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Abstract: We review thermal properties of quantum correlations in thethermodynamic limit with reference to the XY-model. Although
this model has been the subject of active entanglement-research, the bulk of the pertinent work refers to finite instantiations. As a
consequence, the temperature cannot be properly defined in such circumstances, a problem that is overcome here. Our effort includes
the interesting role of the quantum discord notion.
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1 Introduction

The tern nonlocality-entanglement-quantum discord is of
obvious interest and possesses technological implications
(see, for instance, [1]).

We revisit here the relation between quantum discord and
entanglement in an infinite system, namely, the XY model
(thermodynamic limit [2]), that, like the celebrated Ising
and Heisenberg models, is one of the paradigmatic
systems in statistical mechanics. Although this model has
been the subject of active entanglement-research, the bulk
of the pertinent work refers to finite instantiations (for a
very illustrative example see, for instance, [3]). There is
thus a gap in our thermal-discord knowledge that we
intend to overcome here. Although the notion of quantum
discord was proposed by Ollivier and Zurek [4] (see also
[5]) some 10 years ago and much interesting work has
been published in the ensuing decade, the concept
remains somewhat elusive in regards as just what are the
correlation it describes. Thus, studying the
entanglement-discord correlations at highT may perhaps
serve some enlightening purpose.
Since the formalization by Werner [6] of the modern
concept of quantum entanglement it has become clear that
there exist entangled states that comply with all Bell
inequalities (BI). This entails that nonlocality, associated

to BI-violation, constitutes a non-classicality
manifestation exhibited only by just a subset of the full
set of states endowed with quantum correlations. Later,
exciting work by Zurek, Ollivier, Arnesen, Vedral, etc.
(see for example, [4,5]) established that not even
entanglement captures all aspects of quantum
correlations. A new information-theoretical measure was
introduced, quantum discord, that corresponds to a new
facet of the “quantumness” that arises even for
non-entangled states. Indeed, it turned out that the vast
majority of quantum states exhibit a finite amount of
quantum discord.

In some cases, however, entangled states are useful to
solve a problem if and only if they violate a Bell
inequality [7]. Moreover, there are important instances of
non-classical information tasks that are based directly
upon non-locality, with no explicit reference to the
quantum mechanical formalism or to the associated
concept of entanglement [8]. Last, but certainly not least,
recent research indicates that quantum discord is also a
valuable resource for the implementation of non-classical
information processing protocols [9,10,11,12,13]. On the
light of these developments, it becomes imperative to
conduct a systematic exploration of the connections
between the tripod members.
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It is thus our intention to study the interplay of
entanglement and quantum discord for the XY model in
the thermodynamic limit. To such an effect we will
consider, after giving some background in Section II, the
correlations existing between a pair of qubits located at
two given sites (Section III)). Finally, some conclusions
are drawn in Section IV.

2 Background

The Hamiltonian of the anisotropic one-dimensional spin-
1
2 XY model in a transverse magnetic fieldh (N particles)
reads

H =
N

∑
j=1

[(1+ γ)S j
xS j+1

x +(1− γ)S j
yS j+1

y ]−h
N

∑
j=1

S j
z , (1)

whereσ j
u = 2S j

u (u = x,y,z) are the Pauli spin-12 operators

on site j, γ ∈ [0,1] and σ j+N
u = σ j

u . The model (1) for
N = ∞ is completely solved by applying a Jordan-Wigner
transformation [2,15], which maps the Pauli (spin 1/2)
algebra into canonical (spinless) fermions. The system
(except for the isotropic caseγ = 0) undergoes a
paramagnetic-to-ferromagnetic quantum phase transition
(QPT) [16,17] driven by the parameterh at hc = 1 and
T = 0. It is well known that near factorization a
characteristic length scale naturally emerges in the
system, which is specifically related with the
entanglement properties and diverges at the critical point
of the fully isotropic model [18].
Quantum discord [9,4] constitutes a quantitative measure
of the “non-classicality” of bipartite correlations as given
by the discrepancy between the quantum counterparts of
two classically equivalent expressions for the mutual
information. More precisely, quantum discord is defined
as the difference between two ways of expressing
(quantum mechanically) such an important entropic
quantifier. Letρ represent a state of a bipartite quantum
system consisting of two subsystemsA and B. If S(ρ)
stands for the von Neumann entropy of matrixρ andρA
amd ρB are the reduced (“marginal”) density matrices
describing the two subsystems, the quantum mutual
information (QMI)Mq reads [4]

Mq(ρ) = S(ρA)+S(ρB)−S(ρ). (2)

This quantity is to be compared to another quantity
M̃q(ρ), expressed using conditional entropies, that
classically coincides with the mutual information. To
define M̃q(ρ) we need first to consider the notion of
conditional entropy. If a complete projective
measurementΠ B

j is performed on B and (i)pi stands for
TrAB Π B

i ρ and (ii) ρA||ΠB
i

for [Π B
i ρ Π B

i /pi], then the
conditional entropy becomes

S(A|{Π B
j }) = ∑

i
pi S(ρA||ΠB

i
), (3)

andM̃q(ρ) adopts the appearance

M̃q(ρ){ΠB
j } = S(ρA)−S(A|{Π B

j }). (4)

Now, if we minimize over all possibleΠ B
j the difference

Mq(ρ)− M̃q(ρ){ΠB
j } we obtain the quantum discord∆ ,

that quantifies non-classical correlations in a quantum
system,including those not captured by entanglement.
One notes then that only states with zero∆ may exhibit
strictly classical correlations. Among many valuable
discord-related works we just mention two at this point
that are intimately related to the present one, e.g., Batle et
al. [19].

3 Two qubits in the infinite XY model

The general two-site density matrix is expressed as

ρ(R)
i j =

1
4

[

I +∑
u,v

T (R)
uv σ i

u⊗σ j
v

]

. (5)

R = j− i is the distance between spins,{u,v} denote any

index of {σ0,σx,σy,σz}, and T (R)
uv ≡ 〈σ i

u ⊗ σ j
v 〉. Due to

symmetry considerations, only{T (R)
xx ,T (R)

yy ,T (R)
zz ,T (R)

xy } do
not vanish. Barouchet al [15] have provided exact
expressions for two-point quantum correlations, together
with details of the dynamics associated with an external
field h(t). For the purposes of this paper, we will consider
only systems which at timet = 0 are in thermal
equilibrium at temperatureT . We have then the
(canonical ensemble) expressionρ(t = 0) = exp[−β H],
where β = 1/kT and k is the Boltzmann constant.
Following [15], one obtains

T (1)
xx = G−1,T

(1)
yy = G1,T

(1)
zz = G2

0−G1G−1− S1S−1, and

T (1)
xy = S1, where

GR =
γ
π

∫ π

0
dφ sin(Rφ)

tanh
[

1
2βΛ(h0)

]

Λ(h0)Λ2(h f )

×[γ2sin2 φ +(h0−cosφ)(h f −cosφ)
−(h0−h f )(h f −cosφ)cos(2Λ(h f )t)]

− 1
π

∫ π

0
dφ cos(Rφ)

tanh
[

1
2βΛ(h0)

]

Λ(h0)Λ2(h f )

×
[

{γ2sin2 φ +(h0−cosφ)(h f −cosφ)}(cosφ−
h f )− (h0−h f )γ2sin2 φ cos(2Λ(h f )t)], (6)

SR =
γ(h0−h f )

π

∫ π

0
dφ sin(Rφ)sinφ

sin[2Λ(h f )t]

Λ(h0)Λ(h f )
, (7)

with Λ(h) = [γ2sin2 φ + (h − cosφ)2]1/2. GR is the
two-point correlator appearing in the pertinent
Wick-calculations and Mz = 1

2G0. The two-spin
correlation functions are given by [15]
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〈σ i
xσ i+R

x 〉=

∣

∣

∣

∣

∣

∣

∣

∣

G−1 G−2 · · · G−R
G0 G−1 · · · G−R+1
...

...
. . .

...
GR−2 GR−3 · · · G−1

∣

∣

∣

∣

∣

∣

∣

∣

, (8)

〈σ i
yσ i+R

y 〉=

∣

∣

∣

∣

∣

∣

∣

∣

G1 G0 · · · G−R+2
G2 G1 · · · G−R+3
...

...
. . .

...
GR GR−1 · · · G1

∣

∣

∣

∣

∣

∣

∣

∣

, (9)

〈σ i
zσ i+R

z 〉= 4〈σz〉2−GRG−R, (10)

where R = j − i (distance between spins). In the case
where more than two particles are considered, the
previous correlators no longer possess their previous
Toeplitz matrix structure [20].

Fig. 1: Plot of quantum discord QD (upper solid curve)
and entanglement of formation E (lower dashed curve)
vs the external magnetic fieldh for two qubits in
infinite theXY model (nearest neighbors), with anisotropy
γ = 1

2 at T=0. The region around the factorizing
field h f concentrates maximum QD. Inset depicts the
corresponding classical correlations CC vsh. See text for
details.

Let us write the two qubit statesρ(R)
i j (5) in the

computational basis{|00〉, |01〉, |10〉, |11〉} as

1
4







1+4Mz +Tzz 0 0 Txx−Tyy− i2Txy
0 1−Tzz Txx +Tyy 0
0 Txx +Tyy 1−Tzz 0

Txx−Tyy + i2Txy 0 0 1−4Mz +Tzz






.

(11)
It turns out that statesρ(R)

i j in (11) are of such special
aspect that the quantum discord QD turns out to be to be

Fig. 2: Plot of QD for the same settings as in Fig.
1 for different relative distancesR = 1 to 2, 3 and∞
between spins. The further they are separated, the more
they collapse into a single curve, which is zero forh > 1.
Notice that E rapidly tends to zero for allh in the limit
R → ∞, while the corresponding QD remain finite. A
similar behavior occurs for CC as depicted in the inset.
See text for details.

Fig. 3: (a) Value for E vs h for finite temperatures
T=0.01,0.1,0.3,0.5,1 (from top to bottom) forR = 1 and
γ = 1

2. Notice how the region of null entanglement spreads

form a point (at the factorising fieldh f =
√

1− γ2) to
a region. (b) Plot of the aforementioned region of zero
entanglement. The upper and lower curves define de limits
of h for a given T where null E is found. This figure
resembles a phase diagram-like plot where the regions
of zero and nonzero entanglement are defined. (c) QD
exhibits a particular behavior as T increases which tend
to be maximum within the limits of zero entanglement.
(d) CC vsh plot for the same temperatures. An overall
decreasing tendency is apparent. See text for details.
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analytically given (see Ref. [21]). Nevertheless, the
concomitant QD can be easily obtained, in different
fashion, as follows. The most general parameterization of
the local measurement that can be implemented on one
qubit (let us call it B) is of the form
{Π0′

B = IA ⊗ |0′〉〈0′|,Π1′
B = IA ⊗ |1′〉〈1′|}. More

specifically we have

|0′〉 ← cosα|0〉+ eiβ ′ sinα|1〉
|1′〉 ← e−iβ ′ sinα|0〉−cosα|1〉, (12)

which is obviously a unitary transformation –rotation in
the Bloch sphere defined by angles(α,β ′)– for the B
basis{|0〉, |1〉} in the rangeα ∈ [0,π] and β ′ ∈ [0,2π).
After some cumbersome calculations, it turns out that the
expression for a minimum discord∆ of the Introduction
exhibits a positive and nonsingular Hessian, convex for
the relevant range of values of(α,β ′). Our expression
possesses thus a unique global minimum, that occurs
when the concomitant partial derivatives vanish. It can be
proved that this happens whenever we have
(sinα =

√
2

2 ,sinβ ′ = 0) in the previous expression.
The present results correspond to pairwise entanglement
and quantum discord for the infiniteXY model at any
temperature, including zero-one. This implies that one
does not really need to “solve” the model in the sense of
sufficiently augmenting the number of spins in the chain
for the results to be thermally relevant.T here is an
actual, thermometer-measurable temperature, since we
are tackling a “real” thermodynamic system. This is to be
confronted to the vast XY-literature associated to finite
spin-numbers, whereT is not, strictly speaking,
well-defined in the thermodynamics sense.
A comparison between the discord QD and the
entanglement of formationE at T = 0 is displayed in Fig.
1 (from now on we shall take the Boltzmann constant
k = 1). QD and E are depicted versus the external
magnetic field h (anisotropy γ = 1

2) for the nearest
neighbor configurationR = 1. Remarkably enough, the
QD measure exhibits a maximum in the vicinity of the
factorizing fieldh f =

√

1− γ2. Both QD andE seem to
decay in the same fashion. The classical correlations (CC)
for the same configuration are depicted in the inset of Fig.
1. Notice that all quantities here considered, i.e., QD,E,
or CC, are ultimately described in terms of severalGRs
for all configurations, so that they all diverge at the QPT
(for h = 1) in the same way.
As an illustration consider the magnetization given by
Mz(h) = 1

2G0 = ∂
∂h

1
2π

∫ π
0 dφ [γ2sin2 φ + (h− cosφ)2]1/2.

For γ = 1 we have Mz(h) = ∂
∂h

(2(h+1)
2π E

[

2
√

h
h+1

])

=
1

2π
[

h−1
h K

(

2
√

h
h+1

)

+ h+1
h E

(

2
√

h
h+1

)]

, where K(E) is the
complete elliptic integral of the first(second) kind. Since
d

dh Mz diverges in logarithmic way ath = 1, as also do the
divergence ofK and the first derivatives ofE, QD, and
CC. In other words, they all signal the presence of a
h = 1-QPT at zero temperature (except for the isotropic

caseγ = 0). In fact, the possibility of detecting a QPT at
finite T by using QD has been recently considered by
Werlanget al. [22]. They perfom an interesting analysis
of the role of the temperature and QD in several quantum
systems. We remember that a different concept such as
nonlocality –as measured by the maximum violation of
the well known Clauser-Horne-Shimony-Holt Bell
inequality– was also considered as a QPT in [20] (also in
the context of the XY-model). In the present work we do
not focus attention on this particular issue of QPTs, but
study instead the comparison between entanglement and
quantum discord for finite and infinite systems at
non-zero temperature.

Fig. 2 depicts the the same quantities as Fig. 1 for
several configurations. As we increase the relative
distance fromR = 1 to 2, 3, and∞, the corresponding
QD’s diminishes and also decays in faster and faster
fashion with h. Notice that while entanglement (not
shown here) globally diminishes, QD only tends to vanish
for h > 1 andR = ∞. The inset here depicts the CC for the
same configurations. They decreasing in the same
fashion. WhileE tends to zero, both QD and CC remain
nonzero, regardless of the distance between spins along
the infinite chain.

As soon as we introduce a non-zero temperature
things drastically change. In Fig. 3 we display several
quantities at different temperatures
(T = 0.01,0.1,0.3,0.5,1): R = 1 and γ = 1

2. Fig. 3(a)

depicts the entanglement of formationE for statesρ(R)
i j

(5) versus the magnetic fieldh as we increase the
temperature.T lowers and broadens the region of null
entanglement from a point at the factorizing fieldh f
(T = 0) to finite intervals centered ath f . Eventually,E
becomes finite at higher values ofh. This
temperature-generated entanglement is depicted
quantitatively in Fig. 3(b), where the region of zero
entanglement extends from a point at zeroT to a
finite-sized region asT grows. The aforementioned region
ceases to be finite beyond a critical temperature that
depends on the particularR’s andγ ’s involved therein. We
discern some resemblance with a phase diagram: within
the area encompassed by the two curves of Fig. 3(b) no
entanglement is detected. It is surprising that, for the
whole region, QD globally diminishes and tends to be
concentrated in the null-E region, as can be seen in Fig.
3(c). These facts allow one to readily appreciate how
different is the behavior of entanglement vis-a-vis that of
QD. The role of classical correlations can be observed in
Fig. 3(d). For the same set of temperatures employed
above CC decreases i) as we augmentT and ii) for
increasing values ofh, a behavior different from that of
entanglement: while CC never vanishes, it is larger
whereverE = 0. BothE and CC coexist for high values of
h. We are dealing with a system for which, as we increase
the temperature, entanglement survives –although barely–
for high values ofh. This fact clearly affects the existence
of finite discord- or CC-values. Recall that this was the
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case already atT = 0. The role of the factoring fieldh f in
defining higher or lower values of QD becomes crucial.
To further analyze the nontrivial relation between
entanglementE and quantum discord QD at finiteT it
would enlightening to consider a physical system for
which E would increase with the temperature. Such is the
Heisenberg model’s scenario, also a statistical mechanical
model used in the study of critical points and phase
transitions of magnetic systems [23,5].

4 CONCLUSIONS

We have compared entanglementE and quantum discord
QD for magnetic systems at finite temperatures,
comparing their behavior with that of classical
correlations as well. It is clear that, some similarities
notwithstanding,E and QD behave in quite different
fashion in the thermodynamic limit. Although they
represent the same magnitude for pure states, their
differences are enhanced in realistic models such as the
one studied here. The distinction we are trying to
establish here is blurred in the case of finite systems. We
conclude that for realistic systemsE and QD should both
be studied in independent fashion, as they reflect on
different aspects of the quantum world.
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