul for the controller setup and the
experimental display.

positioning tasks and the actual regulation errors are
stored automatically in the computer. We can obtain the
optimal control parameters, which are described in Table
1, via implementing the specified experiments for the
controller. The results of the root-mean-square (RMS)
errors in Table 1 are obtained by the average of twenty
experiments using the optimal parameters. For long
positioning distance, using S-curve motion profile can
help to smooth the motion and reduce the possibility of
exciting a vibration or oscillation, for example we study
the influence of the S-curve parameter for the 1000
step command as shown in Fig. 6.

Table 1. Nonlinear geometry transformation via ANN.

Optimal  speed
270Quml/s,
optimal

image coordinates of the pixels to the actual positions in acceleration

Fig. 4: The distorted image geometry for a wide angle legjs [

the global coordinate system. 2700Qum/s’,
Tuning the controller of XY positioning stage. To and optimal
guarantee the accuracy and repeatability of the | deceleration
vision-based positioning system, we need to calibrate the 2§OOQ1m/32
above vision system via the other more precise | DiStance um) RMS-Error (um)
positioning sensors. On one hand, to obtain the precise 51)80 8232

positioning data to train the following neural network
systems, the optical encoders and the linear scale with | 1000 (s-curve| 0.424
0.1um resolution (Mercury 2000, made by MicroE coefficient: 0.6)
systems in USA) are equipped on the XY positioning  After self-tuning the controller of the XY stage, the
stage as the positioning sensors as shown in Fig. 5. On thiewer component of the micro system is carried by the
other hand, the motors of the XY positioning stage areAMAS to perform a positioning task as shown in Fig. 7.
actuated by the micro-stepping drivers to achieve precis@he global coordinateéXg,Yr) of the positioning mark,
positioning and the XY positioning stage is driven by the which is measured using the linear encoders (Mercury
stepping motors via the open-loop control. Therefore, t02000), are compared from the vision-based coordinates
improve the performance of positioning for the XY stage, (xi’?’yé), which are obtained using EQq.1)((2); the

we need to tune the control parameters, such as speediision-based positioning error can be defined as follows.
acceleration and deceleration), via experimental tests.
With using the self-developed C++ code as shown in Fig.
5, the proposed vision system is tested by the specified error = \/(XR*X&)2+(YR*YF;)2 (4)
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Fig. 6: The S-curve for the motion and the RMS error for the Fig. 7: The designed point-to-point positioning task to calibrate
different S-curve’s parameter. the vision-based positioning system.

Due to the distorted image from the wide angle lens, Fig.
8 shows that the greater errors would appear if the picture
was taken from a much greater distance with respect to
the center of the FOV. The maximal error before the
calibration is almost 150um. Because the mapping
between the vision and the global coordinates is nonlinear
and the geometry correction transformation is difficult to
obtain, we use artificial neural network (ANN) methods
to perform this nonlinear geometry transformation from
image coordinates of the pixels to the actual positions in
the global coordinate system. The training process of the ) I
ANN is described as follows. Control the XY positioning

stage using the optimal parameters to follow the i T

point-to-point positioning task as shown in Fig. 7.

Capture the image and obtain the image coordinatg)( Fig. 8 The calibration errors for the linear transformation
for the center Of pOS|t|0n|ng mark for the mlcro betWeen the global COOI‘dinateS and |mage pOS|t|On|ng
component at each positioning point. Obtain the globalccordinate.
coordinates(Xgr, Yr) using linear encoder at each point
simultaneously. Store the image coordinates)(and the

global coordinate$Xg, Yr) for each point. Use the input Vision-hased posiioning sensory system
data of the image coordinatas\) and the output data the ‘
global coordinates(Xg,Ygr) to train the ANN. Fig. 9

: . . Opnd
shows the block diagram for this nonlinear geometry ¢ ..
transformation via ANN. = i gwn |

4 Main Results

Generally, the ANN models can be divided into three
types: supervised learning algorithm, unsupervised
learning algorithm, and associative memory learning
algorithm. In this study, the image-servo problem is
suitable to use the supervised learning ANN. Therefore,
we investigate the back-propagation network (BPN) andFig. 9: The proposed vision-base positioning sensory system
radial basis function network (RBFN) to achieve the using ANN

nonlinear geometry transformation between the image

coordinate and the global coordinate. Because the relation

between the input datai¢) and output datdXg,Yr) is

e ecele
(i 20
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very nonlinear, three case studies are carried out tovalues of BPN should be modified until the output

discuss the performance of the proposed method. In Caseonforms to the desire output. Therefore, in the

1, we do not change the training data to train the BPN forback-propagation stage, the weight values of neuron are

this mapping relation. In Case 2, we used the RBFN toupdated using the

learn this mapping relation. In Case 3, we transfer thefollowing equation.

training data in the form of the polar coordinate and use

BPN to learn this nonlinear mapping. Wj(n+1) =W;j(n) + AW (n) (8)
Case study 1. The multilayer BP artificial network

consists of input layer, hidden layer and output layer (aSwhere W is the weight value, index n represents the

shown in Fig. 9). Each layer has many neurons which argteration number in the learing procedure, atidi; is

connected to the other neurons in the other layer using théghe network correction value. To make the ANN have

synaptic weights. There is only a single input and outputgood convergence, the correction valued are suggested as
layer in the ANN, but there are one or more hidden layers.ihe following equation.

The neurons in the ANN model are called processing
elements. Figure 10 shows the mathematical model of 3, 9E(n) GE()  9Yi(n)

- Wi (n)=—n- =-n- AW g ) (=X
neuron, wheré; is the output elemeni;, Xy, -, Xqare () == Fwm = =N e n-o(n-( X‘(n;)
the input elements Wi, Ws,---, Whare the synaptic . . . ©)
weights, andp (e) is the activation function. The value of » Wheren is the leaming rate for the ANN angi(n)is the

NET; refers to the weighted sum of all the inputs to the !0cal gradient function. Then, the update law of the
jth neuronY; for n inputs as follows. weight values can be shown in Fig. 13 and the update law

is described as follows.

NET) = 3 Wi (5) W(n+ 1) =W () + 7 -8(n) - %(n)  (10)

The flowchart of the BPN learning algorithm is shown in

SFig. 13. In this study, we design the BPN's setup for this
case as follows: one input layer has 2 neurons; two hidden
ayers have 10 neurons at each layer; one output layer has
neurons; the learning rate is chosen as 0.9; the input and

output data are normalized in the range from 0 to 1 and

1 the output value are inverted to the original range in the

Y= ¢ (NET)) = ——e (6)  recalling stage. In this study, the BPN is coded in LabView

1t+e : language and Fig. 14 shows the block-diagram in Labview.

The operation procedure of BPN can be divided into The procedures for the BPN are as follows?G
two stages, which are the learning stage and the recallinghe architecture of BPN is set for 4 layers with an input
stage. For the learning stage, there are initializatiomef t layer with 2 nodes, the first hidden layer with 10 nodes,
network and network training work. In this case, we the second hidden layer with 10, and the output layer
generate random values between -1 and 1 for the weighwith 2 nodes.
and bias initialization in each layer. The network training
work will adjust each weight and bias to make the output 1.The BPN of training numbers is set as 200000.
of network approach the desired output. After the learning 2.The learning rate is set 0.9.
stage is finished, the relationship between the input data 3.Initial the weight and theta by random between -1 and
(u,v) and output datéXg, Yr) is established. 1.

The learning algorithm of the BPN consists of two 4.Normalize the input value from O to 1.
stages: feed-forward and back-propagation. In the 5.Normalize the output value from 0 to 1.
feed-forward stage, each neuron calculates the output 6.Start the learning task.
values using Eq.5) with the fixed weights. Finally, the 7.Calculate the hidden and output layer value by weight
BPN calculates the actual output and the network can and theta.

The activation functiong(e) is used to reflect the
weighted sum to the results of the output element and it i
usually designed as the Sigmoid function as shown in Fig
11. Therefore, the relation between the input layer and th
jth neurony; can be described as follows.

obtain the mean square error via comparing the desired nety = 3 Wik — 6k
output from the actual output. The mean square error hy = 1+exp(1 o
. . —nety
valuesE can be defined as: net; = Zk\i\&j hi— 6
1 Yi = Trexo—net )
E=5 Y (TM-Y)? () e )
] 8.Calculate the output and hidden error value.
, whereT; is the desired output valug] is the actual
output value and is the mean square error. To make the O =(tj—yj)-yi-(1-yj)
mean square error will approach to zero; the weight O = (3 05 - W) - e~ (1—hwe)
© 2014 NSP
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Fig. 10: The mathematical model of the neuron for the BPN. Fig. 11: The activation function of the Sigmoid function.

. . . ; Huden layer(/ (utpt leyer (K
9.Calculate the weight and theta Correction of hidden ity o WMW b

and output layers. D_D‘ ma
‘\Hu 3 B
AW (n) = ndjhe+a - AW (n—1) |

ABj(n)=—-ndj+a-Abj(n—1)

T\
AWi(n) = Ndx; + a - AW (n—1) "
AB(n)=—n&+a-Ab6(n—1) o

10.Update the weight and theta of hidden and output —

layers. |
Wej =W + AW ,
0j =0;+A6; i,
Wk = V\I|k + AWk ‘
O = O+ A6 | |

11.When the learning task is finished, the recalling task is % 12 The update law for the back-propagation method.

enabled.

12.Calculate the output hidden and output layer value.

13.Unnormalize the output value to map the global
coordinates.

14.Compare the output value and current value.

Training data

! Input (X)) |Desredontpmt (70|

Fig. 15 shows the errors between the actual global
coordinate(Xg, Y) and the outpui(Xg,Yg) of the BPN

using the input data from the vision-based positioning. _
The resulting data shows that the errors are small at most @‘Jﬂf’gh‘
area except the edge of FOV. The maximal error in this 1
calibration is almost 75.448m.
Case study 2. For the radial basis function network,
the bell shaped curves in the hidden nodes indicate that
each hidden layer node represents a bell shapdil
basis function that is centered on a vector in the feature :
space. Fig. 16 shows a radial bas]s function n_euraIFig. 13: The flowchart of the training process for the nonlinear
network. There are no weights on the lines from the inputy,355ing transformation.
nodes to the hidden nodes. The input vector is fed to each
n-th hidden node where it is put through the nodes using
radial basis function as follows.
5100 — exp| Jx=mil” 1)
: 207

© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1L, 273-281 (2014)Wwww.naturalspublishing.com/Journals.asp

(e e
bt nd b

(uieteamdnad
e i A

Fig. 14. The flowchart of the BPN for the block-diagram in
Labview

Fig. 15. The calibration errors for the BPN transformation in
Case 1.

2 . .

, where |[x—mj||” is the square of the distance
between the input feature vecterand the center vector
m; for the radial basis function. The output of RBFN is
the linear combination of the hidden nodes as follows.

J
y="Y wjdj(x) (12)
,;) i

Fig. 17 shows the architecture for the RBFN. Therefore,
RBFN has the following characteristics: there is only one
hidden layer; the output units are linear; distance base
aggregation function for the hidden units; activation
functions with radial symmetry for hidden units; the
convergence rate is faster than the BPN. In this cas

study, there are 35 units in the hidden layer and th
learning rate is chosen as 0.8.

The computing procedures for the RBFN are as follows?G,

2.The training numbers is set as 35000.

3.The learning rate is set as 0.8.

4.Initialize the weight, theta, Qk, Vik and Cik by radom.

5.Normalize the input value from 0 to 1.

6.Normalize the output value from 0 to 1.

7.Start the learning task.

8.Calculate the hidden and output layer value by weight
and theta.

net = QF 3 Vig(x — Cix)?
hy = exp(—net<)

netj =31\ hy — 6

Yi = 1+-exp(—netj)

9.Calculate the output and hidden error value.

o= (tj—yj)y-(1-yj)
&= (30 -Wj) - hg

10.Calculate the weight and theta Correction of hidden
and output layers.

A\Mq-(n) = néjthra ~A\/\4<j(nfl)
AB(N) = —n&+a-AB(N—1)
ACik = 2n dQEVi (% — Cik)

AQk = 2n&Q, ¥ Vi&(% — Cik)?
AV = 21 5Q:V, (% — Cik)?

11. Update the weight and theta of hidden and output

layers.
Wej = Wk + AW
0, =0;+A6;
Cik = Cik +ACik
Q= Qk+AQk
Vik = Vik + AVik

12.When the learning task is finished, the recalling task is
executed.

13.Calculate the output hidden and output layer value.

14.Unnormalize the output value to map the global
coordinates.

15.Compare the output value and current value.

Fig. 18 shows the block-diagram of the RBFN using in
LabVIEW and Fig. 19-20 compare the actual global
coordinates(Xgr,Yr) from the output (X,;,YF;) of the
RBFN using the proposed vision-based positioning. In
Fig. 20, the resulting data also shows that the errors are
mall at most area except the edge of FOV as similar as
PN. The RMS error of the all points in this calibration is
almost 139.029um. The positioning error for the RBFN
is larger than the one of the BPN, but the training time of

:RBFN (1832 seconds) is much less than BPN (14412

seconds).
Case study 3. For the results in Case studies 1 and 2,
the errors for the vision-based positioning are small at

1.The architecture of RBFN is designed as 3 layers withmost of the FOV; however, the system may fail at the edge

2-35-2 nodes in the input, hidden, and output layer,
respectively.

of the FOV. To improve the precision and repeatability of
the proposed vision-based positioning sensory system

© 2014 NSP
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Fig. 16: A bell shaped radial basis function for the RBFN.

Fig. 17: The architecture of the RBFN.

Fig. 18: The block-diagram of RBFN using in Labview.
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Fig. 19: Compare the actual global coordinate from the output of
the RBFN positioning transformation.

Fig. 20: The calibration errors for the RBFN transformation in
Case 2

(VBPSS) as shown in Fig. 9, we make some algorithm’s
modification for the artificial neural network. Observing
the trendy of the vision-based positioning error in Fig. 8,
we can find the error is related to the distance from the
CCD matrix’s center. Therefore, the training data of BPN
is transferred from the Cartesian coordinate to the polar
coordinate at first; after the training of BPN is finished
and the output value is taken the inverse transformation
from the polar coordinate to the Cartesian coordinate. Fig.
21 shows that the errors of VBPSS at all FOV are much
smaller than the above and the maximal error is 2.3075
um. Therefore, the proposed VBPSS can achieve the
precision requirement for the system.

5 Conclusion

In this paper, we have investigated the vision-based
positioning using BP and RBF neural networks to
perform the nonlinear geometry transformation from

Natural Sciences Publishing Cor.
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