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Abstract: Active contour is an effective technique for object boundary extraction in biomedical images such as blood vessel tracing
or optic disc extraction in retinal images. The traditional serial realization ofcontour finding needs considerable processing time. This
paper presents a parallel realization of the active contour model to speed up the contour convergence process. The initially drawn
contour is split into two or more independently controlled sub-contours, and each sub-contour converges independently in parallel.
The final true contour is detected by combing results of all converged sub-contours. Compared with the serial realization, the contour
convergence in the parallel version is more efficient, and in contrast withother parallel algorithms, the proposed method requires
minimal coordination between parallel threads and thus more efficient.
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1 Introduction

Active contour [1], also known as snake is an effective
technique for object boundary extraction in biomedical
images such as blood vessel tracing or optic disc
extraction in retinal images. The contours are defined as
elastic curves which will converge under the influence of
internal and external forces. The internal forces depend
on the curve and the external forces are computed from
the image. Energy is computed by minimizing a function
of the two forces.

Kass, Witkin, and Terzopoulos [1]introduced the
concept of an active contour model like
energy-minimizing spline guided by external constraint,
internal and image forces. Due to the problems of
initialization, poor convergence to object boundaries and
high time of convergence, a number of methods have
been proposed to improve the performance of snakes [2,
3]. Cohen [4,5] introduced a balloon model and enlarged
the capture range of snakes. Xu et al. [6] and Xu and
Prince [7] proposed a new deformable model called the
’gradient vector flow snake’ (GVF). The GVF snake puts

emphasis on the problems of short capture range and
inability to track at boundary concavity. Improvements
have been tried on the original GVF snakes performance.
Xu et al. [8] computed the GVF using a polar coordinate
representation instead of Cartesian coordinate, and this
GVF snake can perform better than the original one in
areas of long thin boundary concavities and boundary
gaps. Jinyong Cheng et al. [9] improves GVF snake based
on wavelet analysis, and particular advantages of the
WVF snake over the GVF snake are robust against image
noise and the ability to segment the complicated structure
of medical images. All the improvements really help the
snakes to better capture the object boundaries, which also
require a considerable time for processing.

Parallelism is an effective way to speed up the
convergence of the contour. Florence Kussener [10]
proposed a genetic algorithm to optimize the energy
minimization of the snake, and used parallel computing to
optimize time of computation. R.M.Curwen, A.Blake and
R.Cipolla [11] used B-Spline withL spans to describe the
snake, and processedL spans in parallel on a network of
transputers, yet the spans need to communicate the effects
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of the feature to the rest of the snake. Akiy oshi W akatani
[12] divided the contour into parts that containI control
points each and allocated them to different processors
which can converge in parallel. It skewed the generation
of the DP table and localized the backtrace of the contour,
and achieved obvious speed up, yet the parts on different
processors are not independent from each other, they need
communications between the processors which will delay
the convergence process. Fekir A and Benamrane N. [13]
proposed a multi-agent system based on NetLogo
platform, in which mobile agents move over a grid of
stationary agents, each agent represents a point of snake
and it minimizes in parallel with other mobile agents, the
set of these agents needs to be supervised by Observer.

The main objective of this paper is to propose a
simple, efficient and yet effective parallel implementation
for the active contour models, which is capable of
achieving an accuracy (Ac) similar to the serial version,
while providing a faster processing. Developing
multithreaded algorithms is a complex problem due to the
difficulty of managing and balancing the workload among
a large number of threads, as well as synchronizing them
[14]. The challenge of deploying a parallel
implementation of the active contour model is to keep the
amount of communication low. As mentioned in [12], in
this paper, the initial contour is also subdivided into
sub-contours, yet unlike [12], the sub-contours in our
paper are independent from each other, so only a minimal
coordination is needed at the final stage of convergence to
the object boundary. Our approach assumes a similar
intensity distribution pattern across the region
surrounding a target boundary. Our experimental results
showed that the method improves the converging time
without compromising the algorithm Ac.

This paper is organized as follows. In Section 2, we
briefly describe the active contour model we used in our
implementation. Section 3 outlines the parallel
implementation process. Section 4 discusses further
smoothness of the contour by B-Spline. Section 5
presents an evaluation of the parallel implementation
performance compared with the serial version. Finally,
Section 6 concludes with discussion and future work.

2 Active Contour Algorithm

The active contour model is an approach to extract the
boundary of an object from a 2D image. It tries to
minimize the energy of the current contour which is
computed as the sum of the internal and external energy.
When the contour converges to the object boundary, its
internal energy is minimized, and the most usual
approach is to assign low values when the gradient
reaches its peak value. When the snake has a shape
similar to the object, its external energy should be
minimal. The simplest approach is to assign high energy
to elongated contours and to high curvature contours.

The snake exhibits dynamic behavior as it always
minimizes its energy function. A simple snake which is
elastic can be defined as

A.A set of n points
B.An internal elastic energy term
C.An external edge based energy term

To find the contour of the object in an image, we need
to initialize the contour near the object and it will
iteratively converge to the object boundary. Suppose the
active contour is defined by a parametric curve
C(u, t) = [x(u, t),y(u, t)], u ∈ [0,1] where, t determines
the temporal position of a point in the sequence, moving
through the spatial domain of an image. The energy
function of the snake to be minimized can be defined by
(1).

Esnake=

1
∫

0

Eint(C(u))+Eimage(C(u))+Eext(C(u))du (1)

Where,Eint, Eimage and Eext are internal, image and
external energy, respectively.

The internal energy defined by (2) depends only on the
curve itself, which represents the properties of the quality
of the contour: stretching and bending.

Eint(C(u)) = 1/2(α|C
′
(u)|2+β |C

′′
(u)|2) (2)

C
′
(u) is the first-order term controls the tension along

the curve which is weighted byα andC
′′
(u) is the second-

order term controls the rigidity of the curve weighted by
β . Setβ to zero at a point allows the snake to develop a
corner.Eint intends to pull or push the curve towards the
edges.

The external energy consists of potential forces defined
in (3), whereEimageis defined by the negative gradient of a
potential function. The energy is generally the image force
as defined in (4) whereI denotes the image intensity.

Eexternal=
∫

u
Eimage(C(u))du (3)

Eimage(x,y) =−|∇I(x,y)|2. (4)

By variational calculus and the Euler-Lagrange
differential equation, equation (1) can be solved, and the
final contour position can be defined by (5).

αCu −βCuu −∇Eimage= 0 (5)

3 Parallel Implementation of Active Contour

As mentioned above, a number of improvements have
been made on the active contour model, which also needs
more computation time. To accelerate the computation
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process, in the paper, we proposed a parallel method to
converge the active contour. The method can be combined
with most of the active contour approaches mentioned in
the literature, because it is independent of how the active
contour is modeled and how the minimization process is
carried out. Our experimental results with real world
images demonstrate that our parallel method can speed up
the convergence process.

3.1 Initial Contour Splitting

For the active contour algorithm to find the object
boundaries, an initial contour needs to be defined first. As
the initial contour is drawn, the region where the object
lies in is determined, and we call this region our Region
of Interest (ROI). Instead of subdividing the image, we
split the contour into two or more sub-contours depending
on the shape and complexity of the object. Here for
simplicity of the discussion, we split the contour into two
sub-contours, and then the two sub-contours start to
converge in parallel. It is easy to extend the discussion to
four or more sub-contours. The ideal situation is that the
two sub-contours complete their convergence
simultaneously, so they should have similar sizes.

After the initial contour is drawn, its four coordinates
is selected, including the most left, top, right and bottom
position, where we denote thex coordinate of the most
left and right position asle f tX and rightX , the y
coordinate of the most top and bottom position astopY
andbottomY . With these four parameters, four pointsP1,
P2, P3,P4 are created, whereP1 = (le f tX , topY ),
P2 = (rightX , topY ), P3 = (le f tX ,bottomY ),
P4 = (rightX ,bottomY ). P1, P2, P3,P4 define a rectangle
surrounding the initial contour, then we split the rectangle
into two sub-rectangles with equal size by creating a
black line through the center of the rectangle, as a result,
the contour is also split into two sub-contours with similar
size. In order to make the sub-contours converge to the
object boundary, they must be end to end to form a loop,
so we used the black line as part of the two sub-contours
to help them to form a loop as shown in Fig.1.

Now we need to get the points of the two sub-contours
so that to compute their energies and to converge. When
drawing the initial contour, the points are recorded, yet
the points on the black line should be extracted to form a
loop. The start and end point of the black line can be
computed from P1, P2, P3,P4. The start point
Pstart= (le f tX , topY +(bottomY − topY )/2), and the end
point Pend = (rightX , topY + (bottomY − topY )/2). As
shown in Fig.1, according to the positions ofPstart and
Pend, we can find the nearest points above and below the
black line as the cutting points, then the points of the
contour are divided into two sets with each set belonging
to one sub-contour, and by adding the points sampled
from the black line with equal distance, we finally get two
sub-contours.

Fig. 1: Splitting the initial contour into two sub-contours by
creating a black line through the center of the rectangle

If the object in the image is large or have complex
shape, to increase the parallelism, the contour may be
split into four parts. Just as described above, the contour
is divided into two sub-contours first, then divide the
contour vertically by creating another black line from top
to bottom, with the start point
Pstart= (le f tX + (rightX − le f tX)/2, topY ), and the end
point Pend= (le f tX +(rightX − le f tX)/2,bottomY ). By
the two black lines, the contour is now divided into four
sub-contours as shown in Fig.2, which may be assigned
to four different threads to run in parallel.

Fig. 2: Splitting the contour into four sub-contours by creating
two black lines

3.2 Parallel Implementation

The initial contour is now divided into two sub-contours,
which are independent from each other. Then the two
sub-contours can converge in parallel. As shown in Fig.1,
the object on the image is also divided into two
sub-objects by the black line. On each sub-contour, the
points move to the sub-object boundary iteratively, and at
each iteration process, all the points are tested one by one.
A point will move to a new position if the new position
makes the computed energy decrease. So the sub-contour
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will converge towards the direction of the energy
decreasing. For the points on the black line, because we
take the black line as the imaginary boundary of the
sub-object, which means that they are already on the
boundary, so in our method, we don’t move these points
at all to save the convergence time. The iteration will end
when the energy is minimized, i.e. the sub-contours
converge at the sub-object boundaries. Multi-core
processors are becoming main stream in computer market
due to their high performance, low cost and less power
consumption characteristics [15]. We implement the
parallelism by Java multithread on a multi-core platform.
Each sub-contour is assigned to one thread which then
runs in parallel to converge towards the object boundary.
Fig. 3 shows the sub-contours during the converging
process. Fig. 4 shows the completely converged
sub-contours.

Fig. 3: The Sub-contours during the converging process. The
top 2 images show the contours after 10 iterations, the bottom
2 images show the contours after 20 iterations.

Fig. 4: The two sub-contours after convergence

As mentioned before, the contour is divided into two
sub-contours by creating a black line. As a result, more
points are added which seems that it will consequently
cost more convergence time. Yet, since the points selected
from the line don’t move at all during the convergence
process, therefore the added points have no effect on the
convergence time.

3.3 Combine Sub-Contours into the Whole
Contour

With the two converged sub-contours, we can get the
whole contour of the object by combining them together.
First we need to delete the points of the two sub-contours
from the black line and combine them, then remove the
black line from the image.

A.The pseudo-code to delete the points on the black line
and combine the sub-contours is shown in Fig.5.

Fig. 5: the pseudo-code to delete the points on the black line and
combine the sub-contours

B.Remove the black line
As mentioned before, when splitting the initial
contour, a black line is created in the way as described
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in the following. The pixels of the image containing
the object can be extracted and stored in an array
imageArray, through the start pointPstart and the end
point Pend, a line can be defined, and the pixels on the
line are stored in an arraypixArray, then we set the
pixels on the line to be black, as a result, a black line
is created.
When the object contour is found, the black line
should be removed, i.e. the colour of the pixels on the
black line should be restored to the original values. So
we just copy the colour values frompixArray to the
corresponding part of theimageArray determined by
Pstart andPend. Finally we get the contour surrounding
the object. Fig. 6 shows the results after the
combination.

Fig. 6: The Contours after removing the black bine

4 B-spline Adjustment

After combining the sub-contours, now we get the whole
contour of the object. The main application of our method
is on the processing of the retinal images. The detection
of accurate boundary of the optic disc is important for the
detection and diagnosis of Glaucoma where the variation
in the shape and size of the optic disk is used to detect
and measure the severity of disease [16]. As shown in
Fig. 7, in retinal images, the optic disc (OD) segmentation
is a challenging task mainly due to blood vessel
occlusions, illdefined boundaries, image variations near
disk boundaries due to pathological changes and variable
imaging conditions [17]. The contour is often not as
closely to the object boundary as shown in the above
figures.

From Fig.7 we find that only a small segment of the
contour is apart from the object boundary. So we only
need to adjust this segment while leaving the others
unchanged. B-Spline is a perfect choice for local
adjustment. The term “B-spline” was coined by Isaac
Jacob Schoenberg and is short for basis spline [18]. In
this paper, we take advantage of its locality property
which indicates that moving a control vertex will change
at mostK curve segments, whereK is the order.

Fig. 7: The contour of the optic disc in a retinal image

Give m real values ti, called knots, with
t0 ≤ t1 ≤ . . . ≤ tm−1, A B-Spline of degreen is a
parametric curve composed of a linear combination of
basis B-Splinesbi,n of degreen

S(t) =
m−n−2

∑
i=0

PiBi,n(t), t ∈ [tn, tm−n−1].

The pointsPi ∈ R
d are called control points. There are

m−n−1 control points.
In our case, the contour is transformed into a cubic B-

Spline whose control points are the points on the contour.
The cubic B-Spline curve segment is determined by (6):

P0,3(t) =
1
6
[1 t t2 t3]









1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1

















P0
P1
P2
P3









t ∈ [0,1] (6)

Where,P0, P1, P2, P4 are control points on the contour.
By transforming the contour shown in Fig.7 into B-

Spline, we get the result as shown in Fig.8.

Fig. 8: B-Spline generated from the contour

As shown in Fig.8, the segments at the left side of
the optic disc are apart from its boundary, so we just need
to move the control points of these segments to adjust the
Spline to the boundary. The final contour after adjustment
is shown in Fig.9:
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Fig. 9: The final B-Spline contour after local adjustment

5 Evaluation

Modern CPUs integrate multiple cores and provide
hardware support for parallel processing [19]. Multicore
and manycore processors have become the standard
building block for desktop and scalable computers [20].
So our parallel implementation was developed and tested
on Windows 7 platform, with Intel(R) Core(TM)2 Duo
CPU E7600 @3.06GHZ 3.06GHZ and 4GB RAM. The
parallelism of active contour model is based on Java
multithread. However, developing multithreaded
algorithms is a complex problem due to the difficulty of
managing and balancing the workload among a large
number of threads, as well as synchronizing them [21].
Because the sub-contours are totally independent from
each other, and the splitting process ensures the similar
size of the sub-contours, so the difficulty of multithreaded
algorithms is solved. Depending on the shape and
complexity of the object, the initial contour can be
divided into two, four or even more sub-contours, by
taking advantage of the multithread-based parallel
computing in Java, each sub-contour is assigned to a
thread which can run in parallel on a different core, and
then these sub-contours can converge to the sub-object
boundaries simultaneously.

The previous serial implementation was developed by
Java language. The initial contour converges iteratively to
the object boundary by moving one point each time.
While in the parallel version, the sub-contours converge
simultaneously (as described in Section 3). The challenge
of deploying a parallel implementation is to keep the
amount of communication low. In this paper, the
sub-contours are completely independent from each other,
so they don’t need any communication. When the two
sub-contours end their convergence, they need to be
combined to form the whole contour, which is the only
reason for delay.

We selected 8 retinal images as our test images to
evaluate the serial and parallel active contour
implementation. The 8 images are shown in Fig.10.We
tried to find the contour of the optic disc. Table1 shows
the execution time performance of the serial and parallel
version. Fig.11 shows the contour of the optic disc in
Img8. In order to make the result easy to show, we cut
Img8 so as to focus on the optic disc.

Fig. 10: The left is the 6 images containing typical objects. The
right is the retinal image on which the contour of the optic disc
is to be located

Table 1: Execution times (in seconds) of serial and parallel
implementation

Image Serial Parallel Speedup
Version Version

Img1 1.885 1.094 1.723
Img2 2.347 1.418 1.674
Img3 2.239 1.564 1.432
Img4 3.078 1.896 1.623
Img5 2.842 1.787 1.590
Img6 2.478 1.422 1.743
Img7 2.713 1.696 1.600
Img8 1.975 1.113 1.774

From table1, we find that the convergence has been
accelerated by a speedup of 1.645 on average as the
contour split into two sub-contours.

Fig. 11: The final contour of the optic disc in retinal image. The
left image shows the contour converged by the software itself.
The right image shows the B-Spline contour adjusted by user.

6 Conclusion

This paper introduced a parallel algorithm for the active
contour finding algorithm. The implementation is based
on the contour splitting, which achieves a faster
convergence of the target contour. Depending on the
shape and complexity of the object, the contour can be
split into two, four or even more sub-contours. The
sub-contours are assigned to different threads which can
run in parallel, and then these sub-contours can converge

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1L, 253-260 (2014) /www.naturalspublishing.com/Journals.asp 259

to the sub-object boundaries simultaneously. Finally the
converged sub-contours are combined together to get the
whole contour of the object. Our further study will
generalize the method to the detection of contour with
significant variability of image intensity distribution near
the target boundary.
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