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Abstract: We derive the interarrival distribution of a workload input process which is a variation of the infinite source Poisson process
for packet traffic. It accounts for long-range dependence and self-similarity exhibited by real traces in the Internet. The packet generation
process is compound Poisson over each session which has a heavy tailed distribution. Considering the dependence induced by the
workload, we derive the conditional distribution of the next interarrival time given that a packet has just arrived. This allows the use of
the workload as general arrivals to a queueing system for further performance analysis.
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1 Introduction

We derive the interarrival distribution of a workload input
process for a telecommunication system. The workload
model which captures the dynamics of packet generation
in data traffic is a variation of the infinite-source Poisson
process. It accounts for long-range dependence and
self-similarity exhibited by real traces by means of
correlated increments which are stationary as in
high-speed data networks for certain periods. We use the
interarrival distribution further for queueing analysis.

The input process is defined as an integral with
respect to a Poisson random measure N which governs
the arrival time S, the duration R and the packet
generation process U of a session [1]. The random
variables (Si,Ri,Ui), i = 1,2, . . ., form the atoms of N and
are interpreted as the features of session i. When S takes
values in R+, the workload at time t > 0 can be
represented by either of the following expressions

Y (t) = ∑
i:Si≤t

Ui(Ri ∧ (t −Si))

≡
∫ t

0

∫ ∞

0

∫
E

N(ds,dr,du)u(r∧ (t − s))

where E is the space of càdlàg functions on R and we
assume U to be a compound Poisson process and we

require R to have a heavy-tailed distribution. This is a
suitable model for packet level traffic as an elaboration of
the infinite source Poisson process which is appropriate
for flow level traffic as a continuous approximation of
packet transmissions. It is referred as compound Poisson
arrival workload in [13]. To account for the stationary
regime, S will take values on the whole real axis R in the
sequel and Y will be defined accordingly.

There exist similar workload models that are based on
a heavy-tailed distribution for the duration of the sessions
which arrive according to a Poisson process. They are
called infinite source Poisson due to these common
features and in contrast to another stream of approach,
called on/off processes which have finitely many sources.
The local traffic injection process over each session is a
distinguishing feature in these models. In the narrower
sense, the term infinite source Poisson process refers to
the simplest case of continuous injection at a random or
constant rate to the system [15,18,7]. It is given in
cumulative form by

X(t) = ∑
i:Si≤t

[Ri ∧ (t −Si)]Bi

≡
∫ t

0

∫ ∞

0

∫ ∞

0
N(ds,dr,db) [r∧ (t − s)]b
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where the random variable B can be interpreted as the
injection rate. The workload X is called continuous flow
reward model in [13]. The telecom process defined in [13]
is a limiting case of the infinite source Poisson process
that also has a fluid type traffic injection rather than
individual packets. [17] make more general assumptions
on the local traffic generation process U and include the
size C of files to be transmitted rather than their duration
for transmission. In this case, the workload is given by

Z(t) = ∑
i:Si≤t

Ui(t −Si)∧Ci

≡
∫ t

0

∫ ∞

0

∫
E

N(ds,dc,du) [u(t − s)∧ c] .

The Hurst parameter H, which is the index for long-range
dependence and possibly asymptotic self-similarity, is
implicit in the distribution of the session durations or the
file sizes transmitted during the sessions. Its estimation
for the infinite source Poisson process X has been studied
recently in [7]. Estimation of H is important as the larger
the H, the more severe its impact is on performance. All
of the above workload processes have been investigated
when the arrival time S is defined also on R− so that they
have stationary increments.

In this paper, we exploit the particular form of the
packet generation process, namely a compound Poisson
over each session, to find the probability law of the packet
interarrivals. Considering the dependence induced by the
workload, we derive the conditional distribution of the
next interarrival time given that a packet has just arrived.
More precisely, we define a distribution similar to a Palm
distribution used for point processes [14]. Our main result
is Theorem 1, which gives an explicit expression for

F̄(t) := IP{No arrivals in (s,s+ t] |an arrival at s} (1)

with s, t > 0. This result allows the use of the input
process as general arrivals to a queueing system for
further performance analysis.

As an important application of the interarrival
distribution, we review a G/M/1 queueing system with
multiple types of jobs and priority as considered in [11].
We show how the transition probability matrix of the
embedded Markov chain can be found with the exact
distribution (1). A simplification in our analysis is that the
service time of a packet does not depend on its size but its
type. Therefore, the distribution of the size of the packets
is not relevant and only the interarrival time is considered.
We can compute performance measures such as mean
queue length and delay using the embedded Markov
chain. As a result, the workload input process Y is useful
for explicit results on queueing in contrast to its limiting
forms, namely fractional Brownian motion and Levy
stable motion for modeling self-similar phenomena. The
asymptotic results that are available for the latter are good
only for ballpark estimations and predictions.

Since the discovery of long-range dependence in
network traffic as given in the pioneering study [16], the

impact of long-range dependence and/or self-similarity on
queueing has been investigated under various traffic
models. While the bulk of the previous work on queueing
with self-similar traffic relies on simulations and
experiments, there exist some analytical results that are
asymptotic. The tail of the queue-length distribution is
found to behave like a Weibull distribution with FBM
input [19]. On the other hand, the tail of the queue length
in the case of Levy input is much heavier than a
Weibull-like tail corresponding to FBM [15]. Using the
on/off model, [10] show that the content process in a fluid
queue has heavy tails. A variation of the on/off process is
N-Burst model studied by [22]. Several on/off processes
are superimposed and the packets are assumed to arrive as
a Poisson process over the “on” periods. The queue length
distribution is studied asymptotically and the tail behavior
is found. [6] prove that the buffer content processes in
fluid queues and networks are tight when an infinite
source Poisson or an on/off input process is scaled to
yield an FBM or a stable Levy motion. For packet traffic,
Batch Markovian Arrival Process (BMAP) is another
model which has Markov-Modulated Poisson Process
(MMPP) as special case (e.g. see [2] and references there
in). It approximates self-similarity and long-range
dependence, but in the expense of a large number of
parameters. The queue size and workload for MMPP
arrivals, and the time to reach capacity in a BMAP/G/1/b
queue have been studied.

The rest of the paper is organized as follows. The
workload process is formally defined in Section 2. The
interarrival time distribution is derived in Section 3 as the
main result. In Section 4, the tail behavior of the
interarrival distribution is studied. In Section 5, we
investigate a priority queue receiving two types of packet
streams. Finally, Section 6 gives the concluding remarks.

2 Workload Process

Let (Ω ,H ,P) be a probability space and let E = D(R→
R+) be the space of right continuous functions on R taking
values in R+ with left limits where R+ = [0,∞). Let N be
a Poisson random measure on (R×R+×E ,BR⊗BR+ ⊗
BE ), with mean measure

ν(ds,dr)µ(du) := λ dsγ(dr)µ(du) (2)

where λ > 0, γ is a probability measure corresponding to
a distribution function G that satisfies

1−G(r) =: Ḡ(r) ∝ h(r)r−δ (3)

as r → ∞ for a slowly varying function h at infinity with
1< δ < 2, and µ is the distribution of a compound Poisson
process U on R+ given by

U(t) =
M(t)

∑
i=1

Bi t ∈ R+
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for positive valued i.i.d. random variables B1,B2, . . . and a
Poisson process M with rate α > 0. In (3), we write
f (t) ∝ g(t) in the sense that limt→∞ f (t)/g(t) is a constant
and h is said to be slowly varying at infinity if
limn→∞ h(rn)/h(n) = 1 for all r > 0 [23]. Then, the total
workload input to the system in [0, t] is defined as

Y (t) =
∫ 0

−∞

∫ ∞

0

∫
E

N(ds,dr,du) (4)

·[u(r∧ (t − s))−u(r∧ (−s))]

+
∫ t

0

∫ ∞

0

∫
E

N(ds,dr,du)u(r∧ (t − s))

in view of [1]. Note that the workload Y has stationary
increments since the distribution of {Y (t + s)−Y (t) : s ∈
R} does not depend on t for each t ∈ R+. It represents a
process which has been going on for a long time so that
the increments have reached a steady state distribution.

The process Y , called the infinite source Poisson
process with compound Poisson rewards below, can be
interpreted as the total traffic arriving at a link. Each atom
(Si,Ri,Ui), i = 1,2, . . ., of the Poisson random measure N
represents a building block of the input traffic; the arrival
time Si of a session, its duration Ri and data generation
process Ui. The sessions arrive in a Poisson fashion and
stay alive for a period with a heavy-tailed distribution.
Over an active session, the packets are generated
according to a compound Poisson process. When the
packets have a fixed size, one can choose U to be a
Poisson process by setting B = 1 and have Y count the
number of packets. Otherwise, we assume that the packet
sizes are independent and identically distributed. We are
interested in the interarrival time for the packets. This is
sufficient for the queueing analysis that follows when it is
assumed that the service time depends on packet types
and not their sizes.

For the workload Y to be long-range dependent, a
sufficient condition is that the distribution G has regularly
varying tail as implied by the assumed form in (3) [23].
The parameter of long-range dependence, or memory [7],
is the exponent δ . However, the Hurst parameter given by
H = (3− δ )/2 is used more often to indicate long-range
dependence and self-similarity. The traffic process Y is
long-range dependent and almost second-order
self-similar as the auto-covariance function of its
increments is equal to that of fractional Gaussian noise
for sufficiently large time lags.

A Pareto distribution is used in [1] for the sake of
simplicity and fractional Brownian motion is obtained as
a scaling limit. On the other hand, [13] assume G as in (3)
and prove two different scaling limits, namely a stable
Levy motion and fractional Brownian motion. Clearly,
neither of the limiting processes accounts for packet
dynamics although they are used as appropriate models in
telecommunication applications. Bordered by these
limits, the infinite source Poisson workload model with
compound rewards covers a wide range of statistical
distributions through the choice of its parameters.

3 The Interarrival Distribution

The interarrival time distribution is defined as the
distribution of the time between two packet arrivals given
that “there is a packet arrival right at the current time”.
Although this is a conditional distribution by definition,
we denote by T a random variable with this distribution
and work with the distribution function F . We aim to
evaluate F̄(t) := IP{T > t} which is defined as IP{ No
packet arrivals in (s,s+ t] | a packet arrival at s} and is
free of s due to stationarity of the increments of the input
traffic process. Although we could take the current time
as 0, we continue with the time s for the sake of clarity
when taking limits as the time increment tends to 0 below.
We split the event that no packets arrive in the next t time
units as

–Any active sessions that expire before t do not incur
any new arrivals.

–Any active sessions that expire after t do not incur any
new arrivals

–No new session arrivals in t or at least one session
arrival with no packet arrival in t.

We find the probability that all three events occur at the
same time by using the independence of a Poisson random
measure over disjoint sets.

Let Ns denote the number of alive sessions at time s.
The distribution of Ns is free of s as Ns corresponds to the
number of customers at an M/G/∞ queue in the steady
state. This is the Poisson distribution with mean λ µG [8,
pg.245], which will be used to find the conditional
distribution of Ns as follows. For simplicity, we write
arrivals for “packet” arrivals below. We have

F̄(t) = IP{No arrivals in (s,s+ t] |an arrival at s} (5)

=
∞

∑
i=1

IP{No arrivals in (s,s+ t],Ns = i |an arrival at s}

=
∞

∑
i=1

IP{No arrivals in (s,s+ t] |Ns = i,an arrival at s}

·IP{Ns = i |an arrival at s}
where Ns cannot be 0 since there is a packet arrival at s.
The probability IP{No arrivals in (s,s + t]|Ns = i, an
arrival at s} will be computed using a similar approach to
the one in the previous section. We will consider the alive
sessions in addition to newly arriving sources. In the
following lemma, we first find IP{Ns = i |an arrival at s},
i = 1,2, . . ., which turns out to be essentially a Poisson
distribution except for a shift of the values i.

Lemma 1.Given that there is an arrival of the compound
Poisson process at an arbitrary point s ∈ R in time, the
number of alive sessions Ns at that instant has the
distribution

IP{Ns = i |an arrival at s}= e−λ µG
(λ µG)

i−1

(i−1)!

i = 1,2, . . ..

c⃝ 2014 NSP
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Fig. 1: Regions Ah and Bh. The lines have slope -1. An atom
in Ah has session completion time t as illustrated. The session
expiration time of this arrival, say with coordinates (s′0,r0), is
the intersection of the line of slope -1 with the time axis, since
s′ denotes the arrival time and r denotes the session duration.
Clearly, t = s′0 + r0.

Proof.Let h be a positive real number and Mh denote the
number of arrivals of the compound Poisson processes
over the alive sessions during (s,s+ h]. By definition, we
have

IP{Ns = i |an arrival at s}= lim
h→0

IP{Ns = i,Mh ≥ 1}
IP{Mh ≥ 1}

for i = 1,2, . . .. In order to simplify further, we split the
event {Ns = i} by considering the sessions that do and do
not expire in the next h time units as a decomposition of
the Poisson random variable Ns which has mean λ µG. Let
NAh

s denote the number of those that do not expire and
NBh

s denote the number of those that do expire. These
correspond to the number of atoms of the Poisson random
measure N in Ah × E with
Ah = {(s′,r) : s′ ≤ s, r > s + h − s′} and Bh × E with
Bh = {(s′,r) : s′ ≤ s, s− s′ ≤ r ≤ s+ h− s′}, respectively
as depicted in Fig.1. Since the increments of the workload
are stationary, the distributions of NAh

s and NBh
s do not

depend on s. Therefore, they are independent Poisson
random variables with means

ν(Ah) = λ
∫ s

−∞
ds′

∫ ∞

s+h−s′
γ(dr)

= λ
∫ ∞

h
γ(dr)r−λhḠ(h) = λ

∫ ∞

h
dr Ḡ(r) (6)

ν(Bh) = λ
∫ s

−∞
ds′

∫ s+h−s′

s−s′
γ(dr)

= λ
∫ h

0
γ(dr)r+λhḠ(h) = λ

∫ h

0
dr Ḡ(r) (7)

respectively. Then, we can write

IP{Ns = i| an arrival at s} (8)

= lim
h→0

∑∑n+m=i IP{NAh
s = n,NBh

s = m,Mh ≥ 1}
IP{Mh ≥ 1}

Note that the probability in the numerator is

∑∑n+m=i IP{Mh≥1|NAh
s =n,N

Bh
s =m}IP{N

Ah
s =n,N

Bh
s =m} =

∑∑n+m=i (1−e−αnhI(m,h))e−ν(Ah) (ν(Ah))
n

n! e−ν(Bh) (ν(Bh))
m

m!

where e−αnhI(m,h) corresponds to
IP{Mh = 0|NAh

s = n,NBh
s = m} and I(m,h) denotes the

probability that m sessions that expire before h time units
do not incur any new arrivals with the convention that
I(0,h) = 1. Note that e−αnh = (e−αh)n is the probability
of no arrivals from the sessions that expire after h time
units as all n of them are independent.

We can find I(m,h) by considering the departure
times of the alive sessions that expire before h time units.
From (7), we see that these departure times form a non-
homogeneous Poisson process with intensity λ Ḡ(r),
0 < r ≤ h, where we can view (s,s+ h] as (0,h] due to
stationarity.1 Therefore, the departure times, equivalently
the expiration times, of the sessions that expire in the next
h time units are jointly distributed as order statistics of m
independent and identically distributed random variables
having the density function

λ Ḡ(t)

λ
∫ h

0 dr Ḡ(r)
=

Ḡ(t)∫ h
0 dr Ḡ(r)

=:
Ḡ(t)
¯̄G(h)

(9)

0 < t < h when conditioned on the number of such
sessions [9, pg.565]. This can be easily shown by
following the same steps for the conditional property of
the Poisson process in the homogeneous case and
replacing the exponential density with the density of the
interarrival times for a non-homogeneous Poisson process
as given in [5, pgs.27,28]. Since e−αti gives the
probability that there is no arrival of the local packet
generation process in the next ti time units, we get

I(m,h) =
∫ h

0
dtm

∫ tm

0
dtm−1 . . .

∫ t2

0
dt1

m!
¯̄G(h)m

(10)

·∏m
i=1 Ḡ(ti)e−αti

from (9) and [20, Thm.1.4.1], for m = 1,2, . . ..
Now, note that

IP{Mh ≥ 1}= (11)

∑∞
k=1 ∑∑n+m=k IP{NAh

s = n,NBh
s = m,Mh ≥ 1}

1 Note that the complete departure process forms a
homogeneous Poisson process with rate λ like the arrivals [8,
pg.245]. The departures of the sessions that expire before h time
units is the thinning of the complete departure process over [0,h].
The latter includes also those sessions that arrive in [0,h] and
expire before h time units. These two components are in analogy
with sessions in an M/G/∞ queue as in [21, Ex.5.18].

c⃝ 2014 NSP
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0 t
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Fig. 2: Regions At , Bt , Ct and Dt . The lines have slope -1.

By (8), (11) and ν(Ah) + ν(Bh) = λ µG, we get the
expression for IP{Ns = i |an arrival at s} as the limit of

(∑∑n+m=i [1−e−αnhI(m,h)] e−λ µG (ν(Ah))
n

n!
(ν(Bh))

m

m! )

/
(

∑∞
k=1 ∑∑n+m=k [1−e−αnhI(m,h)] e−λ µG (ν(Ah))

n

n!
(ν(Bh))

m

m!

)
After simplifying e−λ µG , we get the result by using
L’Hospital’s rule as follows. Let us introduce the notation

IP{Ns = i |an arrival at s}=: lim
h→0

pi(h)
∑∞

k=1 pk(h)
(12)

i = 1,2 . . ., for the above expression. In Appendix, it is
shown that

lim
h→0

p′k(h) = α
(λ µG)

k

(k−1)!
k = 1,2, . . . (13)

It follows that

IP{Ns = i |an arrival at s}

=
α (λ µG)

i

(i−1)!

∑∞
k=1 α (λ µG)k

(k−1)!

= e−λ µG
(λ µG)

i−1

(i−1)!

for i = 1,2, . . ..

Lemma 2.The probability J(t) that no arrivals occur in
(s,s+ t] from sessions initiated in (s,s+ t] is given by

e−λ t
∞

∑
n=0

(ν(Ct))
n

n!
L(n, t) exp

[
ν(Dt)

∫ t

0
γ(dr)

e−αr

G(t)

]

where

ν(Ct) = λ
∫ t

0
dr Ḡ(r) , ν(Dt) = λ

∫ t

0
dr G(r)

L(n, t) =
∫ t

0
dtn

∫ tn

0
dtn−1 . . .

∫ t2

0
dt1

n!
¯̄G(t)n

·
n

∏
i=1

Ḡ(ti)e−α(t−ti)

Proof.Consider the event that no new session arrivals
occur or at least one session arrival occurs with no packet
arrival in (0, t] without loss of generality since the arrival
process is stationary. We split the complete event into two
parts as no packets from the sessions that expire ”after”
and ”before” t, which are represented by the atoms of
Poisson random measure N in Ct × E with
Ct = {(s,r) : 0 < s ≤ t,r > t − s} and Dt × E with
Dt = {(s,r) : 0 < s ≤ t,0 ≤ r ≤ t − s}, respectively, as
illustrated in Fig.2. These sessions are independently
Poisson distributed with respective means ν(Ct) and
ν(Dt) given by

ν(Ct) = λ
∫ t

0
ds

∫ ∞

t−s
γ(dr) = λ

∫ t

0
dr Ḡ(r) (14)

ν(Dt) = λ
∫ t

0
ds

∫ t−s

0
γ(dr) = λ

∫ t

0
dr G(r)

where the order of integrals are changed for the
alternative representations. In view of this, we can write
the probability of no packets from the newly arriving
sources, if any, as

∞

∑
n=0

e−ν(Ct )
(ν(Ct))

n

n!
L(n, t)

∞

∑
m=0

e−ν(Dt )
(ν(Dt))

m

m!

·
∫ t

0

γ(drm)

G(t)
. . .

∫ t

0

γ(dr1)

G(t)
e−αr1 · · ·e−αrm

where L(n, t) denotes∫ t

0
dtn

∫ tn

0
dtn−1 . . .

∫ t2

0
dt1

n!
¯̄G(t)n

n

∏
i=1

Ḡ(ti)e−α(t−ti)

and gives the probability that the sessions that initiate in
[0, t] and expire after t do not incur any new packet
arrivals given that n such arrivals have occured, with the
convention I(0,h) = 1. It is similar to I(m,h) of (10) since
the times of arrivals of new sessions conditioned on the
number of arrivals are distributed like order statistics of n
i.i.d. random variables having the density function
Ḡ(·)/ ¯̄G(t) over [0, t] by (14) and e−α(t−ti) gives the
probability of no arrivals from the local packet generation
process between generation time ti and t. In the second
term, the sessions expire before t and we require that no
packets arrive during the lifetime ri of a session which
happens with probability e−αri . This term also includes
the conditional distribution of the length of such sessions
given by γ(dr)/G(t) with r ≤ t. After simplification, we
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get
∞

∑
n=0

e−ν(Ct )
(ν(Ct))

n

n!
L(n, t)

∞

∑
m=0

e−ν(Dt )
(ν(Dt))

m

m!

[∫ t

0
γ(dr)

e−αr

G(t)

]m

and the result follows since e−(ν(Ct )+ν(Dt )) = e−λ t .

Theorem 1.For the infinite source Poisson model with
compound Poisson rewards, the packet interarrival time
distribution is given for t ≥ 0 by

F̄(t) = e−λ t
∞

∑
n=0

(ν(Ct))
n

n!
L(n, t) (15)

·exp
[
ν(Dt)

∫ t
0 γ(dr) e−αr

G(t)

] ∞

∑
i=1

e−λ µG
(λ µG)

i−1

(i−1)!

·
i

∑
k=0

e−αkt I(i− k, t)
(

i
k

)
(ν(At))

k

(λ µG)k
(ν(Bt))

i−k

(λ µG)i−k

where

ν(At) = λ
∫ ∞

t
dr Ḡ(r) , ν(Dt) = λ

∫ t

0
dr G(r)

ν(Bt) = ν(Ct) = λ
∫ t

0
dr Ḡ(r)

I(m, t) =
m!

¯̄G(t)m

∫ t

0
dtm

∫ tm

0
dtm−1 . . .

∫ t2

0
dt1

m

∏
j=1

Ḡ(t j)e−αt j

L(n, t) =
n!

¯̄G(t)n

∫ t

0
dtn

∫ tn

0
dtn−1 . . .

∫ t2

0
dt1

n

∏
j=1

Ḡ(t j)e−α(t−t j)

for m,n ∈ {1,2, . . .}, I(0, t) = L(0, t) = 1, and
¯̄G(t) =

∫ t
0 dr Ḡ(r).

Proof.We have

IP{No arrivals in (s,s+ t] |Ns = i,an arrival at s} (16)
= IP{No arrivals in (s,s+ t] |Ns = i}

as the packet interarrival times are exponential and hence
memoryless. The length of each session is important to
determine the probability of no packet arrivals in the next
t time units. That is why we write

IP{No arrivals in (s,s+ t] |Ns = i}
= ∑i

k=0 IP{No arrivals in (s,s+ t] |χk(s+ t),Ns = i}
·IP{χk(s+ t) |Ns = i}

where χk(s + t) denotes the event that k sessions expire
after s+ t, by conditioning on the number of sessions that
have remaining duration longer than t, hence expire after
s+ t.

Let At = {(s,r) : s ≤ 0, r > t − s} and Bt = {(s,r) :
s ≤ 0, −s ≤ r ≤ t − s} as illustrated in Fig.2, in analogy

with Ah and Bh of Fig.1. Then, the number of sessions that
do expire after and before t time units are independently
Poisson distributed with respective means

ν(At) = λ
∫ 0

−∞
ds

∫ ∞

t−s
γ(dr)

= λ
∫ ∞

t
γ(dr)r−λ tḠ(t) = λ

∫ ∞

t
dr Ḡ(r) (17)

ν(Bt) = λ
∫ 0

−∞
ds

∫ t−s

−s
γ(dr)

= λ
∫ t

0
γ(dr)r+λ tḠ(t) = λ

∫ t

0
dr Ḡ(r) . (18)

The conditional distribution of the number of sessions
that expire after t more time units, say Kt , given the total
number of sessions Ns is i, has a binomial distribution
with parameters i and success probability
p := ν(At)/λ µG. In this case, 1 − p corresponds to
ν(Bt)/λ µG as ν(At)+ν(Bt) = λ µG. Therefore, we have

IP{No arrivals in (s,s+ t] |Ns = i} (19)

=
i

∑
k=0

IP{No arrivals in (s,s+ t] |Kt = k,Ns = i}

·IP{Kt = k |Ns = i}

=
i

∑
k=0

J(t)(e−αt)k I(i− k, t)
(

i
k

)
(ν(At))

k

(λ µG)k
(ν(Bt))

i−k

(λ µG)i−k

where we have included the probability of no arrivals from
newly arriving sources in the next t time units given by

J(t) = (20)

e−λ t
∞

∑
n=0

(ν(Ct))
n

n!
L(n, t) exp

[
ν(Dt)

∫ t

0
γ(dr)

e−αr

G(t)

]
from Lemma 2, e−αt is the probability of no local arrivals
over sessions that expire after t time units, and I(i− k, t)
denotes the probability that the i− k sessions that expire
before t time units do not incur any new arrivals as given
in (10). The result follows from (5), (16), (19) and Lemma
1.

We can check that the complementary cdf F̄ of
Theorem 1 is legitimate. Note that ν(At) → λ µG,
ν(Bt) = ν(Ct) → 0, ν(Dt) → 0 as t → 0 and
I(i − k, t) → 1 for i ̸= k as shown in Appendix and
similarly L(n, t) → 1 for n ̸= 0 as t → 0. Therefore, we
have

lim
t→0

exp
[

ν(Dt)
∫ t

0
γ(dr)

e−αr

G(t)

]
= 1

by L’Hospital’s rule, and the other sums in (15) converge
to 1 as t → 0 also since I(0, t) = 1 and L(0, t) = 1 by
definition. As a result, limt→0 F̄(t) = 1.

Now consider limt→∞ F̄(t). As t → ∞, we get ν(At)
→ 0 by the bounded convergence theorem in view of∫ ∞

0 dsḠ(s) = µG < ∞. Along the same lines, we have
limt→∞ ν(Bt) = limt→∞ ν(Ct) = λ µG. In (15), let us split
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e−λ t as exp(−ν(Ct))exp(−ν(Dt)). Clearly,
exp(−ν(Ct))→ exp(−λ µG) by (14). We have

lim
t→∞

exp(−ν(Dt))exp
[

ν(Dt)
∫ t

0
γ(dr)

e−αr

G(t)

]
= lim

t→∞
exp

[
−ν(Dt)

(
1−

∫ t

0
γ(dr)

e−αr

G(t)

)]
= 0

since ν(Dt) → ∞ and
∫ t

0 γ(dr) e−αr

G(t) → ϕG(α) as t → ∞,
where ϕG denotes the Laplace transform IEe−αR

corresponding to the distribution function G. By the
bounded convergence theorem, ϕG(α) exists and is less
than 1. On the other hand, the probabilities L(n, t) and
I(i− k, t) remain finite as t → ∞ and

lim
t→∞

e−αtν(At) = 0

As a result, we get limt→∞ F̄(t) = 0 as expected.

4 Tail Behavior

The tail behavior of the distribution of T , namely the
behavior of F̄(t) as t → ∞ is of interest. The following
proposition gives the tail of the interarrival distribution in
terms of the distribution G. For brevity of notation, we
introduce

Ī(i) :=
∫ ∞

0
dti

∫ ti

0
dti−1 . . .

∫ t2

0
dt1

i

∏
j=1

Ḡ(t j)e−αt j (21)

Proposition 1.The packet interarrival time distribution of
the infinite source Poisson model with compound Poisson
rewards satisfies

F̄(t) ∝ e−λ t
(

1−
∫ t

0 γ(dr) e−αr
G(t)

)
e−λ µG[1+ϕG(α)]

λ µG

∞

∑
i=1

i Ī(i)

as t → ∞.

Proof.Note that F̄(t) in (15) is the product of two parts,
one of which is J(t) given in (20). Rewrite J(t) as

J(t) =
∞

∑
n=0

e−ν(Ct )
(ν(Ct))

n

n!
L(n, t) (22)

·exp
[
−ν(Dt)

(
1−

∫ t
0 γ(dr) e−αr

G(t)

)]
by factoring the term e−λ t to e−ν(Ct )e−ν(Dt ). For each n ≥
1, we have

lim
t→∞

L(n, t) = 0

which follows by the boundedness of Ḡ by 1 and the
dominated convergence theorem. First observe that

lim
t→∞

¯̄G(t) = µG and lim
t→∞

ν(Ct) = λ µG.

Then, the integrand in the expression of L(n, t) can be
written as

1(0,t2](t1) . . .1(0,t](tn)
n

∏
j=1

Ḡ(t j)e−α(t−t j) (23)

which is bounded by ∏n
j=1 e−α(t−t j) as Ḡ(s) ≤ 1 for all

s ∈ R+. Since this upper bound is integrable, dominated
convergence theorem applies and we take the limit of (23)
which is 0. Therefore, all the terms of the series in n in
(22) tend to 0 except for n = 0 term which converges to
exp(−λ µG). That is, we have

lim
t→∞

∞

∑
n=0

e−ν(Ct )
(ν(Ct))

n

n!
L(n, t) = e−λ µG

On the other hand, we find that

lim
t→∞

exp
[
−ν(Dt)

(
1−

∫ t
0 γ(dr) e−αr

G(t)

)]
exp

[
−λ t

(
1−

∫ t
0 γ(dr) e−αr

G(t)

)]
= lim

t→∞
exp

[
λ
∫ t

0
dr Ḡ(r)

(
1−

∫ t

0
γ(dr)

e−αr

G(t)

)]
= exp [λ µG(1−ϕG(α))]

where ν(Dt) = λ
∫ t

0 dr G(r) = λ t −λ
∫ t

0 dr Ḡ(r) is used in
the first equality and limt→∞

∫ t
0 γ(dr) e−αr

G(t) = ϕG(α) is
used in the second equality. Therefore, we get

lim
t→∞

J(t)/exp
[
−λ t

(
1−

∫ t

0
γ(dr)

e−αr

G(t)

)]
= exp(−λ µG ϕG(α)) .

Now, consider the other part of F̄(t) in (15) given by

K(t) :=
∞

∑
i=1

e−λ µG
(λ µG)

i−1

(i−1)!

·
i

∑
k=0

(e−αt)k I(i− k, t)
(

i
k

)
(ν(At))

k

(λ µG)k
(ν(Bt))

i−k

(λ µG)i−k

We will show that K(t) has a strictly positive limit as t →
∞. First note that

lim
t→∞

I(i, t) =

i!
(λ µG)i

∫ ∞

0
dti

∫ ti

0
dti−1 . . .

∫ t2

0
dt1

i

∏
j=1

Ḡ(t j)e−αt j

which is equal to Ī(i)i!/(λ µG)
i where we use the notation

of (21). Clearly, 0 < Ī(i) < ∞ for i ≥ 1 since G is a cdf
and hence bounded by 1. Since limt→∞ ν(At) = 0 and
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limt→∞ ν(Bt) = λ µG, we get

lim
t→∞

K(t) =
∞

∑
i=1

e−λ µG
(λ µG)

i−1

(i−1)!

· lim
t→∞

i

∑
k=0

(e−αt)k I(i− k, t)
(

i
k

)
(ν(At))

k

(λ µG)k
(ν(Bt))

i−k

(λ µG)i−k

=
∞

∑
i=1

e−λ µG
(λ µG)

i−1

(i−1)!
lim
t→∞

I(i, t)
(

i
0

)
(ν(Bt))

i

(λ µG)i

=
e−λ µG

λ µG

∞

∑
i=1

i Ī(i)

by using (24). The result follows, in view of the identity
F̄(t) = J(t)K(t).

5 Application to G/M/1 Queue

An important usage of the interarrival distribution is in
the analysis of a queueing system that receives a
workload input with self-similarity and long-range
dependence characteristics. Considering the dependence
induced by the workload, we have derived the conditional
distribution of the next interarrival time given that a
packet has just arrived. In this section, we show how the
transition probability matrix of the embedded Markov
chain is found in a G/M/1 queueing system with multiple
types of jobs and priority

The embedded Markov chain formulation of G/M/1
queue is based on the observation of the queueing system
at the time of arrival instants, right before an arrival [3]. If
the increments are independent, the interarrival times are
also independent and the knowledge of their common
distribution is sufficient for deriving the transition
probability matrix of the embedded Markov chain. On the
other hand, the increments of the workload process Y of
(4) are not independent, but they are stationary. Therefore,
we construct an embedded Markov chain observed at
each arrival by considering the conditional density of the
time until the next arrival. The number in the system at
these instances form a Markov chain X on positive
integers Z+ ≡ {0,1,2, . . .} as the service time is assumed
to be exponentially distributed and is independent from
the arrival distribution. At each instant, the state of the
Markov chain is obtained as the sum of the number of
packets that arriving packet sees in the queue and the
packets in service, if any, excluding the arriving packet
itself. The transition probabilities can easily be derived as

Pi,i−k+1 = qk :=
∫ ∞

0

e−µt(µt)k

k!
f (t)dt if k ≤ i

Pi,0 =
∞

∑
j=i+1

q j

for i = 0,1, . . . and k = 0, . . . , i, where µ > 0 is the service
rate, f is the density corresponding to F̄ and the other

entries of the matrix P are 0. The limiting queue size
distribution can be found explicitly as in [3, Thm. 6.6.5].

[11] study a more involved, but equally realistic case,
namely, several classes of arrivals at a router which
schedules the packets according to their priority. First,
two classes are formed as high and low priority packets,
type 1 and type 2, respectively. Extension to more classes
is tedious, but not difficult. We outline the ideas behind
the construction of the Markov chain as an important
application of the present work. What is more, we replace
the approximate expression for the interarrival time
density in [11] with the exact distribution found in
Section 3.

The transition probabilities can be derived according
to the events happening in one interarrival time. Since
there are two classes, several kinds of interarrivals can
occur, namely, a type 1 packet can succeed a type 1 or
type 2 packet, or a type 2 packet can succeed a type 1 or
type 2 packet. To determine the queueing time, the type of
packet in service at each arrival instant is also important.
Therefore, the Markov chain is defined on
Z+ × Z+ × {a1,a2} × {s1,s2, idle} where {a1,a2} and
{s1,s2, idle} are the set of arrival types and types of
packets at service (or none) at the time of arrival,
respectively. Then, one has to count the number served
from each queue in an interarrival time.

We illustrate the computation of the transition
probabilities over two cases, namely, same or different
types of arrivals following each other. First, consider a
transition to occur from a type 1 to type 1 packet arrival.
This occurs when no type 2 packets arrive in the next
interarrival time of type 1 packets. At the same time, we
keep track of the service completions in one interarrival
time of type 1 packets to account for the transition for the
number in each queue. We will need the following
proposition.

Proposition 2.For a stream of packet arrivals from
workload Y of (4), the probability that there will be no
arrivals in the next t time units following an arbitrary
point in time is given by

F̄0(t) = J(t) e−λ µG exp[ν(At)e−αt ]
∞

∑
m=0

ν(Bt)
m

m!
I(m, t)

Proof.Note that there is no conditioning on any packet
arrivals. Then, the probability of no arrivals can be
computed easily by conditioning on the number of alive
sessions. Since the process Y has been defined on R, the
number of alive sessions over time is a stationary
stochastic process with Poisson marginals. The number of
alive sessions could be interpreted as the number in the
system for M/G/∞ queue in steady state. Along the same
lines as in the proof of Theorem 1, we consider the
sessions that expire before or after t assuming that the
current time is 0. Also by taking into account the newly
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arriving sessions in (0, t], the probability of no packet
arrivals before t can be found as

J(t)
∞

∑
n=0

e−ν(At )
ν(At)

n

n!
(e−αt)n

∞

∑
m=0

e−ν(Bt )
ν(Bt)

m

m!
I(m, t)

where J(t), At , Bt and I(m, t) are given in (20), (17), (18)
and (10), respectively. After simplification, we get the
result.

Now, consider the transition from (i1, i2,a1,s1) to
( j1, j2,a1,s2) as an example of a transition from type 1 to
type 1 arrival. Let fi denote the probability density of an
interarrival time of type i, i = 1,2. We will condition on
the event that the interarrival of type 1 packets is t time
units. The arrival time of packet 1 is just an arbitrary point
in time for the arrival process of type 2 packets due to
independence of the two arrival processes. Therefore, the
probability that there will be no packet 2 arrivals in the
next t time units is F̄0

2 (t) by Proposition 2, where the
subscript denotes the type 2 arrival. Then, we see that j1
must be 0 for the next state to have s2, that is, a type 2
packet that has lower priority in service. Then, for each
k = 0, . . . i2 −1, the transition probability is

P{Xn+1 = (0, i2 − k,a1,s2)|Xn = (i1, i2,a1,s1)}

=
∫ ∞

0
K(i1,k, t)F̄0

2 (t) f1(t)dt

where K(i1,k, t) stands for the probability that i1 + 1
served from type 1, k served from type 2 and a type 2
packet remains in service during [0, t]. Since the service
times are exponentially distributed, K can be found as

K(i1,k, t) =
∫ t

0

∫ ∞

t−x
h(x)µ2e−µ2sdsdx (24)

where µi is the service rate of type i packet, i = 1,2, and
h is the convolution of i1 + 1 exponential densities with
parameter µ1 and k exponential densities with parameter
µ2. Note that the expression K is formed in view of the
event that the priority queue is exhausted first and then k
packets are served from the lower priority queue.

Second, consider a transition from a type 1 packet to
a type 2 packet arrival. In this case, we condition on the
event that an arrival of type 2 packet occurs in t time units
and no type 1 packet arrives during that time, given that an
arrival of type 1 occurred at time 0. This time the transition
probability can be derived as

P{Xn+1 = (0, i2 − k,a2,s2)|Xn = (i1, i2,a1,s1)}

=
∫ ∞

0
K(i1,k, t)F̄1(t) f 0

2 (t)dt

where f 0
2 is the density function corresponding to F̄0

2 . The
other transition probabilities are found similarly.
Expressions for expected waiting time in each queue in
terms of the steady state distribution of the Markov chain
are also derived in [11]. A novel result is a waiting time
expression for the lower priority class. Such expressions

were available formerly only for M/G/1 queue.
Numerical evaluations indicate the dependence of the
waiting time on the Hurst parameter H.

In a following paper, [12] extend these results to the
polling case. In particular, three classes are considered.
One of them is high priority class and the others are
equivalent which altogether form the so-called low
latency service discipline. The scheduler can serve the
two non-priority queues only if there is no packet waiting
in the high priority queue. It serves non-priority queues in
a round robin fashion, that is, one packet from each if
there is any. All services are non-preemptive. The
transition probabilities are found as in the mere priority
scheduling by accounting for each possible event in an
interarrival time. In this case, bounds are obtained for the
waiting time in low priority queues and an exact
expression can be derived for the high priority class.
Another service discipline called custom queueing is also
considered in [12]. In this case, two packets are served
from the first queue which is hence prioritized, and one
from each of the second and third classes in a round robin
fashion. Bounds are derived for the waiting times in all
queues.

6 Concluding Remarks

Existing queueing results for long-range dependent
workload models are limited in contrast to Markovian
input processes. We have considered a finer version of the
infinite source Poisson process with compound Poisson
rewards to account for such dependence and
self-similarity. We have derived a Palm distribution for
packet interarrivals which is used to construct the
embedded Markov chain in G/M/1 queue. As a result, the
workload process is not only appropriate for representing
packet dynamics in real networks, but also convenient for
deriving analytical expressions on queueing performance.

Appendix

Here, we will prove (13). For brevity of notation, let
a(h) := ν(Ah), b(h) := ν(Bh). and note that a(h)+b(h) =
λ µG. From (12), we have

IP{Ns = i |an arrival at s}= lim
h→0

pi(h)
∑∞

k=1 pk(h)

for i = 1,2, . . . where

pk(h) = ∑ ∑
n+m=k

[1− e−αnhI(m,h)]
a(h)n

n!
b(h)m

m!
.
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The following form of pk is more useful for taking its
derivative and applying L’Hospital’s rule. We have

pk(h) =
(λ µG)

k

k!
−∑ ∑

n+m=k
e−αnh a(h)n

n!
I(m,h)

b(h)m

m!

by the binomial expansion

(a+b)k = ∑ ∑
n+m=k

k!
an

n!
bm

m!
a,b ∈ R,k = 1,2, . . . .

Then, we get

p′k(h) = −∑ ∑
n+m=k

{
−α ne−αnh a(h)n

n!
I(m,h)

b(h)m

m!

+e−αnh a(h)n−1

(n−1)!
a′(h)I(m,h)

b(h)m

m!
1{n̸=0}

+e−αnh a(h)n

n!
I′(m,h)

b(h)m

m!

+e−αnh a(h)n

n!
I(m,h)

b(h)m−1

(m−1)!
b′(h)1{m̸=0}

}
.

When m ̸= 0 and m ̸= 1 in the expression for p′k(h) above,
each term tends to 0 as h → 0 for all n = 0, . . . ,k−m. To
see this, we first observe that

a(h) = ν(Ah)→ λ µG, b(h) = ν(Bh)→ 0, e−αnh → 1

as h → 0 and we show below that

lim
h→0

I(m,h) = 0 lim
h→0

I′(m,h)< ∞ (25)

We also find that

a′(h)→−λ b′(h)→ λ (26)

as h → 0 since a′(h) =−b′(h) = λ Ḡ(h) from (6) and (7).
To show (25), consider I(m,h) given in (10). Using

L’Hospital’s rule, we get

lim
h→0

I(m,h)

= lim
h→0

m! d
dh

∫ h
0 dtm . . .

∫ t2
0 dt1 ∏m

i=1 Ḡ(ti)e−αti

d
dh

[
¯̄G(h)m

]
= lim

h→0
(m−1)!

∫ h
0 dtm−1 . . .

∫ t2
0 dt1 ∏m−1

i=1 Ḡ(ti)e−αti[
¯̄G(h)m−1

]
Ḡ(h)

· e−αhḠ(h)

= lim
h→0

e−αh lim
h→0

I(m−1,h) = lim
h→0

I(m−1,h)

where we used (9) for finding the derivative of ¯̄G.
Therefore, we get

lim
h→0

I(m,h) = lim
h→0

I(1,h) = lim
h→0

∫ h
0 dt1Ḡ(t1)e−αt1

¯̄G(h)

= lim
h→0

e−αh = 1

by an application of L’Hospital’s rule one last time. Now,
consider I′(m,h) for m = 1,2, . . .. We have
I′(m,h)

=
m!

¯̄G(h)m

∫ h

0
dtm−1

∫ tm−1

0
dtm−2 . . .

∫ t2

0
dt1

·
m−1

∏
i=1

Ḡ(ti)e−αti e−αhḠ(h)

− m ¯̄G(h)m−1Ḡ(h)
¯̄G(h)2m

∫ h

0
dtm

∫ tm

0
dtm−1 . . .

∫ t2

0
dt1

· m!
m

∏
i=1

Ḡ(ti)e−αti

=
m

¯̄G(h)
I(m−1,h)e−αhḠ(h)− mḠ(h)

¯̄G(h)
I(m,h) .

Since e−αhḠ(h)→ 1 as h → 0, we can write
lim
h→0

I′(m,h) =

m lim
h→0

I(m−1,h)
¯̄G(h)

−m lim
h→0

I(m,h)
¯̄G(h)

.

Now, we can apply L’Hospital’s rule to get the expression
lim
h→0

I′(m,h) =

m
[

limh→0 I′(m−1,h)
limh→0 Ḡ(h)

− limh→0 I′(m,h)
limh→0 Ḡ(h)

]
which simplifies to

lim
h→0

I′(m,h) =
m

m+1
lim
h→0

I′(m−1,h) .

It follows that

lim
h→0

I′(m,h) =
2

m+1
lim
h→0

I′(1,h) =
1

m+1
m = 2,3, . . ., as we can show by integration by parts that

I′(1,h) = lim
h→0

−αḠ(h)
∫ h

0
¯̄G(r)e−αr dr

¯̄G(h)2

which has limit 1/2 when h → 0, found by another
application of L’Hospital’s rule and in view of
limh→0 Ḡ(h) = 1.

As a result, only the term with m= 0 and n= k remains
to be considered as well as m = 1 and n = k − 1 when
taking the limit of p′k(h) as h → 0. Taking the limit of the
sum of the terms arising from these (m,n) pairs, we get
lim
h→0

p′k(h) =

lim
h→0

{
α k e−αkh a(h)k

k!
− e−αkh a(h)k−1

(k−1)!
a′(h)

−e−α(k−1)h a(h)k−1

(k−1)! I(1,h)b′(h)
}

= α (λ µG)
k

(k−1)!

where we omitted the terms with b(h) for m = 1,
n = k − 1 as these terms tend to 0, used (26), and
substituted I(0,h) = 1 and I′(0,h) = 0 by definition.
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