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Abstract: We study the dynamics of the atomic inversion, scaled atomic Wehrl entropyand marginal atomic Q-function of a single
two-level atom interacting withSU(1,1) quantum system. We obtain the wave function and system density matrix usingspecific initial
conditions. We examine the effects of different parameters on the scaled atomic Wehrl entropy, atomic Q-function and their marginal
distribution. We observe an interesting monotonic relation between the different physical quantities for different values of the initial
atomic position and detuning parameter.
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1 Introduction

The most important problems in quantum optics are the
studies of different systems interaction such as field-atom,
atom-atom and the field-field interaction. These problems
have considerd the subject of great deal of research works
during the last decades. In this way, there are numerous
papers on these problems. For example the atom-field
interaction has been considered in[1]-[11], but field-field
interaction [12]-[24], while atom-atom interaction
[25]-[37]. These interactions has been classified from the
point of view of Lie algebra depending on the nature of
the interaction. For example, the Hamiltonian which
represents the interaction between two fields is described
in the form of the parametric frequency converter is of
SU(2) Lie algebra type. While the Hamiltonian which
represents the non-degenerate parametric amplifier is of
SU(1,1) Lie algebra type. On the other hand, the
degenerate parametric amplifier, which contains in its
interaction term the second harmonic generation, is of
SU(1,1) Lie algebra type . In this context a system which
describes the interaction between SU(2) and SU(1,1) Lie
algebra has been considered [38], in which a Hamiltonian
of the following from was treated

H = h̄
{

ωkz+
ω0

2
σz+λ (k−σ++k+σ−)

}

,

whereω is the frequency of the system,h̄ω0 is the energy
difference between the atomic levels andλ is a coupling
constant.

Recently, much attention has been focused on
information entropies as a measure or quantifier the
entanglement in quantum information [39]. In this way
the von Neumann entropy [40], linear entropy, and
Shannon information entropy [41] have been frequently
used in entanglement-discussions concerning a variety of
quantum systems. Some problem appear with some of
these measures such as the SE involves only the diagonal
elements of the density matrix so in can gives information
similar to that obtained from the NE. On the other hand,
there is an additional entropic quantity, namely, the
semiclassical, atomic phase-space atomic Wehrl entropy
(AWE) [42]. This measure has been successfully applied
as entanglement quantifier in the JCM. For example,
AWE of the modes are initially prepared in a finite
dimensional trio-coherent state (FTCS) has discussed
[43]. Also, the dynamical properties of the AWE for a
single two-level trapped ion interacting with a laser field
has been investigated [44]. It is shown that the AWE gives
quantitative (qualitative) information on the entanglement
of the bipartite system.
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In this article, we consider the extension of the
problem by considering which is called the scaled atomic
Wehrl entropy associated with the reduced atomic density
operator as an entanglement quantifier between SU(1,1)
and SU(2) quantum system. We focus on the effect of the
excitation number, intial atomic state and detuning
parameter on the evolution of the atomic inversion, scaled
atomic Wehrl entropy and marginal atomic Q-function.

The paper is organized as follows: In Sec. 2, the
system Hamiltonian of the interaction between SU(1,1)
and SU(2) is introduced, followed by a discussion of the
method to calculate the scaled atomic Wehrl entropy and
marginal atomic Q-function in Sec. 3. Numerical results
of the calculated scaled atomic Wehrl entropy are
presented and compared with the marginal atomic
Q-function in Sec. 4, We conclude in Sec. 5, with a
summary and an outlook.

2 The System Hamiltonian

The Hamiltonian which describe the interaction between
a single two-level atom and SU(1,1) quantum system take
the following form

H = ωkz+Ω1S11+Ω2S22+λ (k−S12+k+S21) , (1)

whereω is the frequency of the system,Ωi is the energy
and Si j are elements of theSU(1,1) group obeying the
following commutation relation

[Si j ,Skl ] = Sil δk j −Sk jδil , (2)

while k± andkz satisfy the following commutation relation

[kz,k±] =±k± , [k−,k+] = 2kz and [Si j ,k±,z] = 0. (3)

The Heisenberg equation of motion for any operatorO is
given by

i
dO
dt

= [O,H] , (h̄= 1), (4)

thus, the equations of motion forSi j andkz are given by

i
dS11

dt
= [S11,H]

= λ (k−S12−k+S21) , (5)

i
dS22

dt
= [S22,H]

= −λ (k−S12−k+S21) , (6)

i
dkz

dt
= [kz,H]

= −λ (k−S12−k+S21) , (7)

2i
dkz

dt
= −2λ (k−S12−k+S21)

i
dS11

dt
− i

dS22

dt
+2i

dkz

dt
= 0

1
2
(S11−S22)+kz = constant of motion (8)

from the above equation, we can see that
N = 1

2(S11−S22)+kz is constant of motion, therefore, the
Hamiltonian takes the following form

H = ωN+C, (9)

where C =
∆
2
(S11 − S22) + λ (k−σ++k+σ−) with

∆ = Ω1 − Ω2. We note that [N,C] = 0, therefore
[N,H] = [H,C] = 0, i.e. N and C are the constants of
motion, where the time evolution operator is defined as

U (t) = exp(−iHt ) , (10)

thus
U (t) = exp(−iωNt)exp(−iCt) , (11)

where

exp(−iωNt)=

[

exp
[

−iω
(

kz+
1
2

)

t
]

0
0 exp

[

−iω
(

kz− 1
2

)

t
]

]

,

(12)

C=

[ ∆
2 λk−

λk+ −∆
2

]

, C2 =

[

µ2
1 0

0 µ2
2

]

, (13)

where

µ2
j =

∆ 2

4
+ν j , j = 1,2, ν1 = λ 2k−k+ and ν2 = λ 2k+k−

(14)
we note that

k−µ2
2 = µ2

1k− (15)

also
k+µ2

1 = µ2
2k+ (16)

C3 =

[ ∆
2 µ2

1 µ2
1λk−

µ2
2λk+ −∆

2 µ2
2

]

, C4 =

[

µ4
1 0

0 µ4
2

]

(17)

exp(−iCt) = I +
−iCt

1!
+

(−iCt)2

2!
+

(−iCt)3

3!
+ ....

= I − iCt − i
C2t2

2!
+ i

C3t3

3!
+ .... (18)
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then, one can write the time evolution operator as

U (t) =

[

F11 F12
F21 F22

]

, (19)

where

F11 = exp

[

−iω
(

kz+
1
2

)

t

](

cosµ1t −
i∆
2

sinµ1t
µ1

)

,

F12 = −iλ exp

[

−iω
(

kz+
1
2

)

t

]

sinµ1t
µ1

k−,

F21 = −iλ exp

[

−iω
(

kz−
1
2

)

t

]

sinµ2t
µ2

k+,

F22 = exp

[

−iω
(

kz−
1
2

)

t

](

cosµ2t +
i∆
2

sinµ2t
µ2

)

.(20)

The time evolution for the expectation value of any
operator can be calculated through the following relation

〈O(t)〉 = 〈Ψ(t)|O(t) |Ψ(t)〉
= 〈Ψ(0)|U+(t)O(0)U(t) |Ψ(0)〉 . (21)

Let us assume the initial state of the system can be
written as

|Ψ(0)〉 = |Ψ(0)〉SU(2) |Ψ(0)〉S(1,1)

= (cos
θ
2
|e〉+sin

θ
2
|g〉) |m,k〉 , (22)

where

kz|m,k〉 = (m+k) |m,k〉 ,
k+ |m,k〉 =

√

(m+1)(m+2k) |m+1,k〉 ,
k− |m,k〉 =

√

m(m+2k−1) |m−1,k〉 . (23)

|Ψ(t)〉 = U(t) |Ψ(0)〉

=

[

F11 F12
F21 F22

][

cosθ
2

sin θ
2

]

|m,k〉

= (F11cos
θ
2
+F12sin

θ
2
) |m,k〉 |e〉

+ (F21cos
θ
2
+F22sin

θ
2
) |m,k〉 |g〉 . (24)

Substituting from Eqs. (20) in Eq.(24), then the final
form of the wave function can be written as

|Ψ(t)〉 =

{

e
−iω

(

kz+ 1
2

)

t
(

cosµ1t − i∆
2

sinµ1t
µ1

)

cos
θ
2

}

|m,k〉 |e〉

+

{

−iλe
−iω

(

kz+ 1
2

)

t sinµ1t
µ1

k− sin
θ
2

}

|m,k〉 |e〉

+

{

−iλe
−iω

(

kz− 1
2

)

t sinµ2t
µ2

k+ cos
θ
2

}

|m,k〉 |g〉

+

{

e
−iω

(

kz− 1
2

)

t
(

cosµ2t +
i∆
2

sinµ2t
µ2

)

sin
θ
2

}

|m,k〉 |g〉 . (25)

Then, the wave function can be written in the form

|Ψ(t)〉= A(t) |m,k〉 |e〉+B(t) |m,k〉 |g〉 , (26)

and consequently the density matrix
ρ(t) = |Ψ(t)〉〈Ψ(t)| becomes
ρ(t) = {A(t) |m,k〉 |e〉〈e| 〈k,m|A∗(t)+B(t) |m,k〉 |g〉〈g| 〈k,m|B∗(t)

+ B(t) |m,k〉 |g〉〈e| 〈k,m|A∗(t)+A(t) |m,k〉 |e〉〈g| 〈k,m|B∗(t)} , (27)

where

A(t) = e
−iω

(

kz+ 1
2

)

t
{(

cosµ1t − i∆
2

sinµ1t
µ1

)

cos
θ
2
− iλ

sinµ1t
µ1

k− sin
θ
2

}

,

B(t) = e
−iω

(

kz− 1
2

)

t
{(

cosµ2t +
i∆
2

sinµ2t
µ2

)

sin
θ
2
− iλ

sinµ2t
µ2

k+ cos
θ
2

}

, (28)

one can easily cheek that

|A(t)|2+ |B(t)|2 = 1 (29)

Thus, the expectation value for any operator can be
calculated through the following equation

〈O(t)〉= 〈Ψ(0)|O(t)|Ψ(0)〉= 〈Ψ(t)|O(0)|Ψ(t)〉 , (30)

where|Ψ(0)〉 and|Ψ(t)〉 are defined by Eqs. (22) and (26).
Therefore, the expectation values of the atomic

operatorsσx andσy can be obtained as follows

〈σx (t)〉 =
1
2

{(

cos(µ1t)cos(µ2t)− ∆ 2

4
sin(µ1t)sin(µ2t)

µ1µ2

)

cosωt

− ∆
2

(

sin(µ1t)cos(µ2t)
µ1

+
cos(µ1t)sin(µ2t)

µ2

)

sinωt

}

sinθ , (31)

〈σy (t)〉 =
1
2

{(

cos(µ1t)cos(µ2t)− ∆ 2

4
sin(µ1t)sin(µ2t)

µ1µ2

)

sinωt

+
∆
2

(

sin(µ1t)cos(µ2t)
µ1

+
cos(µ1t)sin(µ2t)

µ2

)

cosωt

}

sinθ , (32)

Now, we close this section by presenting the concept of
the atomic population inversionρz(t) which is the
simplest important quantity to be calculated. It is related
to the difference between the probabilities of finding the
atom in the upper and lower state.

ρz(t) = cosθ
2 +λ 2

{

m(m+2k−1) sin2 µ2t
µ2

2
sin2 θ

2 − (m+1)(m+2k) sin2 µ1t
µ2

1
cos2 θ

2

}

,

(33)
where

µ1 =
√

∆2

4 +λ 2(m+1)(m+2k), µ2 =
√

∆2

4 +λ 2m(m+2k−1).

(34)
Now, we are in a position to use the results obtained

in this section to discuss the dynamical behavior of the
atomic inversion, marginal atomic Q-function and scaled
AWE in the following sections.

2.1 Scaled atomic Wehrl entropy, marginal
distribution and entanglement quantifiers

In this section: we investigate the marginal atomic
Q-function and atomic Wehrl entropy AWE. We start our
investigation by defining the atomic Q-function as [1]

QA(Θ ,Φ , t) =
1

2π
〈Θ ,Φ |ρ̂11(t)|Θ ,Φ〉 , (35)
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Fig. 1: Time evolution of the atomic inversionρz(t), for ∆ =
0,λ = 0.5, k = 1

4and with different values of the excitation

numberm and intial atomic positionθ and relative phaseφ =
θ
2

where: Fig. (a)(m,θ) = (10,0), Fig. (b)(m,θ) =
(

10,
π
2

)

, Fig.

(c) (m,θ) = (20,0) and Fig. (d)(m,θ) =
(

20,
π
2

)

.

whereρ̂(t) is the density matrix which is given in equation
(27) and|Θ ,Φ〉 is the atomic coherent state expressed as

|Θ ,Φ〉= cos(Θ/2) |e〉+sin(Θ/2)eiΦ |g〉 , (36)

where 0≤ Θ ≤ π,0≤ Φ ≤ 2π. the definition (35) means
that two different spin coherent states overlap unless they
directed into two antipodal points on the sphere [1].

The scaled atomic Wehrl entropy can be written in
terms of the atomic Q- function as [1]:

SSAW(t) =
2ln(2)

1−2ln(2)

{

∫ 2π
0

∫ π
0 QA(Θ ,Φ , t) lnQA(Θ ,Φ , t)sinΘdΘdΦ + ln(2π

√
e)
}

.

(37)
One can easily check that the QA is normalized. By

integrating the atomic Q-function QA over the atomic
variableΦ , we obtain the marginal atomic Q-function as
follows

QΦ =
∫ π

0
QAsinΘdΘ . (38)

3 Numerical results

The population inversion of the atom is one of the
important atomic dynamic variables of the system. This in
fact would give us information about the behavior of the
atom state during interaction time. In figure (1), we have
plotted the dynamical behavior for different values of the
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Fig. 2: Time evolution of the atomic inversionρz(t), for ∆ =
20,λ = 0.5, k = 1

4 and with different values of the excitation

numberm and intial atomic positionθ and relative phaseφ =
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Fig. 4: Time evolution of the scaled atomic Wehrl entropy
SSAW(t), for ∆ = 20,λ = 0.5, k = 1
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Fig. 5: The surface plot of the marginal atomic Q-functionQΦ (t)
versus the timet and the phase space parameterΦ for ∆ = 0,λ =
0.5, k = 1

4and with different values of the excitation numberm

and intial atomic positionθ and relative phaseφ =
θ
2

where: Fig.

(a) (m,θ) = (10,0), Fig. (b)(m,θ) =
(

10,
π
2

)

, Fig. (c)(m,θ) =

(20,0) and Fig. (d)(m,θ) =
(

20,
π
2

)

.

involved parameters. We concentrate on the variation of
the initial atomic positionθ from the excited state i.e.
θ = 0 to the superposition state i.e.θ = π/2 as well as on
the excitation numberm, which is in analogy with the
usual Jaynes–Cummings model, corresponding to the
number of photons. Firstly, we consider that the system is
initially in the excited stateθ = 0 and the absence of the
detuning parameter∆ = 0. It is observed that the atomic
population inversion has a regular and periodic oscillation
where the amplitude of oscillation is decrease by
increasing the number of photon excitation. The structure
of the atomic inversion oscillations is changed when the
atom is initially in the superposition state see Fig. 1(b,d).
The number of oscillation is increased when the effect of
the atomic inversion is taken into account (see Fig. 2).

The scaled atomic phase space entropy as a quantifier
of the entanglement between two-level atom and SU(1,1)
quantum field is plotted in Figs. 3 and 4. As seen from
Fig. 3 SSAW(t) has a periodic behavior and regular
oscillation. The system returns to its separable state
(SSAW(t) = 0) at ts = 0.45m wherem= 0,1,2, ... On the
other hand the system is maximally entangled state
(SSAW(t) = ln(2)) at the middle of the time interval
0 < t < ts. Fig. 3 (d), depicts that the entanglement is
gradually decreases by increases the number of photon
excitation when the atom is initially in the superposition
state.

Now, we are going to answer the question “What is
the impact of the detuning parameter on the atom-SU(1,1)
field entanglement for different values of the number of
photon excitation and initial atomic position?” As
presented in Fig. 4, where theSSAW(t) was plotted as a
function of the time when the atom is initially in the
excited and superposition state. It is interesting to note the
high amount of the quantum entanglement can be
obtained in the presence of the detuning parameter during
the time evolution.

Fig. 5 depicts the evolution of QΦ (t) as a function of
the time and atomic phase space parameterΦ for
different modes of excitations. It is interesting to mention
here that the behavior ofQΦ(t) for different values of the
non-fluctuating components of Rabi frequency. It is
observed thatQΦ(t) oscillates between minimum and
maximum peaks. The distribution of the marginal atomic
Q-function peaks in depending the initial state setting of
the two-level atom. On the other hand the number of
peaks is increased by increasing the atomic Q-function
peaks.

4 Conclusion

We have disscused the dynamical behaviour of the
problem of the interaction between two-level atom and
SU(1,1) quantum system. We the two-level atom is
initially in a superposition state and obtaine the general
solution of the wave function analytically. Using the
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scaled atomic phase space entropy the system
entanglement has been investigated. The analysis herein
has been carried out at two distinct considerations of the
detuning parameters and number of photon excitation. As
the deteuning parameter is neglected, the scaled atomic
phase space entropy has a regular oscillations between 0
and ln(2) during the time evolution. There is some
monotonic correlation between the behavior of the atomic
inversion, scaled atomic phase space entropy and the
marginal atomic Q-function. Finaly it is shown that the
SU(1,1) quantum field–atom interaction considering the
effect of the number of photons excitation and detuning
parameter have much richer structure.
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