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Abstract: This paper studies the attitude control of spacecraft hinged by a senbaiator under the effect of the earths gravitational
field. The manipulator consists of multiple rigid body links. In literature, nobgapers considered a one- or two-link manipulator. This
paper proposes a general form of equations of motion of the sgdicetnipulator system with any number of links. The equations of
motion are nonlinear, and the linearized equations are also provideideBea simple approach of the controller design is proposed,
which is based on the combinations of the attitude dynamics and the desstechagsponses. The paper demonstrates three types of
manipulators with one, two and three links. Several controllers for eaatipulator are applied to demonstrate the feasibility of the
proposed approach. The results show that the rotating angle of thecspfi@ttitude can reach the steady state within 0.002 orbits
based on the attitude dynamics and the desired system responses.
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1 Introduction Besides, it has characteristics such as light weight, less
power requirement, ease of maneuverability and ease of
Attitude control and stabilization is extremely signifitan transportability. Because of the light weight, spacecraft
in the operation of spacecraft because it constitutes &an be operated at high speed. In general, a space
mandatory feature both for the survival of spacecraft andnanipulator system composes of a base and a
for the satisfactory achievement of space missions. Ther@anipulator. The base usually refers to a spacecraft or a
are a number of possible approaches to the control andatellite, and the manipulator mounted on it. Since the
stabilization of attitude dynamics developed during thebase is free-floating or free-flying, it can be affected by
past decades. Also, attitude control and stabilization ofthe motion of the manipulator. Thus, this results in a set
spacecraft has been an active research topic for quitef coupling dynamic equations between the motions of
sometime. Due to the nonlinearities of spacecraftthe base and the manipulator. Also, it is necessary to
dynamics models and the effects of coupling with theincorporate the disturbance torques in space environment
uncertainties both in parameters and disturbances, thinto the dynamic system. There are a numerous
relevant researches of attitude control and stabilizatiorresearchers devoted to the kinematics and dynamics of a
become more attractive and challenging. Numerougtee-floating or free-flying space manipulator system.
control design methods have been investigated to achiev¥afa et al. developed the virtual manipulator and
control system performance and/or robustness. Recenroposed a planning technique, which employs small
works on spacecraft attitude control and stabilizationcyclical manipulator joint motions to modify an attitude
include linear and nonlinearH* control [1,2,3], of spacecraft 10,11]. Papadopoulos et al. studied the
fuzzy-neuro control 4,5], LQR/LRT [6,7,8], and path-dependent dynamic singularities and showed that
adaptive control9] among others. their inertial space location is a function of the dynamic
A space manipulator implemented to spacecraft playProperties of a systenlp, 13]. Umetani et al. presented
an important role in space mission because of itsthe free-floating system generalized Jacobian, which
capability to act in inaccessible environments for humansreflects both momentum conservation laws and kinematic
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relations under the absence of external forces and torques
[14]. Franch et al. used the flatness theory to plan
trajectories for free-floating systems, which requires a
selection of robot parameters so that the system is
controllable and linearizable by prolongatiord®], Shui

et al. studies the coordinated manipulator and spacecraft
motion planning for free-floating space robots. The
kinematics is analyzed based on momentum conservation
law [16]. Nanos et al. studies the presence of the initial
momentum, which renders the end-effector immune to
angular momentum accumulatiorl7]. The relevant
kinematics and dynamics are studied in 2D and 3D
systems, and workspace subsets, where the end-effector

can remain fixed, are identified. Furthermore, Ali et al. Earth Spacecraft with a serial manipulator
presented an overview paper addressing dynamics _ _

modeling, planning and control of free-flying robots in Fig. 1: A spacecraft-manipulator system
space 18].

This paper studies the attitude dynamics and control
of a spacecraft-manipulator system on the free-floatin o ,
mode. The spacecraft is hinged by a serial manipulatogrlDe coincident with that of the spacecraft due to a

and the attitude control of the spacecraft is achieved b)Jargg-S|ze manipulator. - Both the spacepraft anq the
applying external torques to each link of the serial manipulator are affected by the earths gravitational field.

manipulator. The modeling of the entire system is Fi Tf;e15r;i((:jec;af(ta-rglaggz())urlc?tno;tesystetrgmls ;Irlgsér;t_ﬁg dmA
affected by the earths gravitational field. In the literatyr \gure -, sever ¢! Systems ned.

there are numerous papers studying the dynamics of théeferencg axis is defined, a'nfdrepresents its unit vector,
spacecraft-manipulator system. However, most of thenS'S unit vector from the origin to the mass center of the
consider that the manipulator has only or’1e or two "nks.spagecraft-mampulator system re_moved to the spacecraft
This paper presents a general form of equations of motior? nrgrm. nginspa(r:]ﬁc\:aﬁt bais 3 fFi)r']tCQ g?n%? rl, atﬂdtha
based on a spacecraft connected with a serial manipulatoﬁO espo gu ectap 1S defined. arly, the

which consists of any number of rigid body links. Also, hl:r perfrc])éli”gs iit \r/otattlr:gv a?g?ai’n afr:dn:ith's rtih(ian
one proposes a simple approach to design the controlle -OITeSpo gu ector. Vectoris one from the orig
the mass center of the spacecraft-manipulator system,

Whif h is based on th.?hattitUdfe dynamics -?m-j thi desitre ndr; is the vector from the mass center of the system to
system responses. The performance criteria of syste Al .
responses are specified first, and then the control torque att of ea.‘fhh Imlk' thStr?ti‘c’ tTfethspacecrbaft-m?F|pkula_tor
can be determined by combining the attitude dynamicssys em with only three {inks. € number of 1inks 1S
and the controller design criteria. The paper presentx;‘thregreaterI than thlr)ee,' 'tlhel dre:ﬁgteg coordinate  and
manipulators with one, two and three links individually. norrgjeﬁg (?(t)lérseidctfrg tt?a?lmleaégriael} :ani' ulator has n links
One also proposes several kinds of controllers for eaChl'he kinetic _eneray and  the otentigl enerav of the.
manipulator. This paper is organized as follows. Section 2 o . glyt ¢ P derived fg)I/I
presents a general form of equations of motion based on gPacecrait-manipuiator system are derived as 1ollows.
spacecraft hinged by a serial manipulator with any

number of links. Section 3 presents the dynamics and2 1 Kinetic E

control for a spacecraft controlled by a single-link < Inetic Energy
manipulator. Two more complicated cases, two and thre
links, are demonstrated in Sections 4 and 5, respectivel
Section 6 summarizes the results of the paper.

€The kinetic energy of the spacecraft-manipulator system is
Xwritten as

1

T=2
2

I 12
M(R+10)*+5 Y 1w, ()
k=0

NM >

k=0

2 Formulation of equations of motion
wheremy andlz are the mass and the moment of inertia,

This section presents the formulation of the equations ofrespectively; the subscrifitrepresents thkth link (k=0
motion based on a spacecraft with a serial manipulatorrefers to the spacecraft itself).

One intends to utilize the motion of the serial manipulator ~ The summation of the product of the mamgsand the

to fulfill the attitude stabilization and control of relative vectory for the spacecraft and the links should be
spacecraft. The manipulator comprises of multiple rigid zero, which is written as

body links illustrated in Figure 1. Also, the motion of the

mass center of the entire spacecraft-manipulator system . Ml =0 @)
follows the orbital trajectory, and the mass center may not k; k=5
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or
n n
(1=5 pdro+ ) k=0, 3)
& =1

wherepy is the mass ratio o, to the total mass of the

system.
Define the rotating anglegBx and total massM
respectively as

k
B=0+3 a (4)

M=% my, )

Substitute Equations3), (4) and 6) into (1), the
kinetic energy can be simplified as

T 1MR2+1imkr2+1i| B2 (6)
=3 P kT35 ZKPk »
2 2k:O 2k:0

Define the relative vectors (see ) as
Lk:rk—rk,]_, k:07172a"'ana (7)
Solving Equations3) and (7) leads to

n
Mg = akiLia k:071727"'7na (8)
2
where

n
A = Ekl z ) k:071727"'7na (9)

k>i

1, if
& = {O, if otherwise (10)

The vectorLy can be alternatively expressed as (seeU _

Figure 1)
Lkzlk,]_i,\k,]_—f—lki’\k, k2071727"'7n7 (ll)

wherely is a half length of thekth link, andlg is the

2.2 Potential Energy

The potential energy of a small madis of theith link in
a spacecraft-manipulator system due to the earths gravity

field is given as
n /
k; m

wherey is the gravitational parameter, aads a position
vector of a small masdm from the mass center of the
system. The distandg| is assumed as much smaller than
|R|, and the products of inertia assumed as zeros with
respect to the spacecraft body-fixed coordinate. By
applying Binomial series expansion and carrying out the
expansion tillO(1/|R|%), the potential energy is written
as

IR+ (15)

U:——+—Zm<rk ——Z

+% kio[(lxk + vk +126) = 3(1z + (lvk — Ixk) cog(2x)]

(16)
where Ixk, vk and Iz are the moments of inertia of
spacecraftR is the magnitude of the vectdR|.

Based on Figure 1, the vectBriis written as
R = Ri; 17)
Substitute Equationsr), (11) and (L7) into (16), one
obtains
i j
Z [l/Im(cosyim
I=1-1m=]-1

—3c0sQ CoS)] 4R3 Z) Ixk + vk + 12k)

distance between the mass center of spacecraft and the

joint with the first link (see Figure 1). Hence,
differentiating Equationi(?) leads to
I.—kzlkflﬁkflj\kfl"'lkﬁki\h k:Ou1723"'7n7 (12)

yvherefk is the unit vector corresponding perpendicular to

ix on the rotating plane.
Substitute Equationg) and (L2) into (5), one obtains
the kinetic energy as the expression

1 ., 12 .
T=5MR +§kZOIZkBk2

n n ] P

i ( lilmBi Bmcosyim)] ¢,
|lezl o 1= |71mzzj—1 " " "
(13)
where
max(I,m)

op, |#m
Ym = { p=min%.m)+1 P (14)

0, [=m

—3(Izk + (Iyk — Ixk) O 2¢x))]

k
P

2.3 Nonlinear Equations of Motion

(18)
where
(19)

Apply the Euler-Lagrange equation, the equation of
motion forag (0= 0,1,2,---,n) is written as

him[(B ,qu + Bm.,qBI ) COSYm

0 i=lj=1 I=i—1m=j—1

—(B Aqu-i- Bm,qEI)WmSinWm + Mm,qu BmSian]

+ kZQBk,q'ZkBk +or8 goﬁk’q(l\(k — Iyk) sin(2¢x)
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n,n ij

me CREN Im(Mim,qSiny
2R32) T-1 I J| ifl,zm:j—l T "
—3Bi ¢Sin@ cosn — 3Bm,qCOSA SiNGn) = (20)
where 35
_ I
Bxa= a0, (21)
and P
Yim
Yimg = 5~ (22)
™ day

Equation R0) can be alternatively expressed as (the

first and fourth terms are rewritten)
1 NN i,j

2. Nij iIm[(Bi.qB) COSYim

T=1 I=i—fm=j-1

_(BI,qu + Bm,qBI )meian + Mm,qu BmSian]

n . 3u n .
+ Y BeglzkBe+ 55 Y Brgllvk — Ixk) sin(2¢)
kZO @z 2R kZO e

n.n i

_%i: ,J:lmj|:i71,m:171||lm(wm’qsmwm
—3B ¢Sin@ cosn — 3BmqCoS@ sing,) = 0, (23)
where ,
nij = kzl Mk (24)

Equation R4) is the equation of motion of the
space-manipulator system for varialslg There are four

Then, EquationZS) can be rewritten as
[Al{a"} +6[A]{a'} +{R} =0

Equations 25) and @9) are two sets of general form
of the attitude dynamics of the spacecraft-manipulator
system, where the manipulator composes ogid body
links.

(29)

2.4 Linearized Equations of Motion

One considers that variabbtey has a small variatiodag
at a reference anglerg, which represents a desired

orientation  of spacecraft, and variablesa;
(i = 0,1,2,---,n) has small variation daj. Thus,
quantitiesfk, ym and g, can be respectively written as
Bk =0+ ar+ 0, (30)
Yim = OVim, (31)
B = ar+ 0, (32)
where
max(l,m)
O¥fm= ; oa;, (33)
i=min(l,m)+1
k
dp.=Y daj, (34)
2,

Substituting Equations30), (31) and @2) into (23)

terms in the equation. The first two terms come from theleads to

kinetic energy, and the other two terms are from the
potential energy. Note that it includes variabl@s Vim
and ¢, which are functions ofax. Since the set of

n,n

1N L]

2, £,

[1m]
1

[[B1.q(0+ @) + Bmaq(0+5@)]

I|lm:]

equations are nonlinear, one can apply numerical methods

to solve the(n+ 1) equations with initial conditions, and
the time responses of the variables (k= 0,1,2,--- ,n)

can be obtained. Besides, the set of equations of motion

can be expressed in a matrix form as

[A{a}+{R} =0,

where {a} is a column vector in terms of variables,
(q=0,1,2,---,n), and[A] is a matrix associated with the
system parameters afR} is a column vector in terms of
the system parameters and the derivatives of varialkjes
In order to expresgq as a function ob, one defines

(25)

+Wm,q925)4m] + z Bk,q'Zk(é + 5@&)
k=0

3“ Z)qu lvk — Ixk)[SIN(20R)

nn i,

+2c0820R) 0| — N Im[YimqdYm

2R3 =1 I=i—1m=j-1
—3p [(cos’ ar) 5@ — (sir’ ar) S|

—3Bmgl(coS ar) O — (Sif ar)d@|] =0 (35)
Equation 85) is a linearized equation of motion for

da variableag (= 0,1,2,---,n). Similar to Equations25)
a[q deq’ g=0,1,2,---,n, (26) and @9), (35) can be further rewritten as
Thus, one can obtain M{a}+[Kl{a}=0 (36)
S Ay and
0q = 6aq 27) M]{a"} +6M]{a'} + K] {a} =0  (37)
and where[M ] and[ | are matrices associated with the system
dq = 6%ag + Oay (28)  parameters.
@© 2014 NSP
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Table 1: Parameters of the spacecraft-manipulator system 3 1 Attitude Control by One-Link Mani puI ator

Half Moment of Inertia w.r.t.
Parameter| Mass . : - . . .
Length | Xx-axis | y-axis | z-axis This subsection presents the attitude control of the
Symbol | m l Ixi , lvi , |zi § spacecraft by using a one-link manipulator. Based on the
Unit kg m kg-m* | kg-m* | kg-m formulation in Section 2, the nonlinear equations of

Spacecraft] 1 0.25 1 2 2 motion are expressed as EquatioB5)( where the
Rigid Link | 0.1 1 0.1 0.3 0.3 components in matrijA] and vecto{R} are given as
Note: For the subscript of the symboiss O refers to the
spacecraft, and> O refers to theth link of the manipulator. App = ,711(|§ + |f + 2lolycosay) + 1z0+ Iz1 (43)

A2 = Ao = N1 (12 +lol1 cosar) + 171 (44)
2.5 Equations of Motion with Control Torques

Aoz =mlf+1z (45)
The attitude control of the spacecraft is achieved by Ry = A116 — 11101 (26 + 2d0 + G1) ay sinay
applying control torques on each link. Therefore, 3
Equations 25), (29), (36), and @7) can be respectively +£011[|000wo+|1COS(Oro+O!1)]
rewritten as RS
Al{a}+{R} = {u}, (38) x[losinag + 11 sin(ag + o1)]
3u .
+—/(lvo—Ixo) sin2a
A {a"}+ 0 {a'} +{Rh={u},  (39) g (Ivo ™ by sin2ro
+(ly1 —Ix1) sin20;) (46)
M]{a}+ [K]{a}={u}, (40) Rz:Allé—I‘[11|o|1(é+do)d1$inal

{a”}+9 {a }+ 1{a} = {u} (41) +f711|o|1(9+do)(9+do+dl)sinal

3u
where{u} is a column vector in terms of control torques. R '711|0|15'”0’1 TR '711|15'”(00 +a1)
A simple controller is proposed, which is based on a
desired performance for the pitch angl of the x[locosag + 11 cogao + a1)]
spacecraft. One requires that the pitch anggeshould 3u
satisfy the equation as —|—ﬁ(|\(1 —Ix1)sin20; (47)
dio + 20000 + W ao = whaRr (42)  Where Moy
Nu1= (48)

. . Mo + My,
where o and wyp are the damping ratio and natural ) . .
frequency, which can be assigned by designers. Als_o, baseﬁ on the Ilnear_ equations of (rjnotlons as
The first equation in Equationg%), (29), (36), or (37) Equation 86), the components in matricélél] and vector

should be transformed td ) in order to obtain the control [K] are given as

torques{u}.
q S{ } M11:r]11(|§+|%+2|0|1)+|20+|21 (49)
3 Numerical Simulations Mi2 = Ma1 = N11(If +lol1) + 121 (50)
2
The spacecraft moves on a circle orbit, and the altitude is M2z = N11lf +1z1 (51)
500 km. The parameters of the spacecraft and the 3u )
manipulator are listed in Table 1. The desired damping Ki1= pgMmlllo+l1)"cosdir

ratio and natural frequency of the time response of the
pitch angleag are 0.7 and 1 rad/s, respectively. The

numerical simulation is based on that an initial value of

the pitch angle is 10 degrees, and one hopes that it
reduces to zero by adding a control torque on each link of
the manipulator.

3
tore (|Yo+|Y1— Ixo — Ix1) cOs DR (52)

3
K12 =K21= %r}lﬂlﬂo + |1) CosS R
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Linear system x10° Nonlinear system
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Qi x10° Orbits x10° Linear system Nonlinear system
s 1 001
e \_’««‘_7 — Linear system £ oA AUAUAAAA 1 E o n 1
z 0 e e 5SSy A e Nonlinear system 2 M M N Y Y M N—y z —u,
= 4 001
= 05 0.5 1 2 25 0 05 1 5 2 25

15 1
15 2 Orbits Orbits

0 05 1
Orbits X107

. . Fig. 3: Time responses of angte and control torques by a two-
Fig. 2: Time responses of angl@s, a; and control torque by a  |ink manipulator based ot )ss = 0
one-link manipulator

3mu
+ﬁ(|vlflx1)0052}R (53)  the time response the pitch angle of spacecraft as
u 3w Equation #2), which is expressed a&g)ss = 0) and
— 2_ KoK called the basic design criterion in this paper. Thus, the
Kzz = Mullola(8 RS * R3n11|1(|00032 IR time response of the pitch angle is the same as that in
3u Figure 2. For the second design criterion, it can be
+licos DR+ ﬁ(lYl —Ix1)cos R (54)  arbitrarily specified. Since there are numerous options for

the second criterion, this subsection demonstrates two

Based on Equatiomg) and the nonlinear equations of controllers based on the second design criterion.

motion shown in Equatior26), the control torque can be

expressed as The first controller requires zero rotating angle of the
first link at the steady statdai)ss = 0. Thus, the rotating
U1 = (2{owno + Wi ao — wiar) det([A])/Arz angle of the first link is zero at steady state, and the

second link can rotate freely. Figure 3 shows the time
responses ofry, a, and the control torques. The results
+(Re—RuAg1 /A12) (59) show that thea, response of the linear system vibrates
The controller shown in Equatio%) is a function of ~ with =62 degrees at steady state, but theresponse of
variablesag, 0o, a1, andaq, and it performs a closed-loop the nonlinear system has a positive-direction and
state-feedback control system. A similar approach can bguasi-constant-speed rotation. Examining the response of
applied to linear systems. the nonlinear system, it oscillates between 2.07 and 10.74
Figure 2, which shows the rotating angles as well deg/s. For the control torques, the initial valugsandu,
as a1, their rotating rates, and the control torque. Theare 0.32 and 0.34 N-m respectively for the linear and the
results show that time response of the pitch angge nonlinear systems, and they reach the steady state after
meets the desired requirement, and it takes about 0.00@round 0.002 orbits. Examining the steady stajgndu,
orbits to reach the steady state. Since there is ndave small oscillations, which are withift4.31x 107°
requirements about the motion of the anglg its time ~ and=2.38x 10~ N-m for the linear system, respectively.
response periodically vibrates at the steady state. Alsofor the nonlinear system, they oscillate within
ones notice that there are large differences between the=1.79x 10~ and+6.20 x 10-3 N-m, respectively.
time responses of the angte of the linear and nonlinear The second controller requires zero rotating angle of
models. the second link at the steady stéfer,)ss = 0). Thus, the
time response of the rotating angle of the second link is
zero at steady state, but the first link can rotate freely,
3.2 Attitude Control by Two-Link Manipulator which implies that the entire manipulator performs the
rotating anglea;, and there is no relative motion between
This subsection presents the attitude control by using @he two links at steady state. Figure 4 shows the time
two-link manipulator. The equations of motion are responses ofr;, a; and the control torques. The results
complicated and not shown in this paper, but theshow that theo; response vibrates withif-22 degrees,
equations can be obtained by directly applying thebut the vibrating frequency of the nonlinear systems is
general form shown in Section 2. In this case, there arggreater than that of the linear system. Examining the
two control torques applied to each link. Based on thecontrol torques, the initial values of andu, are 0.3267
concept of the proposed controller design in Section 2.5and 0.1216 N-m respectively for both the linear and the
one needs to specify two controller design criteria. Samenonlinear systems. At steady statg, oscillates within
as the case presented in Section 3.1, the first criterion is-7.13x 10~/ and41.06 x 10~/ N-m respectively for the
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x10°

: angle a; for the two systems are very close, which are
15.54 and 15.63 degrees, respectively. However, their
vibration frequencies are slightly different. Examinimgt
three control torquesy; initiates at 0.3349 and 0.3413

Y L s e B8 B N-m respectively for the linear and the nonlinear systems,
o4 S e up are 0.1688 and 0.1723 N-m for both systems, afd
2 PR T = . are 0.0673 and 0.0685 N-m. All of them take around
£ s /\/\/ 0.002 orbits to reach the steady state. At steady stiate,
° u, and uz of the linear system oscillate within
AL ERE AU L L AL A +4.817 x 107, +£2.882x 107 and +6.982x 1077,

respectively, and they are2.986x 107, +5.412x 10~°
Fig. 4: Time responses of angles, and control torques by a and=+8.735x 102 for the nonlinear system.
two-link manipulator based ofor)ss = 0
This controller requires zero rotating angles of the
first link and zero sum of the rotating angle of the second
» Dnessrdioarsrsons: 005 Ehesrangnonlheorsystens and the third links at the steady stdt@; + as)s = 0),
VAVYAVAY which implies that the directions af, i1 and (iz + i3)
B N should be parallel to each other at the steady state. Figure
A i Sy 6 shows the time responses @$, a,, and the control
E b~~~ torques f_or the linear and the_ nonlinear systems. Since the
= angleas is equal to the negative value of the angle the

0 05 1 15 2 25 3 0 05 1 15 2 25 3

i Tl i R time response aft3 is not shown in the figure. The results
N e o e ] show that anglex, oscillates within+-42.42 and+56.12

BT T degrees for the linear and the nonlinear systems,
e orbis respectively. Examining the control torques,initiates at
""" Nonliness sisten 0.3392 and 0.3456 N-m respectively for the linear and the
nonlinear systemsi, are 0.2866 and 0.2907 N-m for both
systems, ands are 1967 x 10~* and 6220x 10~ N-m.
All of them take around 0.002 orbits to reach the steady
state. At steady statey oscillates within+6.027x 107
and £4.003x 10~/ lgl-m for both systegnsuZ oscillates
linear and the nonlinear systems, and, are within +£1.841x 10 .andil..71§3>< 107> N-m f°§ both

7 7 systems, anduz oscillates within £3.541x 10" and

+2.21x 10 " and+1.70x 10~ for both systems. 1 4.672% 10-7 N-m for both systems.

s /ot (degs)
=

05 1 15 2 25

«10°  Linearand noninear systems

u (Nm)

Orbits

Fig. 5: Time responses of angte and control torques by a three-
link manipulator based oftr2)ss = (a3)ss =0

. . . This controller requires zero rotating angles of the
3.3 Attitude Control by Three-Link Manipulator third link and zero sum of the rotating angle of the first
and the second links at the steady state, + az)s = 0).
Similar to the case presented in Section 3.2, this sectiohis implies that the directions af andi; should be
presents the attitude control by using a three-linkparallel to each other at the steady state, and there is no
manipulator. The equations of motion are more relative motion between the second and the third links at
complicated and not shown in this paper, but thesteady state. Figure 7 shows the time responses,af;,
equations can be obtained by directly applying theand the control torques for the linear and the nonlinear
general form shown in Section 2. In this case, there aresystems. The results show that the time responses of angle
three control torques applied to each link. Thus, one caro; are similar. Their vibration magnitudes at steady state
specify two additional controller design criteria besidesare 37.16 and 38.83 degrees for the linear and the
for the basic ondag)ss = 0 . Since there are numerous nonlinear systems, respectively. Examining the control
options for the two criteria, this subsection demonstrategorques, u; initiates at 0.3223 and 0.3290 N-m
three controllers. respectively for the linear and the nonlinear systeupss
The first controller requires zero rotating angles of the-0.0402 and -0.0381 N-m for both systems, andare
second and the third links at the steady state-0.0320 and -0.0314 N-m for both systems. All of them
((a2)ss = (a3)ss = 0). Thus, the first link can rotate take around 0.002 orbits to reach the steady state. At
freely. This implies that there are no relative motions steady state, the time responsesugffor the linear and
between any two of the three links at steady state, and thtéhe nonlinear systems oscillate witht7.393x 107 and
vibration angle of the entire manipulator é¢g. Figure 5  +£2.024x 10/, respectively. The control torques for
shows the time responses of,, ai, and the control the two systems are1.019x 105 and+1.116x 10°6.
torques for the linear and the nonlinear systems. TheThe control torquesuz for the two systems are
result shows that both of the vibration amplitudes of the+2.796x 10~7 and+3.408x 10~ ".

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

78 N SS 2=

Y. L. Kuo, T. L. Wu: Attitude Dynamics and Control of Spacecraft using

Linear and nonlinear system

05 1 15 2 25 @ o o3 4 45 2 25 B
orbits Orbits
Linear and nonlinear systems Linear and nonlinear systems

Linear and nonlinear systems

- 3
g g
2 o 2
s
& £
E

1xm"

2>f10’e

o (Nem)
o

2 25

To 05 1 15 2 25 0 05 1
orits
Linear and nonlinear systems

15
Orbits

——Linear system
—————— Nonlinear system

P05 1 15 2 25 3
Orbits

Fig. 6: Time responses of angte and control torques by a three-
link manipulator based ofaz + a3)ss =0

References

[1] L. C. G. De Souza, Mechanics Based Design of Structures
and Machines34, 351-364 (2006).

[2] D. Prieto and B. Bona, Proceedings of the IEEE Networking,
Sensing and Control, 728-733 (2005).

[3] M. Aliabbasi, H. A. Talebi and M. Karrari, Proceedings of the
41st IEEE Conference on Decision and Control, 4078-4083
(2002).

[4]P. Guan, X. J. Liu, F. Lara-Rosano, and B.J. Chen,
Proceedings of the American Control Conferer2el091-
1096 (2004).

[5] M. Belanger and J. De Lafontaine, Proceedings of the

AAS/AIAA Astrodynamics Conference, 2701-2711 (2006).
[6] H. Bolandi, F. Bayat, and M. Nasirian, the first International
Symposium on Systems and Control in Aerospace and

Linear and nonlinear systems Linear and nonlinear systems

s K 2T A o~ o~ Astronautics, 1413-1419 (2006).

LT AT " g ° «f WOW OY Y [7] C. H. Won, Proceedings of the American Control Conference,
e eI T R R SR 3538-3543 (2004).

_ e Lnesrandnorkeat sptens  pXan®  [heanduonhestaptons [8] J. Rodden, L. McGovern, J. Higham and X. Price, Advances

2 g0 in the Astronautical Sciences]1, 35-44 (2002).

T e s v [9] S. N. Singh and W. Yim, IEEE Transactions on Aerospace
ci07_ Loea o einear sy o and Electronic Systemdl, 770-779 (2005).

Ta /R A — ot [10] Z. Vafa and S. Dubowsky, Proceedings of the IEEE

B o w = & . International Conference on Robotics and Automation, 579-

o 585 (1987).

[11] Z. Vafa and S. Dubowsky, International Journal of Robotics
Researche®, 3-21 (1990).

[12] E. Papadopoulos and S. Dubowsky, ASME Journal of
Dynamic Systems, Measurement and Contddl5, 44-52
(1993).

[13] E. Papadopoulos and S. Dubowsky, IEEE Transactions on
Robotics and AutomatiorY, 750-758 (1991).

[14] Y. Umetani and K. Yoshida, IEEE Transactions on Robotics
and Automation5, 303-314 (1989).

5] J. Franch, S. Agrawal and A. Fattah, Proceedings of 2003

Fig. 7: Time responses of angtg and control torques by a three-
link manipulator based ofor1 + a2)ss =0

4 Conclusions

This paper presents the study of the attitude dynamics an
control of spacecraft hinged b.y a serial _manlpulz_;\tor unde IEEE/RSJ International Conference on Intelligent Robots and
the effect of the earths gravitational field. In literature, Systems, 3053-3058 (2003).

most of them study the manipulator with one- or two {16],4. Shui, S. Peng, X. Li, and H. Ma, Proceedings of
links. This paper proposes a general form of equations of  the 2009 IEEE International Conference on Robotics and
motion for the spacecraft-manipulator system, where the  Biomimetics, (2009).

number of links can be arbitrarily assigned. The attitude[17] K. Nanos and E. Papadopoulos, Intelligent Service
motion of spacecraft is regulated by applying external Robotics4, 3-15 (2011).

torques to each link based on a simple controller design[18] S. Ali, Robotica,25, 537-547 (2007).

which uses the combination of the attitude dynamics and
the desired responses of systems. The attitude controls of
the system individually with one-, two- and three-link
manipulators are demonstrated to show the validity of the
proposed approach. The results show that the rotating
angle of the spacecraft attitude can reach the steady state
within 0.002 orbits based on the systems dynamics and
the desired system responses.
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