
Appl. Math. Inf. Sci.8, No. 1L, 267-272 (2014) 267

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/081L34

Representing Rotation in Simulink using Quaternion
Logah Perumal∗

Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang,75450, Melaka, Malaysia

Received: 10 May. 2013, Revised: 4 Sep. 2013, Accepted: 5 Sep. 2013
Published online: 1 Apr. 2014

Abstract: Euler angles were commonly used to represent rotation of a body, but itleads to an undesired phenomenon known as gimbal
lock. This undesired phenomenon can be overcome by using quaternion, which was founded by Sir William Rowan Hamilton. Since its
introduction, conversion between Euler angles and quaternion became essential; to enable quaternion to be compatible with applications
developed using Euler angles and vice versa. In this work, a Simulink program is developed to demonstrate use of quaternion in
representing rotation of a body in 3-dimensional space. Simulink program developed in this paper utilizes six degree of freedom
animation block (employs Euler rotation sequence of XYZ), which enablesusers to graphically see and maneuver a missile in random
orientation as it flies in a 3-dimensional Euclidean space. Random quaternion sequence is converted to Euler angles with XYZ sequence
(in accordance to Euler rotation sequence utilized by the animation block) using new method known as sets of regions. Use of sets of
regions enables quaternion to be applied in random sequence and gimballock phenomenon is avoided entirely.
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1 Introduction

Rotation of a body in 2 - dimensional or 3 - dimensional
spaces is often accomplished using Euler angles which
were formulated by Leonhard Euler. One of drawbacks of
using Euler angles to represent rotation is a phenomenon
known as gimbal lock [1]. Gimbal lock is a phenomenon
in which one of the rotation axes realigns with the other
axis and eventually loses one degree of freedom. This
phenomenon imposes restriction in representing rotation
of a body, when Euler angles are used. In 1843, Sir
William Rowan Hamilton introduced a new theory known
as quaternion [2] and [3] to describe orientation of a body
in space. Quaternion uses vector of four dimensions and
quaternion products to represent rotation. Quaternion has
many advantages over Euler angles and one of them is
that the gimbal lock phenomenon is avoided. Upon
realizing advantages of quaternion, many researchers
showed interest and carried in-depth research on
quaternion. One of fields which benefitted mostly from
introduction of quaternion is in computer graphics and
animation [4,5,6].

Practitioners tend to combine sequence of three
rotations about the coordinate axes to accomplish any
rotation [7]. There are total of 27 possible rotation
sequences. Only 12 of them are used since consecutive
rotations around the same axis would reduce the degree of

freedom. Rotation sequences with consecutive repeating
axes are: XXX, YYY, ZZZ, XXY, XXZ, YYX, YYZ,
ZZX, ZZY, XYY, YXX, ZXX, ZYY, XZZ and YZZ. The
12 rotation sequences with three degree of freedom are:
XYZ, XZY, YXZ, YZX, ZXY, ZYX, XYX, ZYZ, ZXZ,
YXY, XZX, and YZY. Each rotation sequence yields
different results and some applications might use different
rotation sequence than the other. For example, rotation
sequence ZXZ is commonly used in the field of
engineering, robotics and in the study of gyroscopic
motion while rotation sequence of XYZ is commonly
used in the field of aerospace engineering and computer
graphics [8].

Conversion between quaternion and Euler angles are
later studied, in order to enable quaternion to be
compatible with existing application developed using
Euler angles. Nevertheless, conversion between
quaternion and Euler angles are limited to certain rotation
sequences, as described in upcoming section 4. In this
work, a Simulink program is developed to demonstrate
use of quaternion in representing rotation of a body in 3
dimensional space. Simulink program developed in this
paper utilizes six degree of freedom animation block
(employs Euler rotation sequence of XYZ), which
enables viewers to graphically see and maneuver a missile
in random orientation as it flies in a 3-dimensional
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Euclidean space. Random quaternion sequence is
converted to Euler angles with XYZ sequence (in
accordance to Euler rotation sequence utilized by the
animation block) using new method (sets of region)[9].

This paper is arranged as follows. Euler angles and
quaternion are briefly introduced in sections 2 and 3,
respectively. Various methods used in conversion between
quaternion and Euler angles are described in section 4.
Section 5 is used to test and validate proposed method
while section 6 shows development of a simulink
program utilizing the proposed method. The paper is
finally concluded in section 7.

2 Euler Angles

Euler angles are used to rotate a body in mixed axis of
rotation system in 3 dimensional Euclidean spaces. The
three components of Euler angles are given as:

e = [α,β ,γ ]T (1)

wheree is Euler angle vector,α is rotation angle about
x-axis, β is rotation angle about y-axis andγ is rotation
angle about z-axis.

Consider t ∈ ℜ3, a vector in inertial coordinate
system. The vector t, when subjected to rotation about a
single axis (known as coordinate rotation) using one of
the Euler angles would produce new vector which can be
described in body coordinate system through the relation:

t
′

= Rm (θ) t (2)

where t
′

is rotated vector described in body coordinate
system,Rm (θ) is coordinate rotation matrix,t is vector in
inertial coordinate system,m is rotation sequence and

θ =











α i f m = x

β i f m = y

γ i f m = z

(3)

Coordinate rotation matrix for each axis is given by:

RX (α) =





1 0 0
0 cos(α) sin(α)
0 −sin(α) cos(α)





RY (β ) =





cos(β ) 0 −sin(β )
0 1 0

sin(β ) 0 cos(β )



 (4)

RZ (γ) =





cos(γ) sin(γ) 0
−sin(γ) cos(γ) 0

0 0 1





Rotation matrix for combined rotations, which is also
known as direction cosine matrix (DCM), can be obtained

by multiplying the rotation matrix for respective axes
according to the sequence as shown below:

Rabc = Ra(θ)Rb(θ)Rc(θ) (5)

whereRabc is rotation matrix with rotation sequence of
abc, in which

a,b,c =











X

Y

Z

(6)

and

θ =











α i f rotation axis = x

β i f rotation axis = y

γ i f rotation axis = z

(7)

3 Quaternion

Quaternion rotates a body in inertial coordinate system
instead of mixed axis of rotation system as Euler angles.
Quaternion consists of a scalar part and three imaginary
parts, which can be represented as:

Q = [q0,q]
T (8)

q0 = cos(
θ
2
)

q = sin(
θ
2
)n

where

n =











i

j

k

θ =











α i f n = i

β i f n = j

γ i f n = k

Consider coordinate rotation oft ∈ ℜ3, a vector in
inertial coordinate system. The vector t, when rotated by
an angle about a single axis would produce a new vector
which can be described in inertial coordinate system
through the relation:

t
′

= Qn × t ×Q∗

n (9)

wheret
′

is rotated vector described in inertial coordinate
system,t is vector in inertial coordinate system,Q is
quaternion vector with 4 elements,Q∗ is conjugate ofQ
andn is rotation sequence.
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Quaternion for rotation about individual axis is given
by:

Qi = QX = cos(α
2 )+ sin(α

2 )i+ sin(0
2) j+ sin(0

2)k

= cos(α
2 )+ sin(α

2 )i

Q j = QY = cos(β
2 )+ sin(0

2)i+ sin(β
2 ) j+ sin(0

2)k

= cos(β
2 )+ sin(β

2 ) j

Qk = QZ = cos( γ
2)+ sin(0

2)i+ sin(0
2) j+ sin( γ

2)k

= cos( γ
2)+ sin( γ

2)k

(10)

Eq. 10 can be rewritten in general form as:

t
′

= Qn × t ×Q∗

n

t
′

= RQt
(11)

wheret
′

is rotated vector described in inertial coordinate
system,t is vector in inertial coordinate system andRQ is
quaternion rotation matrix.

The general quaternion rotation matrix (quaternion
DCM) is given by:

[RQ =





q2
0+q2

1−q2
2−q2

3 2q1q2−2q0q1 2q1q2+2q0q2

2q0q3+2q1q2 q2
0−q2

1+q2
2−q2

3 −2q0q1+2q2q3

−2q0q2+2q1q3 2q0q1+2q2q3 q2
0−q2

1−q2
2+q2

3





(12)

4 Conversion Between Quaternion and Euler
Angles

Conversion of given Euler angles sequence to equivalent
quaternion can be simply achieved by using appropriate
formulae, but conversion of a given quaternion to Euler
angles sequence is more complex and can be done in
several ways.

Most commonly used method to convert given
quaternion to equivalent Euler angles sequence is by first
generating rotation matrix (also known as direction cosine
matrix, DCM) both from quaternion and Euler angles for
a given rotation sequence and then the similar matrix
elements are compared and solved for the Euler angles [5,
10,11,12,13]. Author in [14] proposed a geometric
method to convert quaternion to equivalent Euler angles
sequence. Advantage of the geometric method is that
conversion is done without involving any matrices, which
causes reduction in computational time and complexity.
In [15], the author proposed a method to convert a given
quaternion to any Euler angles sequence by first deriving
two different expressions involving elements of the
quaternion. Both expressions are mathematically
simplified and rewritten individually and later compared
for similar term and solved for the angles. Drawbacks of
this method are that the method is not certain to work for

rotations taking place around the same axis twice and
special steps need to be taken to deal with singularities.

All the methods proposed in the referred papers above
are restricted to conversion (quaternion to Euler angles)
within similar rotation sequence, except for method
proposed in [15]. A new method is proposed in [9] to
convert a quaternion produced from arbitrary rotation
sequence to Euler angles with specific rotation sequence
XYZ (but not limited to this sequence), without involving
any matrices. The new method uses sets of regions to
convert quaternion to Euler angles and it is also proved to
be valid for all rotation sequences, including rotations that
are taking place around the same axis twice. Since
quaternion rotates a body within inertial coordinate
system, thus Cartesian frame can be used to represent
attitude of a rotated body, by using Cartesian coordinates.
A set of regions can be defined by imposing restrictions
onto the Cartesian coordinates oft’ in the Cartesian
frame. There are three types of regions; octants, quadrants
and axes. Total of 26 regions (consisting of 8 octants, 12
quadrants and 6 axes) can be defined in the Cartesian
frame using relation:

x(n) f or X =







< 0
> 0 ;
= 0

(13)

Y =







< 0
> 0 ;
= 0

Z =







< 0
> 0
= 0

where x is region type given by:

x =







Oct for Octant
Quad for Quadrant
Axe for Axis

, n is region numbering andX ,Y,Z are cartesian
coordinates oft

′

.
The 8 Octants are defined by:

The 12 Quadrants are defined by:
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The 6 Axes are defined by:

Euler angles can then be calculated based on the
region in which the rotated vectort

′

lies. The vectort
′

is
also known as visualizing quaternion, since it is used as a
visualizing tool to specify the regions. Euler angles with
XYZ sequence can then be computed using
corresponding formulas for the respective region by using
the following arrangements shown in Figure 1.

5 Testing of the Proposed Method

The method proposed in section 4 is tested in
Matlab-simulink environment. Simulink model developed
for testing is as shown in Figure 2. A vector
t
′

= [2 0 0]T is rotated using three Euler angles. The
Euler angles are first converted to quaternion with random
rotation sequence using Rotation Angles to Quaternion
Rotation Order: ijk block which employs equation (10).
Visualizing quaternion is then computed using
Quaternion Rotation block, which employs equations (11)
and (12). The visualizing quaternion is sent to Quaternion
to Euler angles sequence: XYZ block, in which it is
converted to Euler angles with sequence XYZ using the
proposed method.

The Euler angles produced by the proposed method
(with XYZ rotation sequence) are then sent to another
Rotation Angles to Quaternion Rotation Order: XYZ
block whereby it is converted to quaternion with sequence
XYZ and visualizing quaterniont

′

is computed using

another Quaternion Rotation block. Visualizing
quaternions t

′

computed using the two individual
Quaternion Rotation blocks can be compared to validate
the proposed method. The test is carried out for all 12 sets
of Euler rotation sequences, covering all 26 regions. The
results are presented in Table I. From Table I, it can be
seen that visualizing quaternions computed using the two
individual Quaternion Rotation blocks match each other
without significant difference for all the cases. Small
variations are caused by accumulation of rounding errors
due to the trigonometric functions.

Figure 1: Sets of regions used in calculating Euler angles

Figure 2: Simulink model developed for testing of the
proposed method

Figure 3: Simulink program developed to visualize
rotation of a body in 3-dimensional Euclidean space using
Quaternion
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Figure 4: Sample program outputs (a) Missiles
orientation can be viewed in 3-dimensional Euclidean
space and (b) Numerical results

Table 1: Simulation results for 12 sets of Euler rotation
sequences, covering all 26 regions

6 Simulink Program

A program is developed using Matlab-simulink software
to demonstrate application of quaternion in maneuvering
orientation of a missile flying in 3D space. The missile
can be rotated using 4 angles, where each angle represents
rotation about Body x-axis, rotation about inertial X-axis,
rotation about inertial Y-axis, and rotation about inertial Z-
axis, respectively. Figure 3 shows the program developed
in Matlab-Simulink environment. State flow is utilized to
program the 26 regions with respective formulas.

Quaternion Operation block employs equation (10) to
calculate quaternion for each coordinate rotation,
whenever user keys in new commands. Equations (11)
and (12) are used to calculate visualizing quaternion for
respective rotation commands. The visualizing quaternion
is then sent to Quaternion to Euler angles; sequence XYZ
whereby it is converted to Euler angles with sequence
XYZ, using the sets of region method. The visualizing
quaternion is also sent to Visualizing Quaternion to
Cartesian angles block, developed to convert the
visualizing quaternion to Cartesian angles. Missiles initial
launching coordinates can be set in the Launching
Coordinates block before starting the simulation.

Six degree of freedom (6DoF) block, which employs
Euler rotation sequence of XYZ, is used to aid users to
graphically see the maneuvering of the missiles
orientation as it flies in 3-dimensional Euclidean space.
Simulation results can be viewed in Simulation results
block. The aerodynamic forces and moment contributions
are not considered in the model. The program represents
kinematics of a missile and the missiles projectile path
can be altered by the user. The program developed can be
used as an educational tool for first year Physics and
Mathematics classes. The program can also be used as a
medium to design and test attitude controllers. Sample
program outputs are shown in figure 4.

Similar utility is provided in MATLAB/SIMULINK
Aerospace toolbox, but it is limited to one particular
rotation sequence at a given time. Main advantage of
proposed program is that missile can be rotated at any
random orientation (covering all 12 rotation sequences) at
a given time, without facing any gimbal lock phenomena.

7 Conclusion

A sample program has been successfully developed to
demonstrate application of quaternion in representing
rotation of a body in 3-dimensional space. Simulink
program developed in this paper utilizes six degree of
freedom animation block (employs Euler rotation
sequence of XYZ), which enables viewers to graphically
see and maneuver a missile in random orientation as it
flies in a 3-dimensional Euclidean space. Use of sets of
regions enables quaternion to be applied in random
sequence and gimbal lock phenomenon is avoided
entirely. The program can also be used as an education
tool for undergraduate first year Physics and Mathematics
classes.
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