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In this paper, based on a set of upper record values from the generalized exponential
(GE), Bayesian, non-Bayesian and empirical Bayes estimate is derived for the parame-
ters of the Generalized Exponential (GE) model based on record statistics. The estimate
is obtained using the squared error loss and Varian’s linear-exponential (LINEX) loss
functions, and compared with the corresponding maximum likelihood and Bayes esti-
mates. Empirical Bayes prediction bounds for future record values are also obtained.
Finally, practical examples using real record values are given to illustrate the applica-
tion of the results.

Keywords: Record statistics, maximum likelihood, Bayes estimation, empirical Bayes,
squared error loss, LINEX, exponential model, quadratic loss, Monte Carlo simulation.

2000 Mathematics Subject Classification: 65L05, 65Y05.

1 Introduction

Recently a new distribution, named generalized exponential distribution has been intro-
duced and studied quite extensively by authors. Generalized exponential distribution can
be used as an alternative to gamma or Weibull distribution in many situations. In a com-
panion paper, the author considered the maximum likelihood estimation of the different
parameters of the generalized exponential distribution and discussed some of the testing of
hypothesis problems. In this paper, the empirical Bayes estimate is derived for the param-
eters of the generalized exponential model based on record statistics. The two parameter
generalized exponential distribution has been introduced by Gupta and Kundu (1999a,b).
The GE distribution has the distribution function

F (x; α, β) = (1− e−βx)α; α, β, x > 0. (1.1)
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Therefore, GE distribution has a density function

f(x;α, β) = αβ(1− e−βx)α−1e−βx, (1.2)

a reliability function

R(x;α, β) = 1− (1− e−βx)α (1.3)

and a hazard function

H(x; α, β) =
αβ(1− e−βx)α−1e−βx

1− (1− e−βx)α
. (1.4)

Here α is the shape parameter and β is the scale parameter. GE distribution with the shape
parameter α and the scale parameter β will be denoted by GE(α, β). GE(1, β) repre-
sents the exponential distribution with the scale parameter β. It is observed in Gupta and
Kundu (1999a) that the two-parameter GE(α, β) can be used quite effectively in analyz-
ing many lifetime data, especially in place of two-parameter gamma and two-parameter
Weibull distributions. The two-parameter GE(α, β) can have increasing and decreasing
failure rates depending on the shape parameter. Let X1, X2, X3, . . . be a sequence of in-
dependent and identically distributed random variables with cdf F (x) and pdf f(x). Set
Y m = max(X1, X2, X3, . . . , Xn), n ≥ 1, we say that Xj is an upper record and it is
denoted by XU(j) if Yj > Yj−1, j > 1. Let XU(1), XU(2), XU(3), . . . , XU(n) be the first n

upper record values arising from a sequence {Xi} of i.i.d GE variables with pdf (1.1) and
cdf (1.2). For more details on record values, see Arnold, Balakrishnan and Nagaraja (1998),
Chandler (1952) and Soliman, Abd Ellah and Sultan (2006). As most statisticians are in-
terested mainly in controlling the amount of variability, it has become standard practice to
consider squared error loss function (s.e.l) (symmetric). The symmetric nature of this func-
tion gives equal weight to overestimation and underestimation, while in the estimation of
parameters of life time model overestimation may be more serious than underestimation or
vice-versa. For example, in the estimation of reliability and failure rate functions, an over-
estimate is usually much more serious than underestimate, and the use of symmetric loss
function may be inappropriate as has been recognized by Basu and Ebrahimi (1992). This
leads us to think that an asymmetrical loss function may be more appropriate. A number
of asymmetric loss functions have been proposed for use. One of the most popular asym-
metric loss function is (linear-exponential) loss function (LINEX), which was introduced
by Varian (1975). Various authors including Basu and Ebrahimi (1992) have used this loss
function in different estimation problems. This function rises approximately exponentially
on one side of zero and approximately linearly on the other side. Under the assumption
that the minimal loss occurs at φ∗ = φ, the LINEX loss function for φ = φ(α, β) can be
expressed as

L(∆) ∝ exp(c∆)− c∆− 1 c 6= 0. (1.5)
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where ∆ = (φ∗ − φ), φ∗ is an estimate of φ. The sign and magnitude of the shape
parameter c represents the direction and degree of symmetry respectively. ( if c > 0, the
overestimation is more serious than underestimation, and vice-versa). For c closed to zero,
the LINEX loss is approximately squared error loss and therefore almost symmetric.

The posterior expectation of the LINEX loss function (1.5) is

Eφ[L(φ∗ − φ)] ∝ exp(cφ∗)Eφ[exp(−cφ)]− c(φ∗ − Eφ(φ))− 1, (1.6)

where Eφ(·) denotes posterior expectation with respect to the posterior density of φ. The
Bayes estimator of φ, denoted by φ∗BL under the LINEX loss function is the value φ∗ that
minimizes (1.6). It is found to be

φ∗BL = −1
c

ln{Eφ[exp(−cφ)}, (1.7)

provided that the expectation Eφ[exp(−cφ)] exists and is finite [Calabria and Pulcini
(1996)].

The objective of this paper is to obtain and compare several types of estimation based
on record statistics for the two unknown parameters of the generalized exponential distri-
bution, and the survival time parameters, namely the hazard and Reliability functions. A
discussion of the maximum likelihood estimators is also included in section 2. In section
3, the Bayes estimators of the parameters of the model as well as the reliability and hazard
functions are derived based on upper record values, using the conjugate prior on the shape
parameter and discretizing the scale parameter to a finite number of values. The estimates
are obtained using both the symmetric loss function (s.e.l.) and the asymmetric loss func-
tion (varian’s linear - exponential (LINEX)). The maximum likelihood and Bayes estimates
are compared via Monte Carlo simulation study. The section 6 provides Bayes prediction
for future record with numerical example.

2 Maximum Likelihood Estimation

The joint density function of the first n upper record values x ≡ ( Xu(1), Xu(2),

. . . , Xu(n)) is given by

f1,2,...,n(xU(1), xU(2), xU(3), . . . , xU(n)) = f(xU(n))
n−1∏

i=1

f(xU(i))
1− F (xU(i))

,

−∞ < XU(1) < XU(2) < · · · < XU(n) < ∞, (2.1)

where f(·) and F (·) are given, respectively, by (1.1) and (1.2) after replacing x by xU(i).

The likelihood function (2.1) reduces to

`(α, β|x) = αnβne−β
∑n

i=1 xU(i)

n∏

i=1

(1− e−βxU(i))α−1. (2.2)
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The log-likelihood function is

L(α, β|x) ≡ ln ` = n ln(α) + nlnβ + (α− 1)
n∑

i=1

ln(1− e−βxU(i))− β

n∑

i=1

xU(i). (2.3)

The normal equations become

∂L

∂α
=

n

α
+

n∑

i=1

ln(1− e−βxU(i)) = 0, (2.4)

∂L

∂β
=

n

β
+ (α− 1)

n∑

i=1

xU(i)e
−βxU(i)

(1− e−βxU(i))
−

n∑

i=1

xU(i) = 0. (2.5)

From equation (2.4), we obtain the maximum likelihood estimate (MLE) of α as function
of β, say

∧
α(β), where

∧
α(β)ML =

−n∑n
i=1 ln(1− e−βxU(i))

. (2.6)

The corresponding MLE’s
∧
RML (t) and

∧
HML (t) of R(t) and H(t) are given respectively

by equations (1.3) and (1.4) after replacing α by
∧
αML. See Cohen and Whitten (1998),

Gertsbakh (1989), Meeker and Escobar (1998) and Hastings (2001).

3 Bayes Estimation

For Bayesian estimation, we assume a gamma (conjugate prior) density for α with
parameters a, b, and pdf

g(α) =
ba

Γ(a)
αa−1e−bα, α > 0, a > 0, b > 0. (3.1)

It follows, from (2.2) and (3.1), that the posterior density of α, for a given x, is given by

P (α|x) =
(b + xU(n))n+a

Γ(n + a)
αn+a−1e−(b+xU(n)), α > 0. (3.2)

Under the squared error loss function, the Bayes estimator of α, denoted by
∧
αBS , is the

mean of the posterior distribution which can be shown to be

∧
αBS=

n + a

b + xU(n)
. (3.3)

Under the LINEX loss function (1.5), when ∆ =
∧
α −α, the Bayes estimate

∧
α of α is

obtained by using (1.7) as

∧
αBL=

n + a

c
ln(1 +

c

b + xU(n)
), c 6= 0. (3.4)
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4 Empirical Bayes Estimation

When the prior parameters a and b are unknown, we may use the empirical Bayes ap-
proach to get their estimates. Since the prior density (3.1) belongs to a parametric family
with unknown parameters, such parameters are to be estimated using past samples. Ap-
plying these estimates in (2.4) and (2.5), we obtain the empirical Bayes estimates of the
parameter α based on squared error and LINEX loss functions, respectively. For more
details on the empirical Bayes approach, see Maritz and Lwin (1989).

When the current (informative) sample is observed, suppose that there are available
m past similar samples Xj,U(1), Xj,U(2), Xj,U(3), . . . , Xj,U(n), j = 1, 2, . . . , m with past
realizations α1, α2, · · ·αm of the random variable α. Each sample is assumed to be an
upper record sample of size n obtained from the exponential distribution with pdf given by
(1.1). The LF of the jth sample is given by (2.1) with xU(n) being replaced by xj,U(n).
For a sample j, j = 1, 2, . . . ,m, the maximum likelihood estimate of the parameter αj is
obtained from (2.2) and written as

∧
βj= n/xj,U(n). (4.1)

The pdf of xj,U(n), j = 1, 2, . . . , m, is given, by

fj,U(n) = f(x)
(− ln(1− F (x)))n−1

(n− 1)!

=
αn

j

Γ(n)
xj,U(n)e

−αjxj,U(n) , xj,U(n) > 0, (4.2)

which is gamma with parameters (n, αj). Therefore, the conditional pdf of Zj for a given
αj is obtained from (4.2) and is given by

f(zj |αj) =
(nαj)n

Γ(n)zn+1
j

e−nαj/zj , zj > 0, (4.3)

which is the inverted gamma with parameters (n, αj). Following Schafer and Feduccia
(1972) and using (3.1) and (4.3), the marginal pdf of Zj , j = 1, 2, . . . , m, can be shown to
be

f(zj) =
∫ ∞

0

f(zj |αj)g(αj) dαj

=
bannza−1

j

β(n, a)(n + bzj)n+a
, zj > 0. (4.4)

Therefore, the moments estimates of the parameters a and b may be obtained by using (3.1)
and are of the forms

∧
a=

(n− 1)S2
1

(n− 2)S2 − (n− 1)S2
1

, (4.5)
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∧
b=

nS1

(n− 2)S2 − (n− 1)S2
1

, (4.6)

where S1 =
∑m

j=1 zj/m and S1 =
∑m

j=1 z2
j /m. Therefore, the empirical Bayes estimates

of the parameter α under the squared error and LINEX loss functions are given, respec-
tively, by

∧
αEBS=

n+
∧
a

∧
b +xU(n)

, (4.7)

∧
αEBL=

n+
∧
a

c
ln(1 +

c
∧
b +xU(n)

), c 6= 0, (4.8)

where
∧
a and

∧
b are given by (4.5) and (4.6).

5 Prediction of Future Record Values

In the context of prediction of the future record observations, the prediction intervals
provide bounds to contain the results of a future record based upon the results of the
previous record observed from the same sample, see Abd Ellah (2003), Abd Ellah and
Sultan (2005), Escobar and Meeker(1999). This section is devoted to drive the Bayes
predictive density function, which is necessary to obtain bounds for predictive interval
of future record. Suppose that we observe only the first n upper recorded observations
x ≡ ( Xu(1), Xu(2), . . . , Xu(n)), and the goal is to obtain the Bayes predictive interval
for the sth future upper record , where 1 ≤ n < s. Let Y ≡ Xu(s) be the sth upper record
value, the conditional density function of Y for given xn = Xu(n) is given by

f(y|xn;α) =
[w(y)− w(xn)]s−n−1

Γ(s− n)
f(y)

1− F (xn)
, (5.1)

where w(·) = − ln[1− F (·)].
Using the exponential distribution, with pdf given by (1.1), the conditional density

function (5.1) is

f(y|xn) =
(y − xn)s−n−1

Γ(s− n)
e−α(y−xn), y > xn. (5.2)

The Bayes predictive density function of y given the observed record x is given by

f(y|x) =
∫

α

f(y|α)P (α|x)dα, (5.3)
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where f(y|xn) is the conditional pdf of Y for the given parameter α and P (α|x) is the
posterior density function of α for the given informative data. The Bayes predictive density
function of the future record is obtained by substituting from (3.2) and (5.2) into (5.3).

f(y|x) =
(b + xn)n+a

β(n + a, s− n)
(y − xn)s−n−1(b + y)−(s+a), y > xn, (5.4)

where β(·, ·) is the beta function. Bayesian prediction bounds of Y = XU(n), given the
previous data, are obtained by evaluating Pr(Y ≥ t|x), for some positive t. It follows
from (5.4) that

Pr(Y ≥ t|x) =
∫ ∞

t

f(y|xn)dy

=
IB(n + a, s− n, γ(t))

β(n + a, s− n)
, (5.5)

where IB(·, ·) is the incomplete beta function and γ(t) = b + xn/(b + t). It can be easily
shown that f(y|xn) is a density function on the positive half of the real line by proving that
Pr(Y ≥ t|x) = 1 and IB(z1, z2, ξ) is the incomplete beta function defined by

InBet(z1, z2, ξ) =

∞∫

ξ

tz1−1/(1 + t)z1+z2dt.

To obtain the lower and upper 100τ% prediction bounds for Y = XU(s) by finding t from
equation (5.5), we use

Pr[LL(x) < Y < UL(x)] = τ, (5.6)

where LL(x) and UL(x) are the lower and upper limits, respectively, satisfying

Pr[Y > LL(x)|x] = (1 + τ)/2, P r[Y > UL(x)|x] = (1− τ)/2. (5.7)

For a special case, it is often important to predict the first unobserved record value XU(n+1).
The predictive survival function for Yn+1 = XU(n+1) is obtained from (5.5) by setting
s = n + 1, in the form

Pr(Yn+1 ≥ t1|x) = (
b + xn

b + t1
)n+a. (5.8)

Iterative numerical methods are also needed to obtain prediction bounds for Yn+1, the lower
and upper limits satisfying

LL(x) = (b + xn)(
1 + τ

2
)−1/(n+a) − b, (5.9)

UL(x) = (b + xn)(
1− τ

2
)−1/(n+a) − b. (5.10)



142 A. H. Abd Ellah

6 Numerical Examples

In this section, the maximum likelihood and Bayes (squared error and LINEX) esti-
mates are compared based on the Monte Carlo simulation study and examples are given
to illustrate the result of prediction, see Sinha and Gutman (1976), Sugita (2002), Lawless
(1982), Lindsey (1996).

Example 6.1. Let us consider the first seven upper record values simulated from an expo-
nential distribution (1.1) with scale parameter α = 1.297, β = 1:

0.39165, 1.36774, 1.46127, 1.6482, 1.81426, 1.89462, 1.9464.

Using this record values the different estimates of α, R(t), and H(t) are computed
according to the following steps:

1. We approximate the prior for a, b over the intervals (2.5, 3.4) and (.235, 1.413).
There is no further prior information about a nonparametric procedure can be use to esti-
mate any two different values of the reliability function R(t1) and R(t2), see Maritz and
Waller (1982, p.105).

2. Based on the generated value α, an upper record sample of size n = 7 is then
generated from the density of the exponential α = 1.297, β = 1 distribution defined by
(1.1), which is considered to be the informative sample.

3. Using these data, 97.5% Bayes prediction interval for the future upper record values
xU(8) is computed using (5.8) and given by (1.9564, 3.342).

4. For given values of a, b and n, we generate a random sample (past sample) zj,n, j =
1, 2, . . . ,m of size m = 10 from the marginal density of zj,n given by (1.16). We substitute
the values of (R(t1), t1), (R(t2), t2) obtained in step 1 into equation (4.4), where aj and
bj are solved numerically for each given bj , j = 1, 2, . . . , 10, and use the Newton-Raphson
method. The resulting values of the hyper parameters (aj , bj) in the gamma prior as well
as the posterior probabilities for each bj (see equation (3.9)), are given in Table 6.2.

5. The ML estimates (·)ML, and the Bayes estimates ((·)BS , (·)BL) of α, β, R(t), and
H(t), are computed using results in section 4. The results are presented in Table 6.3.

Example 6.2. The above prediction procedure is demonstrated by using a simulated sets
of record from the exponential model (1.1). Samples of upper records values of size n =
3, 5, 7 are simulated from the exponential distribution with α = 1.023, 2.543, 3.754, β = 1,
which include the exponential. Using our results in equation (5.8), the lower and the upper
95% prediction bounds for the next record values XU(n+1), for the three cases (n = 3, 5, 7)
are obtained and displayed in Table 6.2.

Example 6.3. Based on the seven record values from example 6.2, with the corresponding
hyper parameter values obtained in the same example and using the results in (3.3) and
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n previous record values LL UL Width
3 0.0038, 1.48863, 3.44035 3.4611 7.8041 4.3429
5 0.429169, 0.560242, 1.51925, 2.95113, 3.81204 3.8268 6.5684 2.7416
7 0.3248, 2.2954, 2.5172, 2.5972, 2.6925, 2.9841, 5.3252 5.3399 7.9039 2.5640
3 2.27949, 2.36535, 2.56455 2.5739 4.4117 1.8378
5 0.72853, 0.796644, 1.35383, 1.42606, 2.27987 2.2853 3.2637 0.9784
7 0.4050, 1.4127, 1.6041, 1.6950, 2.0951, 2.1519, 2.6618 2.6664 3.4409 0.7745
3 1.3778, 1.5266, 1.67946 1.6838 2.4290 0.7452
5 1.08744, 1.23323, 1.58884, 1.83328, 1.86588 1.8690 2.3615 0.4926
7 1.3375, 1.5768, 1.6170, 1.6826, 1.7228, 1.7830, 1.8848 1.8870 2.2395 0.3525

Table 6.1: The lower (LL) the upper (UL) and the width of the 95% prediction intervals for the future
upper record XU(n+1), (n = 3, 5, 7).

(3.4), the lower and the upper 95% prediction bounds for the next record values XU(8) are
73.125 and 116.725, respectively.

7 Conclusion

Based on the set of the upper record values the present paper proposed classical and
Bayesian approaches to estimate the two unknown parameters as well as the reliability and
hazard functions for exponential model. We also considered the problem of predicting
future record in a Bayesian setting. Bayes estimators are obtained using both symmetric
and asymmetric loss functions. It appears to be clear from this study that the Bayes method
of estimation based on record statistics is superior to the ML method. Comparisons are
made between different estimators based on simulation study and practical example using
a set of real record values. The effect of symmetric and asymmetric loss functions was
examined and the following were observed:

1. Table 6.1 (the case of known a and b) shows that the Bayes estimates relative to
LINEX loss function has the smallest (EV) as compared with quadratic Bayes esti-
mates or the MLE’s. This is valid for all number of record values n, and the estimated
variances decreases as n increases.

2. For the case of unknown shape and scale parameters, the use of a discrete distribution
for the shape parameter resulted in closed form expression for the posterior pdf.
The equal probabilities chosen in the discrete distributions caused an element of
uncertainly, which can be desirable in some cases. Tables 6.2, 6.3, 6.4 and 6.5 shows
that the Bayes estimates based on symmetric and asymmetric loss functions perform
better than the MLE’s, and the asymmetric Bayes estimates are sensitive to the values
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ER(α̂ML) ER(α̂EBS) ER(α̂EBL)

n s 97.5% 99% c 97.5% 99% c 97.5% 99%
5 6 0.9005 0.9501 1 0.9910 0.9974 1 0.9847 0.9951

2 0.9923 0.9979 2 0.9064 0.9660
3 0.9905 0.9983 3 0.7944 0.8784

7 0.9017 0.9538 4 0.9910 0.9963 4 0.9873 0.9952
5 0.9908 0.9963 5 0.9470 0.9816
6 0.9927 0.9966 6 0.8375 0.9179

8 0.9014 0.9496 7 0.9854 0.9944 7 0.9803 0.9925
8 0.9846 0.9944 8 0.9474 0.9802
9 0.9848 0.9951 9 0.8530 0.9265

9 0.8987 0.9499 11 0.9617 0.9843 11 0.9541 0.9821
12 0.9615 0.9845 12 0.9212 0.9645
13 0.9594 0.9842 13 0.8272 0.9149

10 0.8988 0.9506 20 0.8726 0.9381 20 0.8648 0.9330
30 0.8708 0.9334 30 0.8193 0.8980
40 0.8673 0.9319 40 0.7124 0.8441

7 8 0.8982 0.9517 41 0.9729 0.9925 41 0.9870 0.9972
42 0.9864 0.9960 42 0.9451 0.9861
43 0.9538 0.9884 43 0.8167 0.9010

9 0.9010 0.9511 1 0.9605 0.9817 1 0.9742 0.9903
2 0.9715 0.9881 2 0.9379 0.9765
3 0.9356 0.9734 3 0.8296 0.9132

10 0.8986 0.9498 1 0.8562 0.9277 1 0.8881 0.9416
2 0.8825 0.9406 2 0.8398 0.9123
3 0.8193 0.9074 3 0.7069 0.8305

9 10 0.8984 0.9511 1 0.6914 0.8272 1 0.7628 0.8689
2 0.8695 0.9314 2 0.7120 0.8433
3 0.6314 0.7909 3 0.5144 0.6772

Table 6.2: Estimated risk (ER) of the estimates of α for different values of n , s , m and c and 10000
repetitions.
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ER(α̂ML) ER(α̂EBS) ER(α̂EBL)

n s 90% 95% c 90% 95% c 90% 95%
5 6 0.8998 0.9500 1 0.8992 0.9459 1 0.8751 0.9359

2 0.8860 0.9408 2 0.8134 0.8863
3 0.8716 0.9356 3 0.7014 0.7894

7 0.9026 0.2527 .25 0.9392 0.9665 0.25 0.9270 0.9641
0.50 0.9274 0.9690 0.50 0.8848 0.9392
0.75 0.9206 0.9629 0.75 0.7686 0.8505

8 0.9007 0.9516 1 0.9395 .9719 1 0.9338 0.9683
2 0.9372 0.9717 2 0.9077 0.9516
3 0.9284 0.9703 3 0.8052 0.8851

9 0.8992 0.9507 0.25 0.9300 0.9694 0.25 0.9245 0.9661
0.50 0.9269 0.9655 0.50 0.9013 0.9533
0.75 0.9168 0.9609 0.75 0.8014 0.8902

10 0.8989 0.9493 0.01 0.8651 0.9283 0.01 0.8614 0.9236
0.02 0.8603 0.9261 0.02 0.8376 0.9127
0.03 0.8471 0.9221 0.03 0.7433 0.8482

7 8 0.8995 0.2521 .001 0.8886 0.9418 0.001 0.8773 0.9343
.002 0.8764 0.9370 0.002 0.8270 0.8948
.003 0.8632 0.9295 0.003 0.7106 0.7978

9 0.9023 0.9511 0.25 0.9022 0.9554 0.25 0.8936 0.9476
0.50 0.8986 0.9508 0.50 0.8575 0.9320
0.75 0.8915 0.9446 0.75 0.7564 0.8451

10 0.8956 0.9521 10 0.8537 0.9137 10 0.8452 0.9088
20 0.8343 0.9083 20 0.8094 0.8903

30.75 0.8356 0.9013 30.75 0.7084 0.8131
9 10 0.8979 0.9518 2.8 0.7878 0.8745 2.8 0.7804 0.8690

4.9 0.7839 0.8657 4.9 0.7557 0.8435
7.5 0.7711 0.8585 7.5 0.6511 0.7564

Table 6.3: Estimated risk (ER) of the estimates of α for different values of n , s , m and c and 10000
repetitions.
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ER(α̂ML) ER(α̂EBS) ER(α̂EBL)

n s 97.5% 99% c 97.5% 99% c 97.5% 99%
5 6 0.5828 0.8170 1.1 2.7377 3.8718 1.1 2.3604 3.4057

2.6 2.5511 3.6452 2.6 1.3380 2.0357
3.2 2.3420 3.3834 3.2 0.5158 0.7462

7 1.1692 1.5622 1 3.7619 5.0900 0.25 3.4422 4.7067
2 3.5784 4.8710 0.50 2.4092 3.4050
3 3.3643 4.6115 0.75 1.0466 1.4600

8 1.9284 2.5281 2 4.4212 5.8767 2 4.1794 5.5803
3.50 4.2524 5.6732 3.50 3.2972 4.4971
4.75 4.0508 5.4299 4.75 1.6979 2.3422

9 3.0726 3.9942 10 4.9140 6.4611 10 4.7442 6.2576
20 4.7595 6.2798 20 4.0357 5.3920
30 4.5722 6.0571 30 2.4821 3.3838

10 5.4438 7.0957 25 5.3064 6.9309 25 5.2022 6.8025
50 5.1681 6.7673 50 4.6535 6.1365
75 4.9965 6.5599 75 3.3403 4.4824

7 8 0.9037 1.2393 1 4.5901 3.5746 1 2.4228 3.3764
2 2.4525 3.4141 2 1.7994 2.6102
3 2.3071 3.4214 3 0.7657 1.1273

9 1.9934 2.6005 1.1 3.4978 4.6129 1.1 3.3757 4.2722
2.50 3.3575 4.4505 2.50 2.8209 3.8151
3.75 3.2104 4.2820 3.75 1.5621 2.1871

10 4.1852 5.3952 .25 4.0714 5.2655 0.25 3.9999 5.1861
0.50 3.9379 5.1114 0.50 3.5624 4.6756
0.75 3.7991 4.9527 0.75 2.4205 3.2712

9 10 2.6072 3.5311 1.25 2.5135 3.4249 1.25 2.4510 3.3533
1.5 2.4057 3.3006 1.50 2.1176 2.9614

2.75 2.3072 3.1894 2.75 1.2815 1.8860

Table 6.4: Estimated risk (ER) of the estimates of α for different values of n , s , m and c and 10000
repetitions.
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ER(α̂ML) ER(α̂EBS) ER(α̂EBL)

n s 90% 95% c 90% 95% c 90% 95%
5 6 0.5867 0.8242 1.25 2.7591 3.9113 1.25 2.2901 3.2705

2.50 2.4874 3.5410 2.50 1.2345 1.7789
3.75 2.2474 3.2132 3.75 0.5045 0.7114

7 1.1785 1.5770 13 4.9471 6.7056 13 4.2609 5.7990
14 4.5140 6.1361 14 2.5129 3.4517
15 4.1343 5.6366 15 1.0049 1.3555

8 1.9443 2.5526 100 7.1201 9.4708 100 6.2753 8.3688
200 6.5439 8.7236 200 3.9562 5.3154
300 6.0430 8.0745 300 1.6233 2.1601

9 3.0986 4.0343 10 9.3354 12.2843 10 8.3609 11.0195
20 8.6235 11.3675 20 5.5364 7.3379
30 8.0100 10.5785 30 2.4161 3.1977

10 5.4903 7.1635 1 11.6039 15.1607 1 10.5173 13.7527
2 10.7598 14.0779 2 7.2204 9.4795
3 10.0382 13.1552 3 3.4033 4.4831

7 8 0.9161 1.2604 .25 2.6210 3.6360 0.25 2.4146 3.3659
2.50 2.4618 3.4287 2.50 1.6791 2.3740

3 2.2404 3.1339 3 0.7295 1.0208
9 2.0253 2.6510 1.01 4.5105 5.9662 1.01 4.2491 5.6344

1.50 4.2751 5.6708 1.50 3.1706 4.2441
3 3.9307 5.2297 3 1.5000 2.0091

10 4.2552 5.5036 1 6.3174 8.1877 1 6.0354 7.8318
2.01 6.0199 7.8189 2.01 4.7088 6.1486
3.01 5.5690 7.2503 3.01 2.4524 3.2236

9 10 2.6963 3.6835 5 2.5820 3.5396 5 2.4781 3.4046
10 2.4406 3.3584 10 2.0765 2.8832
15 2.2593 3.1211 15 1.2042 1.6923

Table 6.5: Estimated risk (ER) of the estimates of α for different values of n , s , m and c and 10000
repetitions.
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of the shape parameter c of the LINEX loss function. The problem of choosing the
value of the parameter c is discussed in Calabria and Pulcini (1996).

3. The analytical ease with which results can be obtained using asymmetric loss func-
tions makes them attractive for use in applied problems and in assessing the effects
of departures from assumed symmetric loss functions.

4. It is clear that the variance of the exponential α distribution tends to zero as α tends to
infinity. This implies that as α gets larger, the observations concentrate on a shorter
domain. It then follows that the width of the predictive interval decrease as α in-
crease, see Table 6.5. For more details on numerical solutions see Rubinstein (1981),
IMSL (1984), Nelson (1982) and Gelman, Carlin, Stern and Rubin (1995).
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