
J. Stat. Appl. Pro.3, No. 1, 77-91 (2014) 77

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.18576/jsap/030107

Transmuted Lindley-Geometric Distribution and its
Applications

Faton Merovci1,∗ and Ibrahim Elbatal2

1 Department of Mathematics, University of Prishtina ”HasanPrishtina”, Republic of Kosovo
2 Institute of Statistical Studies and Research, Departmentof Mathematical Statistics, Cairo University, Egypt

Received: 20 Nov. 2013, Revised: 10 Jan. 2014, Accepted: 21 Jan. 2014
Published online: ...

Abstract: A functional composition of the cumulative distribution function of one probability distribution with the inverse cumulative
distribution function of another is called the transmutation map. In this article, we will use the quadratic rank transmutation map
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are applicable to model real world data.
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1 Introduction and Motivation

The Lindley distribution was originally proposed by Lindley [23] in the context of Bayesian statistics, as a counter example
of fudicial statistics. More details on the Lindley distribution can be found in Ghitany et al. [10].

A random variable X is said to have the Lindley distribution with parameterθ if its probability density is defined as

fL(x,θ ) =
θ 2

θ +1
(1+ x)e−θx ; x > 0,θ > 0. (1)

The corresponding cumulative distribution function (c.d.f.) is:

FL(x,θ ) = 1− (1+
θx

θ +1
)e−θx,x > 0,θ > 0. (2)

Many authors gives generalized Linldey distribution like Sankaran [27] introduced the discrete Poisson-Lindley,
Mahmoudi and Zakerzadeh [14] introduced generalized Lindley distribution, Bakouch etal. [5] introduced extended
Lindley (EL) distribution, Adamidis and Loukas [4] introduced exponential geometric (EG) distribution.

Recently, Hojjatollah and Mahmoudi [29] introduced Lindley-geometric distribution where the cdfand pdf of this
distribution are given by

FLG(x,θ , p) =
1− (1+ θx

θ+1)e
−θx

1− p(1+ θx
θ+1)e

−θx
,x > 0,θ > 0,0< p < 1, (3)

and

fLG(x,θ , p) =
θ 2

θ +1
(1− p)(1+ x)e−θx

[
1− p(1+

θx
θ +1

)e−θx
]−2

, (4)

respectively. In this paper, we introduce a new lifetime distribution by transmuted and compounding Lindley and
geometric distributions named transmuted Lindley-geometric distribution. The concept of transmuted explained in the
following subsection.
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1.1 Transmutation Map

In this subsection we demonstrate transmuted probability distribution. Let F1 and F2 be the cumulative distribution
functions, of two distributions with a common sample space.The general rank transmutation is defined as

GR12(u) = F2(F
−1
1 (u)) andGR21(u) = F1(F

−1
2 (u)).

Note that the inverse cumulative distribution function also known as quantile function is defined as

F−1(y) = infx∈R {F(x)≥ y} for y ∈ [0,1] .

The functionsGR12(u) andGR21(u) both map the unit intervalI = [0,1] into itself, and under suitable assumptions are
mutual inverses and they satisfyGRi j(0) = 0 andGRi j(0) = 1. A quadratic Rank Transmutation Map (QRTM) is defined
as

GR12(u) = u+λ u(1− u), |λ | ≤ 1, (5)

from which it follows that the cdf’s satisfy the relationship

F2(x) = (1+λ )F1(x)−λ F1(x)
2 (6)

which on differentiation yields,
f2(x) = f1(x) [(1+λ )−2λ F1(x)] (7)

where f1(x) and f2(x) are the corresponding pdfs associated with cdfF1(x) and F2(x) respectively. An extensive
information about the quadratic rank transmutation map is given in Shaw et al. [31]. Observe that atλ = 0 we have the
distribution of the base random variable. The following lemma proved that the functionf2(x) in given (7) satisfies the
property of probability density function.

Lemma: f2(x) given in (7) is a well defined probability density function.

Many authors dealing with the generalization of some well- known distributions. Aryal and Tsokos [1] defined the
transmuted generalized extreme value distribution and they studied some basic mathematical characteristics of
transmuted Gumbel probability distribution and it has beenobserved that the transmuted Gumbel can be used to model
climate data. Also Aryal and Tsokos [2] presented a new generalization of Weibull distribution called the transmuted
Weibull distribution. Recently, Aryal (2013) proposed andstudied the various structural properties of the transmuted
Log-Logistic distribution, and Khan and King [13] introduced the transmuted modified Weibull distribution which
extends recent development on transmuted Weibull distribution by Aryal et al. [2], Merovci [19],[20],[21]introduced the
transmuted Rayleigh distribution, transmuted generalized Rayleigh distribution, transmuted Lindley distributionand they
studied the mathematical properties and maximum likelihood estimation of the unknown parameters.

1.2 Transmuted Lindley Geometric Distribution

In this section we studied the transmuted Lindley geometric(TLG) distribution. Now using (5)and (6) we have the cdf of
transmuted Lindley-geometric (TLG) distribution

FTLG(x,θ , p,λ ) =
1− (1+ θx

θ+1)e
−θx

1− p(1+ θx
θ+1)e

−θx

[
1+λ −λ

(
1− (1+ θx

θ+1)e
−θx

1− p(1+ θx
θ+1)e

−θx

)]
(8)

whereλ is the transmuted parameter. The corresponding probability density function (pdf) of the transmuted Lindley-
geometric is given by

fT LG(x,θ , p,λ ) = fLG(x) [(1+λ )−2λ FLG(x)]

=
θ 2

θ +1
(1− p)(1+ x)e−θx

[
1− p(1+

θx
θ +1

)e−θx
]−2

×
{
(1+λ )−2λ

(
1− (1+ θx

θ+1)e
−θx

1− p(1+ θx
θ+1)e

−θx

)}
, (9)
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respectively.

Figure 1 and figure 2 illustrates some of the possible shapes of the pdf and cdf of TLG distribution for selected values
of the parametersθ , p andλ , respectively.
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Fig. 1: The pdf’s of various TLG distributions.
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Fig. 2: The cdf’s of various TLG distributions.
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The reliability function(RF) of the transmuted Lindley-geometric distribution is denoted byRT LG(x) also known as
the survivor function and is defined as

RTLG(x) = 1−FTLG(x)

= 1−
1− (1+ θx

θ+1)e
−θx

1− p(1+ θx
θ+1)e

−θx

[
1+λ −λ

(
1− (1+ θx

θ+1)e
−θx

1− p(1+ θx
θ+1)e

−θx

)]
. (10)

Figure 3 illustrates some of the possible shapes of the survival function of transmuted Lindley geometric distributionfor
selected values of the parametersθ , p andλ , respectively.
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Fig. 3: The survival function of various transmuted Lindely geometric distributions.

It is important to note thatRT LG(x)+FTLG(x) = 1. One of the characteristic in reliability analysis is the hazard rate
function (HF) defined by

hT LG(x) =
fT LG(x)

1−FTLG(x)
(11)

Figure 4 illustrates some of the possible shapes of the hazard function of transmuted Lindley-geometric distribution
for selected values of the parametersθ , p andλ , respectively.
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Fig. 4: The survival function of various transmuted Lindely geometric distributions.

It is important to note that the units forhT LG(x) is the probability of failure per unit of time, distance or cycles.
These failure rates are defined with different choices of parameters. The cumulative hazard function of the transmuted
Lindley-geometric distribution is denoted byHT LG(x) and is defined as

HT LG(x) =− ln

∣∣∣∣∣
1− (1+ θx

θ+1)e
−θx

1− p(1+ θx
θ+1)e

−θx

[
1+λ −λ

(
1− (1+ θx

θ+1)e
−θx

1− p(1+ θx
θ+1)e

−θx

)]∣∣∣∣∣ (12)

It is important to note that the units forHTLG(x) is the cumulative probability of failure per unit of time, distance or cycles.
We can show that. For all choice of parameters the distribution has the decreasing patterns of cumulative instantaneous
failure rates.

2 Statistical Properties

This section is devoted to studying statistical propertiesof the(T LG) distribution.

2.1 Moments

In this subsection we discuss therth moment for(T LG) distribution. Moments are necessary and important in any
statistical analysis, especially in applications. It can be used to study the most important features and characteristics of a
distribution (e.g., tendency, dispersion, skewness and kurtosis).

Theorem (3.1).

If X hasTLG (Φ,x) ,Φ = (θ , p,λ ) then therth moment ofX is given by the following

µ
′
r(x) = Aig

Γ (r+ i+1)

(θ ( j+1))r+i+1

[
1+

r+ i+1
(θ ( j+1))

]

−Bi j

{
Γ (r+ i+1)

(θ ( j+1))r+i+1

[
1+

r+ i+1
(θ ( j+1))

]
− Γ (r+ i+1)

(θ ( j+2))r+i+1

[
1+

r+ i+1
(θ ( j+2))

]

− θ
θ +1

(
Γ (r+ i+2)

(θ ( j+2))r+i+2

)[
1+

r+ i+2
(θ ( j+2))

]}
, (13)
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where

Aig =
θ 2(1+λ )

θ +1
(1− p)

∞

∑
j=0

j

∑
i=0

(
j
i

)
( j+1)p j

(
θ

θ +1

)i

,

and

Bi j =
λ θ 2

θ +1
(1− p)

∞

∑
j=0

j

∑
i=0

(
j
i

)
( j+1)( j+2)p j

(
θ

θ +1

)i

.

Proof:
Let X be a random variable with density function (9). Therth ordinary moment of the(T LG) distribution is given by

µ
′
r(x) = E(X r =

∞∫

0

xr f (x,Φ)dx

=
θ 2(1+λ )

θ +1
(1− p)

∞∫

0

(xr + xr+1)e−θx
[
1− p(1+

θx
θ +1

)e−θx
]−2

dx

− 2λ θ 2

θ +1
(1− p)

∞∫

0

(xr + xr+1)e−θx
(

1− (1+
θx

θ +1
)e−θx

)[
1− p(1+

θx
θ +1

)e−θx
]−3

dx. (14)

using the series expansion

(1− z)−k =
∞

∑
j=0

Γ (k+ j)
Γ (k) j!

z j , (15)

where|z|< 1 andk > 0.
Equation (14) can be demonstrated by

µ
′
r(x) =

θ 2(1+λ )
θ +1

(1− p)
∞

∑
j=0

( j+1)p j

∞∫

0

(xr + xr+1)(1+
θx

θ +1
) je−θ( j+1)xdx

−
{

λ θ 2

θ +1
(1− p)

∞

∑
j=0

( j+1)( j+2)p j

∞∫

0

(xr + xr+1)(1+
θx

θ +1
) j
(

1− (1+
θx

θ +1
)e−θx

)
e−θ( j+1)xdx



 , (16)

also applying the binomial expression for(1+ θx
θ+1)

j where

(1+
θx

θ +1
) j =

j

∑
i=0

(
j
i

)(
θ

θ +1

)i

xi, (17)

substituting from (17) into (16) we get

µ
′
r(x) =

{
θ 2(1+λ )

θ +1
(1− p)

∞

∑
j=0

j

∑
i=0

(
j
i

)
( j+1)p j

(
θ

θ +1

)i

∞∫

0

(xr+i + xr+i+1)e−θ( j+1)xdx





−
{

λ θ 2

θ +1
(1− p)

∞

∑
j=0

j

∑
i=0

(
j
i

)
( j+1)( j+2)p j

(
θ

θ +1

)i

∞∫

0

(xr+i + xr+i+1)

(
1− (1+

θx
θ +1

)e−θx
)

e−θ( j+1)xdx





= AigI1−Bi jI2
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where

Aig =
θ 2(1+λ )

θ +1
(1− p)

∞

∑
j=0

j

∑
i=0

(
j
i

)
( j+1)p j

(
θ

θ +1

)i

,

Bi j =
λ θ 2

θ +1
(1− p)

∞

∑
j=0

j

∑
i=0

(
j
i

)
( j+1)( j+2)p j

(
θ

θ +1

)i

,

I1 =

∞∫

0

(xr+i + xr+i+1)e−θ( j+1)xdx

=
Γ (r+ i+1)

(θ ( j+1))r+i+1 +
Γ (r+ i+2)

(θ ( j+1))r+i+2

=
Γ (r+ i+1)

(θ ( j+1))r+i+1

[
1+

r+ i+1
(θ ( j+1))

]
,

and

I2 =

∞∫

0

(xr+i + xr+i+1)

(
1− (1+

θx
θ +1

)e−θx
)

e−θ( j+1)xdx

=
Γ (r+ i+1)

(θ ( j+1))r+i+1

[
1+

r+ i+1
(θ ( j+1))

]
− Γ (r+ i+1)

(θ ( j+2))r+i+1

[
1+

r+ i+1
(θ ( j+2))

]

− θ
θ +1

(
Γ (r+ i+2)

(θ ( j+2))r+i+2

)[
1+

r+ i+2
(θ ( j+2))

]
,

thus therth moment is given by

µr(x) = θα2
∞

∑
j=0

∞

∑
m=0

(−1) j
(

j
m

)
αm Γ (r+m+2)

(α( j+1))r+m+2

[
(1+λ )

(
θ −1

j

)
−2λ

(2θ−1
j

)]
.

Which completes the proof .

We notice that if we putλ = 0, we get therth moment of Lindley geometric ( see Hojjatollah and Mahmoudi (2012)).
Based on the first four moments of the(T LG) distribution, the measures of skewnessA(Φ) and kurtosisk(Φ) of the
(T LG) distribution can obtained as

A(Φ) =
µ3(θ )−3µ1(θ )µ2(θ )+2µ3

1(θ )[
µ2(θ )− µ2

1(θ )
] 3

2

,

and

k(Φ) =
µ4(θ )−4µ1(θ )µ3(θ )+6µ2

1(θ )µ2(θ )−3µ4
1(θ )[

µ2(θ )− µ2
1(θ )

]2 .

2.2 Moment Generating function

In this subsection we derived the moment generating function of (TLG) distribution.
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Theorem (3.2): If X has(T LG) distribution, then the moment generating functionMX(t) has the following form

MX (t) =
AigΓ (i+1)

(θ ( j+1)− t)i+1

[
1+

i+1
(θ ( j+1)− t)

]

−Bi j

{
Γ (i+1)

(θ ( j+1)− t)i+1

[
1+

i+1
(θ ( j+1)− t)

]

− Γ (i+1)

(θ ( j+2)− t)i+1

[
1+

i+1
(θ ( j+2)− t)

]

− θ
θ +1

(
Γ (i+2)

(θ ( j+2)− t)i+2

)[
1+

i+2
(θ ( j+2)− t)

]}
(18)

Proof.

We start with the well known definition of the moment generating function given by

MX (t) = E(etx) =

∫ ∞

0
etx fT LG(x,Φ)dx

=
θ 2(1+λ )

θ +1
(1− p)

∞∫

0

(1+ x)e−x(θ−t)
[
1− p(1+

θx
θ +1

)e−θx
]−2

dx

− 2λ θ 2

θ +1
(1− p)

∞∫

0

(1+ x)e−x(θ−t)
(

1− (1+
θx

θ +1
)e−θx

)[
1− p(1+

θx
θ +1

)e−θx
]−3

dx. (19)

substituting from (15) and (17) into (19) we get

MX(t) = Aig

∞∫

0

(xi + xi+1)e−x[θ( j+1)−t]dx

−Bi j

∞∫

0

(xi + xi+1)e−x[θ( j+1)−t]
(

1− (1+
θx

θ +1
)e−θx

)

=
AigΓ (i+1)

(θ ( j+1)− t)i+1

[
1+

i+1
(θ ( j+1)− t)

]

−Bi j

{
Γ (i+1)

(θ ( j+1)− t)i+1

[
1+

i+1
(θ ( j+1)− t)

]

− Γ (i+1)

(θ ( j+2)− t)i+1

[
1+

i+1
(θ ( j+2)− t)

]

− θ
θ +1

(
Γ (i+2)

(θ ( j+2)− t)i+2

)[
1+

i+2
(θ ( j+2)− t)

]}
(20)

Which completes the proof.

3 Distribution of the order statistics

In this section, we derive closed form expressions for the pdfs of therth order statistic of theTLG distribution, also, the
measures of skewness and kurtosis of the distribution of therth order statistic in a sample of sizen for different choices of
n;r are presented in this section. LetX1,X2, ...,Xn be a simple random sample from(T LG) distribution with pdf and cdf
given by (8) and (9), respectively.
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Let X1,X2, ...,Xn denote the order statistics obtained from this sample. We now give the probability density function
of Xr:n, say fr:n(x,Φ) and the moments ofXr:n ,r = 1,2, ...,n. Therefore, the measures of skewness and kurtosis of the
distribution of theXr:n are presented. The probability density function ofXr:n is given by

fr:n(x,Φ) =
1

B(r,n− r+1)
[F(x,Φ)]r−1 [1−F(x,Φ)]n−r f (x,Φ) (21)

whereF(x,Φ) and f (x,Φ) are the cdf and pdf of the(T LG) distribution given by (8), (9), respectively, andB(., .) is the
beta function, since 0< F(x,Φ) < 1, for x > 0, by using the binomial series expansion of[1−F(x,Φ)]n−r, given by

[1−F(x,Φ)]n−r =
n−r

∑
j=0

(−1) j
(

n− r
j

)
[F(x,Φ)]

j
, (22)

we have

fr:n(x,Φ) =
n−r

∑
j=0

(−1) j
(

n− r
j

)
[F(x,Φ)]r+ j−1 f (x,Φ), (23)

substituting from (8) and (9) into (23), we can express thekth ordinary moment of therth order statisticsXr:n sayE(X k
r:n) as

a liner combination of thekth moments of the(T LG) distribution with different shape parameters. Therefore,the measures
of skewness and kurtosis of the distribution ofXr:n can be calculated.

4 Estimation and Inference

4.1 Least Squares and Weighted Least Squares Estimators

In this subsection we provide the regression based method estimators of the unknown parameters of the transmuted
Lindley-geometric distribution, which was originally suggested by Swain, Venkatraman and Wilson (1988) to estimate
the parameters of beta distributions. It can be used some other cases also. SupposeY1, ...,Yn is a random sample of sizen
from a distribution functionG(.) and supposeY(i); i = 1,2, ...,n denotes the ordered sample. The proposed method uses
the distribution ofG(Y(i)). For a sample of sizen, we have

E
(
G(Y( j))

)
=

j
n+1

,V
(
G(Y( j))

)
=

j(n− j+1)
(n+1)2(n+2)

andCov
(
G(Y( j)),G(Y(k))

)
=

j(n− k+1)
(n+1)2(n+2)

; for j < k,

see Johnson, Kotz and Balakrishnan (1995). Using the expectations and the variances, two variants of the least squares
methods can be used.

Method 1 (Least Squares Estimators) . Obtain the estimators by minimizing

n

∑
j=1

(
G(Y( j)−

j
n+1

)2

, (24)

with respect to the unknown parameters. Therefore in case ofT LG distribution the least squares estimators ofθ , p andλ
, say, θ̂LSE , p̂LSE andλ̂LSE respectively, can be obtained by minimizing

n

∑
j=1

[
1− (1+ θx

θ+1)e
−θx

1− p(1+ θx
θ+1)e

−θx

[
1+λ −λ

(
1− (1+ θx

θ+1)e
−θx

1− p(1+ θx
θ+1)e

−θx

)]
− j

n+1

]2

with respect toθ , p andλ .
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Method 2 (Weighted Least Squares Estimators). The weighted least squares estimators can be obtained by
minimizing

n

∑
j=1

w j

(
G(Y( j)−

j
n+1

)2

, (25)

with respect to the unknown parameters, where

w j =
1

V
(
G(Y( j))

) = (n+1)2(n+2)
j(n− j+1)

.

Therefore, in case ofTLG distribution the weighted least squares estimators ofθ , p andλ , say, θ̂W LSE , p̂WLSEandλ̂WLSE
respectively , can be obtained by minimizing

n

∑
j=1

w j

[
1− (1+ θx

θ+1)e
−θx

1− p(1+ θx
θ+1)e

−θx

[
1+λ −λ

(
1− (1+ θx

θ+1)e
−θx

1− p(1+ θx
θ+1)e

−θx

)]
− j

n+1

]2

with respect to the unknown parameters only.

4.2 MAximum likelihood estimation

In this subsection we determine the maximum likelihood estimates (MLEs) of the parameters of the(T LG) distribution
from complete samples only. LetX1,X2, ...,Xn be a random sample of sizen from T LG (θ , p,λ ,x).The likelihood function
for the vector of parametersΦ = (θ , p,λ ) can be written as

L f (x(i),Φ) = Π n
i=1 f (x(i),Φ)

=

(
θ 2

θ +1

)n

(1− p)nΠ n
i=1(1+ xi) e

−θ
n
∑

i=1
xi

Π n
i=1

[
1− p(1+

θxi

θ +1
)e−θxi

]−2

×Π n
i=1

{
(1+λ )−2λ

(
1− (1+ θxi

θ+1)e
−θxi

1− p(1+ θxi
θ+1)e

−θxi

)}
. (26)

Taking the log-likelihood function for the vector of parametersΦ = (θ , p,λ ) we get

ℓ= logL = 2n logθ − n log(1+θ )+ n log(1− p)+
n

∑
i=1

log(1+ xi)−θ
n

∑
i=1

x(i)

−2
n

∑
i=1

log

[
1− p(1+

θxi

θ +1
)e−θxi

]

+
n

∑
i=1

log

{
(1+λ )−2λ

(
1− (1+ θxi

θ+1)e
−θxi

1− p(1+ θxi
θ+1)e

−θxi

)}
. (27)

The log-likelihood can be maximized either directly or by solving the nonlinear likelihood equations obtained by
differentiating (27). The components of the score vector are given by

∂ℓ
∂ p

=
−n

1− p
+2

n

∑
i=1

(1+ θxi
θ+1)e

−θxi

[
1− p(1+ θxi

θ+1)e
−θxi

]

−2λ
n

∑
i=1

[
1− (1+ θxi

θ+1)e
−θxi

][
(1+

θxi
θ+1)e

−θxi

(1−p(1+ θxi
θ+1)e

−θxi )2

]

{
(1+λ )−2λ

(
1−(1+ θxi

θ+1 )e
−θxi

1−p(1+
θxi
θ+1)e

−θxi

)} = 0, (28)
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‘

∂ℓ
∂θ

=
2n
θ

− n
1+θ

−
n

∑
i=1

xi −2p
n

∑
i=1

xie−θxi

[
(1+ θxi

θ+1)− 1
(1+θ)2

]

[
1− p(1+ θxi

θ+1)e
−θxi

]

−2λ
n

∑
i=1

(1− p){
(1+λ )−2λ

(
1−(1+

θxi
θ+1)e

−θxi

1−p(1+
θxi
θ+1 )e

−θxi

)}




xie−θxi

[
(1+ θxi

θ+1)− 1
(1+θ)2

]

[
1− p(1+ θxi

θ+1)e
−θxi

]2


= 0 (29)

and

∂ℓ
∂λ

=
n

∑
i=1

1−2

(
1−(1+

θxi
θ+1)e

−θxi

1−p(1+
θxi
θ+1)e

−θxi

)

{
(1+λ )−2λ

(
1−(1+

θxi
θ+1)e

−θxi

1−p(1+
θxi
θ+1)e

−θxi

)} = 0. (30)

We can find the estimates of the unknown parameters by maximumlikelihood method by setting these above non-linear
equations (29)- (30) to zero and solve them simultaneously. Therefore, we have to use mathematical package to get the
MLE of the unknown parameters. Applying the usual large sample approximation, the MLEΦ̂ can be treated as being
approximately trivariate normal and variance-covariancematrix equal to the inverse of the expected information matrix,
i.e. √

n(Φ̂ −Φ)→ N
(
0,nI−1(Φ)

)
,

whereI−1(Φ) is the limiting variance-covariance matrix of̂Φ . The elements of the 3×3 matrix I(Φ) can be estimated
by Ii j(Φ̂) =−ℓΦiΦ j Φ=Φ̂ , i, j ∈ {1,2,3}.

Approximate two sided 100(1−α)% confidence intervals forθ , p and forλ are, respectively, given by

θ̂ ± zα/2

√
I−1
11 (θ̂ ), p̂± zα/2

√
I−1
22 (p̂)

and

λ̂ ± zα/2

√
I−1
33 (λ̂ ),

wherezα is the upperαth quantile of the standard normal distribution. UsingR we can easily compute the Hessian
matrix and its inverse and hence the standard errors and asymptotic confidence intervals.

5 Application

In this section, we use a real data set to show that the transmuted Lindley distribution can be a better model than one based
on the Lindley geometric distribution and Lindley distribution. The data set given in Table 1 represents the waiting times
(in minutes) before service of 100 bank customers.

Table 1: The waiting times (in minutes) before service of 100 bank customers.
0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7
2.9 3.1 3.2 3.3 3.5 3.6 4.0 4.1 4.2 4.2
4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9
5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3
6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 8.0
8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6
9.7 9.8 10.7 10.9 11.0 11.0 11.1 11.2 11.2 11.5
11.9 12.4 12.5 12.9 13.0 13.1 13.3 13.6 13.7 13.9
14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19.0
19.9 20.6 21.3 21.4 21.9 23.0 27.0 31.6 33.1 38.5
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Table 2: Estimated parameters of the Lindley, Lindley-geometric and transmuted Lindley geometric distribution for the waiting times
(in minutes) before service of 100 bank customers.

Model Parameter Estimate Standard Error−ℓ(·;x)
Lindley θ̂ = 0.186 0.013 319.037
Lindley θ̂ = 0.202 0.034 318.913
Geometric ˆp =−0.242 0.5270
Transmuted θ̂ = 0.171 0.0351 317.207
Lindley p̂ = 0.657 0.181
Geometric λ̂ =−0.954 0.192

The variance covariance matrix of the MLEs under the transmuted Lindley geometric distribution is computed as

I(θ̂ )−1 =




0.001 −0.005 0.002
−0.005 0.032 −0.020
0.002 −0.020 0.037


 .

Thus, the variances of the MLE ofθ , p andλ is var(θ̂ ) = 0.0012,var(p̂) = 0.0326,var(â) = 0.0368. Therefore, 95%
confidence intervals forθ , p andλ are[0.102,0.240], [0.302,1], and[−0.577,1] respectively.

Table 3: Criteria for comparison.
Model K-S −2ℓ AIC AICC
Lindley 0.0677 638.1 640.1 640.1
Lindley Geometric 0.0557 637.8 641.8 642
TLG 0.0017 634.414 640.414 640.664

In order to compare the two distribution models, we considercriteria like K-S,−2ℓ, AIC (Akaike information
criterion)and AICC (corrected Akaike information criterion) for the data set. The better distribution corresponds to
smaller K-S,−2ℓ, AIC and AICC values:‘

AIC = 2k−2ℓ , and AICC= AIC+
2k(k+1)
n− k−1

,

wherek is the number of parameters in the statistical model,n the sample size andℓ is the maximized value of the log-
likelihood function under the considered model. Also, herefor calculating the values of KS we use the sample estimates
of θ ,α,a,b andc. Table 2 shows the MLEs under both distributions, Table 3 shows the values of K-S,−2ℓ, AIC and
AICC values. The values in table 3 indicate that the transmuted Lindley geometric distribution leads to a better fit than
the Lindley geometric distribution and Lindely distribution.

A density plot compares the fitted densities of the models with the empirical histogram of the observed data (Fig. 4).
The fitted density for the transmuted Linldey geometric model is closer to the empirical histogram than the fits of the
Lindley geometric and Lindley sub-models.
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The waiting times (in minutes) before service of
100 bank customers
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Fig. 5: Estimated densities of the models for the waiting times (in minutes) before service of 100 bank customers.
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Fig. 6: Empirical, fitted Lindley, Lindley geometric and transmuted Lindley geometric cdf of the the waiting times (in minutes)before
service of 100 bank customers.

6 Conclusion

Here we propose a new model, the so-called the transmuted Lindley geometric distribution which extends the Lindley
geometric distribution in the analysis of data with real support. An obvious reason for generalizing a standard
distribution is because the generalized form provides larger flexibility in modeling real data. We derive expansions for
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moments and for the moment generating function. The estimation of parameters is approached by the method of
maximum likelihood, also the information matrix is derived. An application of the transmuted Lindley geometric
distribution to real data show that the new distribution canbe used quite effectively to provide better fits than Lindley
geometric and Lindley distribution.
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