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Abstract: A micro-assembling task using an image-servo positioning system is studiedin this work. To improve the micro-assembling
efficiency using manual operations, an image-servo automatic assembling system is established using a XYQ stepping positioning stage
with a self-developed image recognition system. The circle outlines and the cross marks of the micro parts are used for this proposed
system to control the XYQ-stepping stage to achieve assembling tasks. Forthe proposed image-servo system, the coarse positioning
task and the fine positioning task are designed. First, the Sobel operator isused to find circle outline of positioning mark for the coarse
positioning. Second, calculating the centre and radius of the positioning circle using a least-mean-square error is to guide the XYQ-
stepping stage to perform the positioning. After performing the coarse positioning task, Artificial Neural Network (ANN) systems are
studied to improve the positioning precision via compensating positioning errors due to the image distortion. The main contributions
of this paper are using BP and RBF neural networks to perform the nonlinear geometry transformation from image coordinates of the
pixels to the actual positions in the global coordinate system.
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1 Introduction

For the tasks of assembling micro components made by
micro electro- mechanical system (MEMS) technology,
manual operation is too slow and makes the
mass-producing for micro systems difficult in the
industry. There are two major limiting factors of the micro
assembling process for the manual operation. One is the
quantity problem, because the speed of the automatic
assembling system is larger than the manual system. The
other is the quality problem, because the manual
operation cannot be guaranteed the assembling precision.
As assembling minute parts, the manual operation is
unstable due to the worker’s eye strain. Therefore, the
automatic micro assembling with high precision and high
speed is very necessary for the industry. There are two
types of micro-systems and they are monolithic and
hybrid micro-systems [1]. In this study, an automatic
optical inspection (AOI) system is proposed for
assembling micro systems via a designed image-servo
system. In literature [2], the micro-assembling task of the
micro system was discussed and the image recognition of

the positioning mark was used to achieve the automatic
positioning process.The positioning mark is created by
etching processes, so there are many blur in the outline of
the image. To solve this problem, a sub-pixel method of
outline processing is proposed to improve geometric
pattern. In the visual-servo system designs, the
positioning task is separated into two steps, which are the
coarse positioning task and the fine positioning task. For
the coarse positioning task, the Sobel operator is used to
find outline of circular positioning mark and then to
calculate circle center and radius by using the way of
least-mean-square error algorithm [3].To increase the
precision of the coarse positioning task by the image
recognition, the neural network systems are studied to
correct the twisting image errors of the CCD camera. For
the fine positioning task, the Hough transform is applied
to find the straight line of the cross positioning mark [4,
5]. Finally, a computer integrated micro-assembling
system is implemented for achieve micro-assembling of a
PZT inkjet head with image-servo system.
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Fig. 1: Automated micro assembling system diagram [2].

2 Experimental Setup

In this paper, the same automated micro assembling
system studied in literature [2] is used to investigate the
image servo task based on the artificial neural networks.
The system (shown in Fig. 1) consists of the assembling
mechanisms and the visual system. The assembling
mechanisms are a upper clamping apparatus and a lower
XYQ-stepping stage. The XYQ-stepping stage consists of
XY positioning stage (NAPLES COOMBE 29000 and
5000, 100mm×100mm travel, 1mm pitch, 0.72 stepping
angle) and the rotary stage (NAPLES COOMBE 5000,
with 90:1 gear system, 0.008 per pulse, 500 pulse/round).
The XYQ-stepping stage’s motors are actuated by the
micro-stepping drivers (Panasonic KR-535M). The
motion command is produced using a four axes motion
card (GALIL DMC-1842) and the control code is
developed in Borland C++ builder to integrate the motion
control with the vision system. The vision system consists
of a global visual CCD camera equipped with 2× wide
lens and a micro vision via a CCD camera equipped with
600× micro lens. The visual images are captured via the
MATROX Meteor-II capturing card. The global vision is
used to amend the position and orientation of micro parts.
The image-servo procedures are as follows. First, the
positioning circle mark is captured by the global CCD
and the positioning marks are recognized from the work
space by the designed code. Second, the micro vision is
used to achieve precision positioning via the cross mark
in the positioning circle mark. If the cross mark has the
smaller line width (as shown in Fig. 2), the proposed
computer-integrated system can guarantee the more
precision for the micro-assembling tasks.

3 Vision-based Positioning

As discussed in the literature [2], the positioning task
consists the coarse positioning and fine positioning tasks.

Fig. 2: Micro components for assembling and its positioning-
aided mark [2].

The coarse positioning uses the image captured by the
global visual CCD camera equipped with 2× wide lens.
However, the distorted image from the wide lens (as
shown in Fig. 4) may degrade the precision of the
proposed system. The relation between the CCD-matric
and the field of view can be described in Fig. 3, where its
optical axis is orthogonal to the ground plane. After
obtaining the image coordinates of the positioning mark
center in the image domain, there exist a mapping relation
between the image coordinates of the pixel (u ,v) and the
global coordinate (XR,YR) as follows.

x =
(u−w′/2) ·W

w′
, y =

(v−h′/2) ·H
h′

(1)

XR = xC + xcosθC − ysinθC
YR = yC + xsinθC + ycosθC

(2)

, where w′ and h′ are the dimensions of the CCD
matrix, andW and H are the dimensions of the field of
view; (u,v) are the image coordinates of the positioning
mark’s center;XC = [xC,yC,θC]

T is the vector of the
camera position and orientation in the global frame;
(XR,YR) are the actual coordinate in the global frame.
Once the positions in image coordinates are known, they
can be computed by using the known dependence
between the dimensions in the image and in the reality.
However, the distorted image from the wide angle (or
fish-eye) camera is shown in Fig.4 [6].The mapping
relation is usually nonlinear and can be

written in the following general form:
[

XR
YR

]

= F

([

u
v

]

,XC

)

(3)

, where F (•) is a nonlinear mapping function
between the image and the global coordinates. Therefore,
the image-servo system using the vision-based sensor is
needed to be calibrated with respect to the global
coordinate system. The main contributions of this paper
are using BP and RBP neural network methods to
perform the nonlinear geometry transformation from
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Fig. 3: Overhead vision system geometry.

Fig. 4: The distorted image geometry for a wide angle lens [6].

image coordinates of the pixels to the actual positions in
the global coordinate system.

Tuning the controller of XY positioning stage. To
guarantee the accuracy and repeatability of the
vision-based positioning system, we need to calibrate the
above vision system via the other more precise
positioning sensors. On one hand, to obtain the precise
positioning data to train the following neural network
systems, the optical encoders and the linear scale with
0.1µm resolution (Mercury 2000, made by MicroE
systems in USA) are equipped on the XY positioning
stage as the positioning sensors as shown in Fig. 5. On the
other hand, the motors of the XY positioning stage are
actuated by the micro-stepping drivers to achieve precise
positioning and the XY positioning stage is driven by the
stepping motors via the open-loop control. Therefore, to
improve the performance of positioning for the XY stage,
we need to tune the control parameters, such as speed,
acceleration and deceleration), via experimental tests.
With using the self-developed C++ code as shown in Fig.
5, the proposed vision system is tested by the specified

Fig. 5: The self-developed UI for the controller setup and the
experimental display.

positioning tasks and the actual regulation errors are
stored automatically in the computer. We can obtain the
optimal control parameters, which are described in Table
1, via implementing the specified experiments for the
controller. The results of the root-mean-square (RMS)
errors in Table 1 are obtained by the average of twenty
experiments using the optimal parameters. For long
positioning distance, using S-curve motion profile can
help to smooth the motion and reduce the possibility of
exciting a vibration or oscillation, for example we study
the influence of the S-curve parameter for the 1000µm
step command as shown in Fig. 6.

Table 1. Nonlinear geometry transformation via ANN.

Optimal speed
2700µm/s,
optimal
acceleration
27000µm/s2,
and optimal
deceleration
26000µm/s2

Distance (µm) RMS-Error (µm)
10 0.308
500 0.483
1000 (s-curve
coefficient: 0.6)

0.424

After self-tuning the controller of the XY stage, the
lower component of the micro system is carried by the
AMAS to perform a positioning task as shown in Fig. 7.
The global coordinates(XR,YR) of the positioning mark,
which is measured using the linear encoders (Mercury
2000), are compared from the vision-based coordinates
(X

′

R,Y
′

R), which are obtained using Eq. (1)-(2); the
vision-based positioning error can be defined as follows.

error =
√

(XR −X
′

R)
2+(YR −Y

′

R)
2 (4)
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Fig. 6: The S-curve for the motion and the RMS error for the
different S-curve’s parameter.

Due to the distorted image from the wide angle lens, Fig.
8 shows that the greater errors would appear if the picture
was taken from a much greater distance with respect to
the center of the FOV. The maximal error before the
calibration is almost 150µm. Because the mapping
between the vision and the global coordinates is nonlinear
and the geometry correction transformation is difficult to
obtain, we use artificial neural network (ANN) methods
to perform this nonlinear geometry transformation from
image coordinates of the pixels to the actual positions in
the global coordinate system. The training process of the
ANN is described as follows. Control the XY positioning
stage using the optimal parameters to follow the
point-to-point positioning task as shown in Fig. 7.
Capture the image and obtain the image coordinate (u ,v)
for the center of positioning mark for the micro
component at each positioning point. Obtain the global
coordinates(XR,YR) using linear encoder at each point
simultaneously. Store the image coordinates (u,v) and the
global coordinates(XR,YR) for each point. Use the input
data of the image coordinates (u,v) and the output data the
global coordinates(XR,YR) to train the ANN. Fig. 9
shows the block diagram for this nonlinear geometry
transformation via ANN.

4 Main Results

Generally, the ANN models can be divided into three
types: supervised learning algorithm, unsupervised
learning algorithm, and associative memory learning
algorithm. In this study, the image-servo problem is
suitable to use the supervised learning ANN. Therefore,
we investigate the back-propagation network (BPN) and
radial basis function network (RBFN) to achieve the
nonlinear geometry transformation between the image
coordinate and the global coordinate. Because the relation
between the input data (u,v) and output data(XR,YR) is

Fig. 7: The designed point-to-point positioning task to calibrate
the vision-based positioning system.

Fig. 8: The calibration errors for the linear transformation
between the global coordinates and image positioning
coordinate.

Fig. 9: The proposed vision-base positioning sensory system
using ANN

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1L, 273-281 (2014) /www.naturalspublishing.com/Journals.asp 277

very nonlinear, three case studies are carried out to
discuss the performance of the proposed method. In Case
1, we do not change the training data to train the BPN for
this mapping relation. In Case 2, we used the RBFN to
learn this mapping relation. In Case 3, we transfer the
training data in the form of the polar coordinate and use
BPN to learn this nonlinear mapping.

Case study 1. The multilayer BP artificial network
consists of input layer, hidden layer and output layer (as
shown in Fig. 9). Each layer has many neurons which are
connected to the other neurons in the other layer using the
synaptic weights. There is only a single input and output
layer in the ANN, but there are one or more hidden layers.
The neurons in the ANN model are called processing
elements. Figure 10 shows the mathematical model of a
neuron, whereYj is the output element,X1,X2, · · · , Xnare
the input elements,W1,W2, · · · , Wnare the synaptic
weights, andϕ(•) is the activation function. The value of
NETj refers to the weighted sum of all the inputs to the
jth neuronYj for n inputs as follows.

NETj =
n

∑
i=1

WjiXi (5)

The activation functionϕ(•) is used to reflect the
weighted sum to the results of the output element and it is
usually designed as the Sigmoid function as shown in Fig.
11. Therefore, the relation between the input layer and the
jth neuronYj can be described as follows.

Yj = ϕ(NETj) =
1

1+ e−NETj
(6)

The operation procedure of BPN can be divided into
two stages, which are the learning stage and the recalling
stage. For the learning stage, there are initialization of the
network and network training work. In this case, we
generate random values between -1 and 1 for the weight
and bias initialization in each layer. The network training
work will adjust each weight and bias to make the output
of network approach the desired output. After the learning
stage is finished, the relationship between the input data
(u,v) and output data(XR,YR) is established.

The learning algorithm of the BPN consists of two
stages: feed-forward and back-propagation. In the
feed-forward stage, each neuron calculates the output
values using Eq. (5) with the fixed weights. Finally, the
BPN calculates the actual output and the network can
obtain the mean square error via comparing the desired
output from the actual output. The mean square error
valuesE can be defined as:

E =
1
2 ∑

j
(Tj −Yj)

2 (7)

, whereTj is the desired output value,Yj is the actual
output value andE is the mean square error. To make the
mean square error will approach to zero; the weight

values of BPN should be modified until the output
conforms to the desire output. Therefore, in the
back-propagation stage, the weight values of neuron are
updated using the
following equation.

Wi j(n+1) =Wi j(n)+∆Wi j(n) (8)

where Wi j is the weight value, index n represents the
iteration number in the learning procedure, and∆Wi j is
the network correction value. To make the ANN have
good convergence, the correction valued are suggested as
the following equation.

∆Wi j(n) =−η ·
∂E(n)

∂Wi j(n)
=−η ·

∂E(n)
∂Y j(n)

·
∂Y j(n)

∂Wi j(n)
=−η ·δ (n) · (−Xi(n))

(9)
, whereη is the learning rate for the ANN andδ (n)is the
local gradient function. Then, the update law of the
weight values can be shown in Fig. 13 and the update law
is described as follows.

Wi j(n+1) =Wi j(n)+η ·δ (n) ·Xi(n) (10)

The flowchart of the BPN learning algorithm is shown in
Fig. 13. In this study, we design the BPN’s setup for this
case as follows: one input layer has 2 neurons; two hidden
layers have 10 neurons at each layer; one output layer has
2 neurons; the learning rate is chosen as 0.9; the input and
output data are normalized in the range from 0 to 1 and
the output value are inverted to the original range in the
recalling stage. In this study, the BPN is coded in LabView
language and Fig. 14 shows the block-diagram in Labview.
The procedures for the BPN are as follows?G
The architecture of BPN is set for 4 layers with an input
layer with 2 nodes, the first hidden layer with 10 nodes,
the second hidden layer with 10, and the output layer
with 2 nodes.

1.The BPN of training numbers is set as 200000.
2.The learning rate is set 0.9.
3.Initial the weight and theta by random between -1 and

1.
4.Normalize the input value from 0 to 1.
5.Normalize the output value from 0 to 1.
6.Start the learning task.
7.Calculate the hidden and output layer value by weight

and theta.
netk = ∑i Wikxi −θk

hk =
1

1+exp(−netk)
net j = ∑k Wk jhk −θ j

y j =
1

1+exp(−net j)

8.Calculate the output and hidden error value.

δ j = (t j − y j) · y j · (1− y j)
δk = (∑ j δ j ·Wk j) ·hk · (1−hk)
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Fig. 10: The mathematical model of the neuron for the BPN.

9.Calculate the weight and theta Correction of hidden
and output layers.

∆Wk j(n) = ηδ jhk +α ·∆Wk j(n−1)
∆θ j(n) =−ηδ j +α ·∆θ j(n−1)
∆Wik(n) = ηδkxi +α ·∆Wik(n−1)
∆θk(n) =−ηδk +α ·∆θk(n−1)

10.Update the weight and theta of hidden and output
layers.

Wk j =Wk j +∆Wk j
θ j = θ j +∆θ j
Wik =Wik +∆Wik
θk = θk +∆θk

11.When the learning task is finished, the recalling task is
enabled.

12.Calculate the output hidden and output layer value.
13.Unnormalize the output value to map the global

coordinates.
14.Compare the output value and current value.

Fig. 15 shows the errors between the actual global
coordinate(XR,YR) and the output(X

′

R,Y
′

R) of the BPN
using the input data from the vision-based positioning.
The resulting data shows that the errors are small at most
area except the edge of FOV. The maximal error in this
calibration is almost 75.448µm.

Case study 2. For the radial basis function network,
the bell shaped curves in the hidden nodes indicate that
each hidden layer node represents a bell shapedradial
basis function that is centered on a vector in the feature
space. Fig. 16 shows a radial basis function neural
network. There are no weights on the lines from the input
nodes to the hidden nodes. The input vector is fed to each
n-th hidden node where it is put through the nodes using
radial basis function as follows.

ϕ j(x) = exp

(

−

∥

∥x−m j
∥

∥

2

2σ2
j

)

(11)

Fig. 11: The activation function of the Sigmoid function.

Fig. 12: The update law for the back-propagation method.

Fig. 13: The flowchart of the training process for the nonlinear
mapping transformation.
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Fig. 14: The flowchart of the BPN for the block-diagram in
Labview

Fig. 15: The calibration errors for the BPN transformation in
Case 1.

, where
∥

∥x−m j
∥

∥

2
is the square of the distance

between the input feature vectorx and the center vector
m j for the radial basis function. The output of RBFN is
the linear combination of the hidden nodes as follows.

y =
J

∑
j=0

w jϕ j(x) (12)

Fig. 17 shows the architecture for the RBFN. Therefore,
RBFN has the following characteristics: there is only one
hidden layer; the output units are linear; distance based
aggregation function for the hidden units; activation
functions with radial symmetry for hidden units; the
convergence rate is faster than the BPN. In this case
study, there are 35 units in the hidden layer and the
learning rate is chosen as 0.8.
The computing procedures for the RBFN are as follows?G

1.The architecture of RBFN is designed as 3 layers with
2-35-2 nodes in the input, hidden, and output layer,
respectively.

2.The training numbers is set as 35000.
3.The learning rate is set as 0.8.
4.Initialize the weight, theta, Qk, Vik and Cik by radom.
5.Normalize the input value from 0 to 1.
6.Normalize the output value from 0 to 1.
7.Start the learning task.
8.Calculate the hidden and output layer value by weight

and theta.

netk = Q2
k ∑i V

2
ik(xi −Cik)

2

hk = exp(−net2)
net j = ∑k Wk jhk −θ j

y j =
1

1+exp(−net j)

9.Calculate the output and hidden error value.

δ j = (t j − y j) · y j · (1− y j)
δk =−(∑ j δ j ·Wk j) ·hk

10.Calculate the weight and theta Correction of hidden
and output layers.

∆Wk j(n) = ηδ jhk +α ·∆Wk j(n−1)
∆θ j(n) =−ηδ j +α ·∆θ j(n−1)
∆Cik = 2ηδkQ2

kV 2
ik(xi −Cik)

∆Qk = 2ηδkQk ∑i V
2
ik(xi −Cik)

2

∆Vik = 2ηδkQ2
kVik(xi −Cik)

2

11. Update the weight and theta of hidden and output
layers.

Wk j =Wk j +∆Wk j
θ j = θ j +∆θ j
Cik =Cik +∆Cik
Qk = Qk +∆Qk
Vik =Vik +∆Vik

12.When the learning task is finished, the recalling task is
executed.

13.Calculate the output hidden and output layer value.
14.Unnormalize the output value to map the global

coordinates.
15.Compare the output value and current value.

Fig. 18 shows the block-diagram of the RBFN using in
LabVIEW and Fig. 19-20 compare the actual global
coordinates(XR,YR) from the output (X

′

R,Y
′

R) of the
RBFN using the proposed vision-based positioning. In
Fig. 20, the resulting data also shows that the errors are
small at most area except the edge of FOV as similar as
BPN. The RMS error of the all points in this calibration is
almost 139.029µm. The positioning error for the RBFN
is larger than the one of the BPN, but the training time of
RBFN (1832 seconds) is much less than BPN (14412
seconds).

Case study 3. For the results in Case studies 1 and 2,
the errors for the vision-based positioning are small at
most of the FOV; however, the system may fail at the edge
of the FOV. To improve the precision and repeatability of
the proposed vision-based positioning sensory system
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Fig. 16: A bell shaped radial basis function for the RBFN.

Fig. 17: The architecture of the RBFN.

Fig. 18: The block-diagram of RBFN using in Labview.

Fig. 19: Compare the actual global coordinate from the output of
the RBFN positioning transformation.

Fig. 20: The calibration errors for the RBFN transformation in
Case 2

(VBPSS) as shown in Fig. 9, we make some algorithm’s
modification for the artificial neural network. Observing
the trendy of the vision-based positioning error in Fig. 8,
we can find the error is related to the distance from the
CCD matrix’s center. Therefore, the training data of BPN
is transferred from the Cartesian coordinate to the polar
coordinate at first; after the training of BPN is finished
and the output value is taken the inverse transformation
from the polar coordinate to the Cartesian coordinate. Fig.
21 shows that the errors of VBPSS at all FOV are much
smaller than the above and the maximal error is 2.3075
µm. Therefore, the proposed VBPSS can achieve the
precision requirement for the system.

5 Conclusion

In this paper, we have investigated the vision-based
positioning using BP and RBF neural networks to
perform the nonlinear geometry transformation from
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Fig. 21: The calibration errors for the BPN transformation using
the polar coordinates in Case 3.

image coordinates of the pixels to the actual positions in
the global coordinate system. There are two major
conclusions can be made in this study. (a) The
transformation from image coordinates to the global
coordinates is very nonlinear and BPN and RBFN cannot
establish the mapping relation at the edge of FOV. (b)
Using the polar coordinate transformation with the BPN
can improve the precision of the vision-based positioning
sensory system and the accuracy is under 3µm. Finally,
we have presented the integration of micro-stepping
positioning stage with the designed vision-based
positioning system to achieve the precise assembling task
automatically.
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