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Abstract: DNA microarrays allow simultaneous measurements of expression levelsfor a large number of genes across a number
of different experimental conditions (samples). The algorithms for mining association rules are used to reveal biologically relevant
associations between different genes under different experimentalsamples. This paper presents a new column-enumeration based
method algorithm (abbreviated by MCR-Miner) formining maximal high confidence association rules for up/down-expressed genes.
MCR-Miner algorithm uses an efficientmaximal association rules treedata structure (abbreviated by MAR-Tree). MAR-tree
enumerates (lists) all genes with their binary representations, the binary representation of a gene saves the status (normal, up, and down-
expressed) of a gene in all experiments. The binary representation has many advantages, scan the dataset only once, the measurements
of confidences for association rules are made in one step, and it makesMCR-Miner algorithm easily finds all maximal high confidence
association rules. In the experimental results on a real microarray datasets, MCR-Miner algorithm attained very promising results and
outperformed other counterparts.
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1 Introduction

Gene expression is the process of transcribing DNA
sequences into mRNA sequences, which are later
translated into amino acid sequences calledproteins. The
number of copies of the produced RNA is called the
gene expression level. Each normal gene has a rate of
expression levele, up-expressed geneis the gene with
expression level> e, down-expressed geneis the gene
with expression level< e. The regulation of gene
expression level is essential for proper cell function.
Microarray technologies provide the opportunity to
measure the expression level of tens of thousands of
genes in cells simultaneously. Usually, the expression
level is correlated with the corresponding protein made
under different conditions (samples) [1,2,3].

The microarray dataset can be seen as an M×N
matrix G of expression values; where the rows represent
genesg1, g2, ..., gm and the columns represent different
experimental conditions (samples)s1, s2, ..., sn. Each
element G[i,j] represents the expression level of the gene

gi in the samplesj (see Table1). The matrix usually
contains a huge data, therefore, data mining techniques
are used to extract useful knowledge from such matrices
[3,4].

Mining association rules is currently a vital data
mining technique for many applications [4,5,6]. Mining
association rules technique is applied to microarray
dataset to extract interesting relationships among sets of
genes [2,4,13]. Let g1 and g2 be up-expressed genes and
g3 be down-expressed gene (see section 4), then the
association rule g1 → g2,g3 (with support 80% and
confidence 90%) unmasks a relation among the genes g1,
g2, and g3. this relation asserts that all of the genes g1, g2,
and g3 appear in 80% of the microarray samples and ifg1
is up-expressed theng2 is up-expressed andg3 is
down-expressed with probability 90%.

In order to mine association rules in microarray
dataset, the data is pre-processed by applying the
logarithms procedure to ensure that the data is suitable for
analysis. The logarithms procedure transforms DNA
microarray data from the raw color intensities into log
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color intensities; where [1]. Then, based on a predefined
threshold, the transformed dataset is discretized into
ternary valued matrix, such that each gene value is
mapped into 1, 0, or -1 for up-expressed, non-expressed,
or down-expressed gene respectively as shown in Table2.

Table 1: Microarray Dataset
s1 s2 s3 s4 s5

a 0.039 0.597 0.235 0.267 0.343

b 0.633 0.04 -0.01 0.323 0.252

c -0.15 0.266 0.41 0.3 0.35

d -0.32 -0.14 -0.25 -0.45 -0.24

e 0.28 0.34 0.466 0.23 0.23

f 0.26 0.42 -0.1 -0.3 0.485

Table 2: Discretized Microarray.
The expression gene is converted into 1, 0, or -1

if it is ≥, =, or≤ -0.2 respectively.
s1 s2 s3 s4 s5

a 0 1 1 1 1

b 1 0 0 1 1

c 0 1 1 1 1

d -1 0 -1 -1 -1

e 1 1 1 1 1

f 1 1 0 -1 1

This paper presents a new column(gene)-enumeration
based method algorithm. The proposed algorithm is
called MCR-Miner which overcomes both the
computational time and memory explosion problems of
column-enumeration used in many algorithms for mining
microarray datasets [4]. MCR-Miner scans the microarray
dataset only once to obtain a list of all genes in which,
each geneg is associated with a ternary representation;
where each element in the representation shows whether
the gene is up-expressed, non-expressed, or
down-expressed at the corresponding sample. Therefore,
every gene is split into two nodes, one for up-expressed
gene and the second for the down expressed gene; where
each node saves the binary representation of a gene (up or
down) (see subsection 4.1). These nodes are saved in
MAR-tree, the structure of MAR-tree is the back bone of
the MCR-Miner algorithm. MCR-Miner using MAR-tree
easily finds with high speed all maximal high confidence
association rules. The experimental results show that the
MCR-Miner algorithm is faster than the row-enumeration
based methods MAXCONF [15] and RERII [16]. Since,
RERII and MAXCONF are better than other
column-enumeration based method like CHARM [17],

As a result, MCR-Miner algorithm is also faster than the
column-enumeration based method CHARM.

The rest of the paper is organized as follows. Section
2 introduces the mining association rules problem.
Section 3 presents related works. Section 4 explains the
proposed MCR-Miner algorithm for extracting all
maximal high confidence association rules for
up/down-expressed genes. Section 5 shows the
experimental results of MCR-Miner. Section 6 concludes
the paper.

2 Mining Association Rules

Mining association rules technique extracts interesting
relationships among sets of items (genes) in a large
dataset. One of the most famous applications of this
technique ismarket basket analysis[5,6] where the
objective is to find the relationships between the
purchased items under different transactions. Also,
mining association rules is applied on
microarray datasetsin order to find the relationships
between genes under different samples. In this section,
using the transactions (samples) dataset from Table3,
some notations are introduced [5,6,18].

Table 3: Microarray Transactions(Samples) Dataset.
The gened at sample 1 means that the gene d is down-expressed

at this sample (where its value=-1 in table2)
tiD (sample is) Transactions (samples)

1 b,d,e,f

2 a,c,e,f

3 a,c,d,e

4 a,b,c,d,e,f

5 a,b,c,d,e,f

Definition 1 (Association Rules).Let I= {i1, i2,..., in} be
a set of n items (genes). A subset T⊆I is called a
transaction (sample). The transactions datasetD is a set
of transactions; where each transaction has a unique id
called tid. In other words, D={<tid,T>; T⊂I, tid∈{1,
2,..., k}; k=|D|}. An association rule is a pair of
itemsets(X,Y) where X,Y⊆I and X∩Y=φ , and is denoted
by X→Y. The itemsets (set of items) X and Y are called
antecedent and consequent of the rule X→Y, respectively.
Convention: T∈D denotes that ∃tid such that
<tid,T>∈D.

Definition 2 (Measurements of Association Rules).An
association rule X→Y has two measurements: support
and confidence. They are defined, with respect to a
transactions (samples) dataset D, as follows:
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suppD(X →Y) = suppD(X∪Y)
|D|

con fD(X →Y) = suppD(X∪Y)
suppD(X)

where suppD(X) = |T;X ⊆ T,T ∈ D|

Definition 3 (Frequent Itemset).The itemset X is called
frequent if supp(X)≥minsup; where minsup is a user
defined threshold.

Definition 4 (Strong/Confident Association Rules).The
rule X→Y is called strong or confident if
supp(X→Y)≥minsup and conf(X→Y)≥minconf; where
minconf is another user defined threshold.

The process of mining confident association rules is
performed in two steps [6,18]:

1. Generate all frequent n-itemsets (set of n items).
2. Using all frequent n-itemsets, generate all

strong/confident association rules X→Y, where X and
Y are frequent n-itemsets.

The dataset such ”market basket analysis” has the
property that the number of items in the dataset is less
than the number of transactions. This kind of dataset
called sparse, i.e., the longest frequent itemsets is
relatively short. However, there are many real-life
datasets such as microarray datasets, that the number of
items (genes) is greater than the number of transactions
(samples). This kind of dataset calleddense, i.e., they
contain very long frequent itemsets (genesets). Therefore,
generating all frequent itemsets in such dense datasets
requires large memory. Hence, recent algorithms prevent
this problem by expanding only frequent closed itemsets
[15,16,19,21].

Definition 5 (Frequent Closed Itemset).The frequent
itemset X is called a f requent closed itemset if∄ a
frequent itemset Y such that X⊆Y and supp(X)=supp(Y).

For example, if AB and ABC are two frequent
itemsets with supp(AB)= supp(ABC), then AB is called
non-closeditemset.

With respect to microarray datasets, the set of all
mined confident association rules from frequent closed
itemsets might still be very large. Therefore, some
algorithms mine only the maximal confident association
rules from microarray datasets.

Definition 6 (Maximal Confident Association Rules).A
confident rule r1 is called
maximal con f ident association rule, if∄ other confident
rule r2 such that

1. antecedent(r1)=antecedent(r2), and
2. consequent(r1)⊂consequent(r2).

For example, if the rules A→BCD and A→BC are
confident, then A→BC is called
non-maximal confident association rule.

3 Related Works

The most algorithms of frequent pattern mining based on
one the following two methods [4]:

1. Column(item)-enumeration based method: This
method uses breadth-first search to enumerate each
1-itemset. Repeatedly, join (k-1)-itemsets with itself
to get a k-itemsets; k=2, 3, ..., L; where L is the
longest-frequent itemsets.Apriori algorithm [7] is
the first mining association rules algorithm that
pioneered the use of support-based pruning to control
the exponential growth of candidate itemsets. It uses
pruning principle that is state of”If there is any
itemset which is infrequent, its superset should be
infrequent”. However, Apriori algorithm pass over the
original dataset L times; L is the longest frequent
itemsets. Also, the generation of candidates itemsets
takes exponential time.Eclat [11] andQuick-Apriori
[10] algorithms overcome the problems of traversing
the dataset L times by using the bottom-up search
procedure that generates the frequent itemsets by
intersecting the tids-lists (transaction TIDs) of all
distinct pairs of itemsets. This procedure is repeated
until all frequent itemsets have been enumerated.
Apriori, Eclat, and Quick-Apriori show good
performance with sparse datasets such as
marketbasket data, but these algorithms face
difficulties when applying to dense datasets such as
microarrays. this difficulties according to the number
of items (genes) is more greater than transactions
(samples). In these algorithms, in order to produce all
frequent itemsets of length L, they produce all 2L of
its subsets. This exponential complexity restricts these
algorithms to discover only short patterns.
MaxEclat [9] and Max-Miner [8] optimize Apriori
by exploiting additional pattern constraints by mining
only the longest of the maximal frequent itemsets.
Max-Miner algorithm outperforms than MaxEclat;
where Max-Miner attempts to look ahead through the
search in order to quickly identify long frequent
itemsets. By pruning all the non-maximal frequent
itemsets in early steps. However, it still traverses the
dataset more than once.CHARM [17] andCLOSET
[21] optimize Apriori algorithm by mining only
closed frequent itemsets (see Detention5); the set of
closed frequent itemsets is a lot smaller than the set of
all frequent itemsets. CLOSET with compressed
FP-tree structure is efficient and scalable than
CHARM. However, using Max-Miner or CLOSET
algorithm with dense datasets microarrays still poses
great challenges.

2. Row(transaction)-enumeration based method: This
method uses a depth-first search to enumerate each
transaction; each transaction is assigned to a support
of value 1. A successive intersecting processes of each
transaction with the other transactions in the dataset,
resulting in a transaction with smaller number of

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


802 W. Zakaria et al: MCR-Miner: Maximal Confident Association Rules Miner...

intersected items. This process continues recursively
until no smaller itemsets can be formed. The
row-enumeration based methodCARPENTER
algorithm [12] is used to mining frequent closed
itemsets. CARPENTER algorithm outperforms than
column-enumeration based method CLOSET and
CHARM. RERII [16] algorithm is similar to
CARPENTER but it optimizes its process by utilize
three support pruning methods, these pruning methods
reduce the used spaces and remove the redundant
frequent closed itemsets. In microarray datasets, the
RERII algorithm is faster than CARPENTER.
MAXCONF [15] algorithm is closely related to
RERII in which the generation of nodes is similar. But
it depends only on confidence pruning (i.e. free
support pruning) to produce the rules with high
confidence and low support. In this algorithm, the
rules with only one gene on the LHS are created. (i.e.,
create all rules on the form X→ Y, where |X|=1).
MAXCONF exploits two confidence pruning methods
in order to prune the search space and eliminating the
non-maximal rules in early steps as in Max-Miner.
MAXCONF algorithm is better than RERII. These
row enumeration based method algorithms are faster
than the column enumeration based method
algorithms when applying on dense datasets such as
microarray datasets. Note that, recent paper [4] noted
that “a comparative analysis using several known
datasets revealed that without using any support
threshold MAXCONF provide excellent results”.

This paper presents a new algorithm based on the
column(gene)-enumeration based method. The proposed
algorithm is calledMCR-Miner which overcomes both
the computational time and memory explosion problems
of the relative column-enumeration based method
algorithms such as Apriori [7] and MAX-Miner [8].
MCR-Miner is used for mining all maximal high
confidence association rules for up/down-expressed genes
like the row-enumeration based method MAXCONF
algorithm [15]. The experimental results show that
MCR-Miner is faster than MAXCONF algorithm. As
consequents it is faster than the mentioned algorithms
such as RERII, CARPENTER, CHARM, MAX-Miner,
and Apriori.

4 MCR-Miner Algorithm

This section introduces the(MCR-Miner)algorithm based
on the column (gene) enumeration method and only
confidence pruning in order to mine maximal high
confidence association rules for up/down-expressed genes
in microarray dataset. The mined rules have the form
LHS→RHS (conf≥minconf); |LHS|=1. The samples
dataset in Table2 is used as running example to illustrate
the steps of MCR-Miner algorithm; minconf is set to be
50%. The following four subsections show the steps of
MCR-Miner algorithm:

4.1 Discretization

The normalized microarray dataset is usually represented
as a series of continuous numbers. Discretization is the
process of transformation from continuous data into
discrete data. There are many discretization techniques
[22]. In this paper, the threshold method is used in order
to discretize data; each gene expression is converted into
one of the three discrete values 1, 0, or -1 for
up-expressed, non-expressed, or down-expressed gene
respectively. Therefore, in order to mine association rules,
microarray matrix G is converted into matrix G’ (as
shown in Table2) depending on the particular threshold
cut valuec [22]:

G′[i, j] =











1 G[i,j]≥c,(gi is up-expressed at sample j )
−1 G[i,j]≤-c,(gi is down-expressed at sample j)
0 Otherwise, (gi is non-expressed at sample j)

After discretization, each gene (Table2) can be
represented by ternary representation (see Definition7).

Definition 7 (Ternary representation of a gene).A
ternary representation of a geneg; (TRg) = (a1 a2 ... an)
with n is the number of samples; where

a j =











1 g is up-expressed at sample j
−1 g is down-expressed at sample j
0 g is non-expressed at sample j

For example, Table2 shows the discretized microarray
dataset ; where the threshold cut value c=0.2. For
example, the genef with ternary representation
TRf =110(-1)1 means that the genef is up-expressed in
samples 1, 2, and 5, it non-expressed in sample 3, and it
down-expressed in sample 4. In the discretized
microarray dataset, each geneg contains 1 and -1 splits
into two genes:

1. Up-expressed gene (g): A ternary representation of
gene g is converted into binary representation
(Definition 8) in which the zeros are set instead of
negative ones see Table4.

2. Down-expressed gene (g): A ternary representation
of gene g is converted into binary representation
(Definition 9) in which the zeros are set instead of
positive ones see Table4.

For example, Table4 shows the up-expressed and
down-expressed genes dataset in which the genef is split
into two genesf and f with binary representation are
11001 and 00010 respectively.
Note that, the geneg with only positive ones or only
negative ones is converted intog or g respectively.
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Definition 8 (Binary representation of a up-expressed
gene).A binary representation of a up-expressed geneg;
(BRg) = (a1 a2 ... an) with n is the number of samples;
where

a j =

{

1 g is up-expressed at sample j
0 g is (non/down)-expressed at sample j

Definition 9 (Binary representation of a down-expressed
gene).A binary representation of a down-expressed gene
g; (BRg) = (a1 a2 ... an) with n is the number of samples;
where

a j =

{

1 g is down-expressed at sample j
0 g is (non/up)-expressed at sample j

Table 4: Up/Down-Expressed Genes Dataset
s1 s2 s3 s4 s5

a 0 1 1 1 1

b 1 0 0 1 1

c 0 1 1 1 1

d 1 0 1 1 1

e 1 1 1 1 1

f 1 1 0 0 1

f 0 0 0 1 0

4.2 MAR-Tree Structure

MCR-Miner algorithm usesmaximal association rules
tree data structure to enumerate (list) all genes by
constructing a tree that have the following three levels
only:

– Level 1: contains the root of the tree that refers to all
genes as children nodes at level 2.

– Level 2: contains set of nodes, each node N consists
of the following five fields:

– Antecedentsgenesset(ant set): list of all
alphabetically sorted genes with the same binary
representation (see Definition8 and 9). For
example, in table4, the genea and genec have the
same binary representation, then they are
combined in a single node.

– Binary Representationof ant set(BR2): the
binary representation of a node N is equal to the
binary representation of any gene belong to
ant set i.e., N.BR2 = BRg; g (up/down) is any
gene∈ ant set.

– Support of ant set(supp2): the number of ones
in N.BR2 (i.e., the numbers of samples in which
the genes of antset are expressed1).

1 expressed means up-expressed or down-expressed

– ConsequentsSet(conseqset2): list of all
alphabetically sorted genes which expressed in the
all samples whenever the genes of N.antset are
expressed. This means that:
N.conseqset2 =

⋃

S∈AS(N)∧S.BR2>N.BR2
(S.ant set)2.

– Children Set(children): contains set of children
nodes of node N. These nodes are created at level
3.

– Level 3: contains a set of children nodes, each child
node C of a parent N contains the following five fields:

– ConsequentsgenesSet(conseqset3): list of all
alphabetically sorted genes of S.antset for which
genes of N.antset are expressed in the all samples
whenever genes of (N.antset ∪ S.antset) are
expressed; S∈ AS(N) and supp(N.BR2 ∧ S.BR2)
/ N.BR2 ≥ minconf. This means that:
C.conseqset3 =

⋃

S∈AS(N)∧con f≥mincon f(S.ant set)
conf=supp(N.BR2 ∧ S.BR2) / N.BR2.

– Binary Representationof ant set union
conseqset3 (BR3): C.BR3 = N.BR2 ∧ S.BR2; S∈
AS(N).

– Support of ant set union conseqset3(supp3):
the number of ones in C.BR3 (i.e., the numbers of
samples in which the genes in (N.antset ∪
C.conseqset3) are expressed).

– Generate non-maximal rule (GNMR): this field
is set to be true, if the child C will generate non-
maximal rule (Definition10).

– Participate (part): contains all the indices of the
children nodes at level 3 which participate to
generate the child C (Definition11). For example,
if the two children Ca and Cb are combined to
form new child Ck. Therefore, Ck.part={a,b},
Ca.GNMR=true, and Cb.GNMR =true.

Definition 10 (Generate non-maximal rule). A child node
Ci at level 3 is set true to the field generate non-maximal
rule (GNMR) if∃ a node Ck at level 3 such that Ck.BR3 <

Ci .BR3 or (supp(Ci .BR3 ∧ Ck.BR3) / parent(Ci).supp2) ≥
minconf.

Definition 11 (partcipate). A child node Ci at level 3 is
called participate to form a node Ck at level 3, if one of
the following two cases holds:

1. If Ck.BR3 < Ci .BR3, then the child node Ci
participates to form Ck. In this case, add index i to
Ck.part. In addition, Ci .GNMR=true.

2. If ∃ child node Cp at level 3; Cp.BR3 ∧
Ci .BR3=Ck.BR3 and supp(Ci .BR3 ∧
Cp.BR3)/parent(Ci).supp≥ minconf, then the children
nodes Ci and Cp participate to form a child node Ck.
In this case, add the two indices{i,p} to Ck.part. In
addition, Ci .GNMR=true and Cp.GNMR=true.

2 AS(N) is the all siblings of node N and S.BR> N.BR means
that S.BR2 ∧ N.BR2=N.BR2
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4.3 MCR-Miner Algorithm

To generate all maximal high confidence association rules
for up/down-expressed genes, MCR-Miner algorithm (see
Algorithm 1) works as follows:

1. MCR-Miner algorithm scans (Line 2) the
up/down-expressed genes dataset (Table4), then saves
each gene and its binary representation BR into a
single noden at level 2 in a tree. At line 3, the nodes
with the same binary representation are combined into
single node (see Fig.1). At line 4, the procedure
compare (Algorithm2) is invoked for generating all
children nodes of all nodes at level 2 in a tree (see the
next subsection).
The conseqset2 and children fields are initialized
with empty.

2. Procedure compare (Algorithm2) traverses each node
ni at level 2 (Figure1); i=1, 2, ..., #(children of roots)-1
(Lines 2-3), for each node ni the following three steps
should be followed:
2.1 Create all children nodes and conseqset 2 of

ni
Let d= ni .BR2 ∧ nk.BR2; k=i+1, i+2, ...,
#(children of roots) (Lines 4-6 Algorithm2), the
following steps should be followed:

◮ Update node ni . In order to add genes to
ni .conseqset2 or new child to node ni .children,
one of the following cases holds (Lines 7-16
Algorithm 2):
� d=ni .BR2 (i.e., ni .BR2 < nk.BR2) which means
that the genes of nk.ant set are expressed in the all
samples whenever the genes of ni .ant set are
expressed. In this case, add nk.ant set to
ni .conseqset2.
� d 6= ni .BR2 which means that there exist samples
in which the genes of nk.ant set and the genes of
ni .ant set are expressed simultaneously. If
(supp(d)/ni .supp2) ≥ minconf, then add new child
c to ni ; c=newNodeAtLevel3 (nk.ant set, d, supp
(d), false, φ ) see function newNodeAtLevel3 at
Algorithm 3.

◮ Similarly, update node nk. In order to add genes
to nk.conseqset2 or new child to node nk.children,
one of the following cases holds (Lines 17-26
Algorithm 2)
� d=nk.BR2, then add ni .ant set to nk.conseqset2.
� d 6= nk.BR2, if (supp(d)/nk.supp2) ≥ minconf,
then add new child c to nk; c = newNodeAtLevel3
(ni .ant set,d, supp (d), false,φ )( Algorithm 2).
Lines 28-35 Algorithm2 will be discussed in the
next subsections.

Example Fig. 2 shows the output tree of step 2 of
MCR-Miner algorithm. In the figure, The genes of
node n1.ant set=ac are up-expressed in all
samples whenever the gene of node n6.ant set=f
is down-expressed (i.e., n6.BR2 =00010< n1.BR2

Fig. 1: The Column (gene) Enumeration Tree for Up/Down-
Expressed Genes Dataset

= 01111), then n1.ant set will be added to
n6.conseqset2, i.e., n6.conseqset2={ac}.
Similarly, the genes of nodes n2.ant set, n3.ant set,
and n4.ant set are (up/down)-expressed in all
samples whenever the gene of node n6.ant set is
down-expressed, then n6.conseqset2={ac} ∪ {b}
∪ {d} ∪ {e} = abcde3. The node n1 and n3;
n1.BR2 ∧ n3.BR2=01111 ∧ 10111=00111, and
supp(00111)/n1.supp2 = 3/4 = 75% ≥
minconf=50%, then new child node Cp of node n1
is created; Cp.conseqset3 = n3.ant set = {d},
Cp.BR3=00111, Cp.supp3=3, Cp.GNMR = false,
and Cp.part = φ . Also, supp(00111)/ n3.supp2 =
3/4 = 75%≥ minconf=50%, then new child node
Cp of node n3 is created; Cp.conseqset3 =
n1.ant set = {ac}, Cp.BR3=00111, Cp.suppp=3,
Cp.GNMR=false, and Cp.part=φ .

Algorithm 1 The MCR-Miner algorithm
1: procedure MCR-MINER(Dataset D,float minconf)
2: root.children=scan up/down-expressed genes dataset D

and save each genes in a single node;
3: root.children=combine the nodes which have the same

binary representation;
4: compare(root,minconf);
5: end procedure

2.2 Producing children nodes of ni that produce
all maximal high confidence association rules
In this step, the children nodes of ni at level 3 need
more processes to produce all maximal high
confidence association rules. In order to do this,
the following steps should be followed:

i. All children nodes of ni are moved to
childrenbuffer list (i.e., ni .children will become
empty) (Lines 28-29 at Algorithm2).

ii. Each child node Ck ∈ childrenbuffer; k=1, 2, ...,
#(childrenbuffer) will be inserted into ni .children
by calling the procedure Insert (Ck, ni , minconf)
(Lines 30-32 Algorithm 2). The procedure
Insert(Ck, ni , minconf) (Algorithm 4) firstly
combines the child node Ck with existed child Cj
of ni if Ck and Cj have the same binary

3 abcde is sorted set of genes a, b, c,d, and e
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Fig. 2: Tree Contains All conseqset2 and Children of All Nodes at Level2

Algorithm 2 Procedure Compare
1: procedure COMPARE(MAR-Tree root,float minconf)
2: for i=1:#(children nodes of root)-1do
3: ni= the node at position i
4: for k=i+1:#(children nodes of root)do
5: nk= the node at position k
6: d=ni .BR2 ∧ nk.BR2;
7: if (ni .BR2=d) then ⊲ ni .BR2 < nk.BR2
8: add nk.ant set to ni .conseqset2 ;
9: else

10: conf= supp(d)/ni .supp;
11: if (conf≥ minconf)then
12: child=newNodeAtLevel3(nk.ant set,d,
13: supp(d),false,φ );
14: add c to ni .children;
15: end if
16: end if
17: if (nk.BR2=d) then ⊲ ni .BR2 > nk.BR2
18: add ni .ant set to nk.conseqset2
19: else
20: conf=supp(d)/nk.supp;
21: if (conf≥ minconf)then
22: child=newNodeAtLevel3 (ni .ant set,
23: d, supp(d),false,φ );
24: add c to nk.children;
25: end if
26: end if
27: end for
28: bufferchildren=ni .children
29: clear ni .children
30: for each Ck in buffer childrendo
31: Insert (Ck, ni , minconf);
32: end for
33: remove all C with C.GNMR=true;
34: GenerateMaximalHighRules(ni );
35: clear ni and their children;
36: end for
37: end procedure

Algorithm 3 Function Create New Node at Level 3
1: function NEWNODEATLEVEL3(conseqset, BR, supp,

GNMR , part): node at level 3.
2: construct new node at level 3;
3: node.conseqset3= conseqset;
4: node.BR3= BR;
5: node.supp3= supp;
6: node.GNMR= GNMR;
7: node.part= part;
8: return node;
9: end function

representation (Lines 2-7). Otherwise, the child
node Ck will be inserted at position p (Line 8)
then it will be compared with all existed children
nodes Cj ; C j ∈ ni .children and Cj .GNMR=false
(Lines 9-10) according to the following cases
(Lines 15-37):

A. If genes of Cj .conseqset3 are expressed in all
samples whenever genes of Ck.conseqset3 are
expressed (Ck.BR3 < C j .BR3,) then the child
node Ck will be updated with genes of
C j .conseqset3, Cj .GNMR=true, and add j to
Ck.part [i.e., Cj participates to form Ck].

B. If genes of Ck.conseqset3 are expressed in all
samples whenever genes of Cj .conseqset3 are
expressed (Cj .BR3 < Ck.BR3), then a child node
C j will be updated with genes of Ck.conseqset3,
Ck.GNMR=true , and add the index p to Cj .part; p
is the position of Ck [i.e., Ck participates to form
C j ].

C. If supp(d)/ni .supp2 ≥ minconf then add a new
child node Ck j into ni .children; Ck j.conseqset3 =
C j .conseqset3 ∪ Ck.conseqset3,Ck j.BR3=d,
Ck j.supp3 = supp(d), Ck j.GNMR = false,
Ck j.part=Ck j.part ∪ {p,j}. Note that, Ck and Cj
participate to form Ck j, then Ck.GNMR = true,
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and Cj .GNMR=true. Recursively, call the
procedure insert to insert the new child Ck j to ni .

D. Otherwise (Ck cannot form new node from Cj ),
then Ck is compared using these four steps with all
children nodes that participated to form Cj .

Algorithm 4 Procedure Insert
1: procedure INSERT(nodeAtLevel3 Ck,nodeAtLevel2 ni ,float

minconf)
2: for each node Cj in ni .childrendo
3: if Ck.BR3 =Cj .BR3 then
4: add Ck.conseqset3 to Cj .conseqset3;
5: return;
6: end if
7: end for
8: add Ck at end position p of ni .children
9: for each node Cj in ni .childrendo

10: if C j .GNMR= falsethen
11: d= Ck.BR3 ∧ C j .BR3;
12: if supp(d)=0then
13: continue;
14: end if
15: if d= Ck.BR3 then ⊲ Ck.BR3 < C j .BR3
16: add Cj .conseqset3 to Ck.conseqset3;
17: add j to Ck.part;
18: Cj .GNMR=true; ⊲ n j form node Ck
19: Ck.GNMR=false;
20: else ifd=Cj .BR3 then ⊲ n j .BR3 < nk.BR3
21: add Ck.conseqset3 to Cj .conseqset3;
22: add index p to Cj .part;
23: Ck.GNMR=true;
24: Cj .GNMR= false;
25: else ifsupp(d)/ni .supp2≥ minconfthen
26: node Ck j=
27: newNodeAtLevel3 (Cj .conseqset3 ∪
28: Ck.conseqset3,d,supp(d),false,{j,p});
29: Ck.GNMR=true; Cj .GNMR=true;
30: Insert(Ck j,ni ,minconf). ⊲ recursive call
31: else if∼ empty(Cj .part)then
32: ⊲ the node cannot produce new node from Cj
33: for each index q in Cj .partdo
34: compare Cq and Ck using four
35: cases of this procedure;
36: end for
37: end if
38: end if
39: end for
40: end procedure

Example, Fig. 3 shows the final tree after creating
all children nodes that will produce maximal high
confidence rule for up/down-expressed genes. In
this figure, the processes of inserting the children
nodes to nd (nd.ant set=d) should be as follows:
⋄ The child node Cac; Cac.GNMR=false will be
inserted without any comparison.
⋄ The child node Cb will be compared with Cac;
supp (Cb.BR3 ∧ Cac.BR3)/nd.supp2 ≥ minconf.

Then a new child Cabc is created;
Cabc.conseqset3=Cac.conseqset3 ∪
Cb.conseqset3, Cabc.BR3 = Cb.BR3 ∧ Cac.BR3,
Cb.supp=supp(Cb.BR3 ∧ Cac.BR3), Cabc.GNMR
= false, and Cabc.part = {1, 2}; 1 and 2 are the
indices of nodes Cac and Cb respectively.
Moreover, Cac.GNMR=true and Cb.GNMR=true.
⋄ The child node Cf will be compared with all
children nodes C of nd; C.GNMR=false. We find
that Cf is compared only with child Cabc, but Cf
did not form any result with Cabc, then Cf will be
compared with all children nodes that participated
to form Cabc. I.e., Cf will be compared with Cb
and Cac; Cf .BR3 < Cb.BR3, then
Cf .coneqset3=bf, Cf .part={2}; 2 is the index of
node Cb. But Cf and Cac not produce any child
node.

2.3 Generate all maximal high confidence
association rules for up/dow-expressed genes of
node ni Finally, after all children are created for
node ni (see Fig.3). All children nodes Ck ∈
ni .children with Ci .GNMR=true will be pruned,
because these nodes will produce non-maximal
rules (line 33 Algorithm2) then the procedure
GenerateMaximalHighRules (Line 34 Algorithm
2) is invoked. The procedure
GenerateMaximalHighRules (Algorithm 5)
checks each child node Ck ∈ ni .children;
Ck.GNMR=false in order for producing all
maximal high confidence association rules of node
ni . All extracted maximal high confidence
association rules from our algorithm shown in Fig
4. After creating all maximal high confidence
association rules from ni , ni with its children will
be pruned (Line 35 Algorithm2)

Algorithm 5 Procedure to Mine All Maximal High
Confidence Association Rules
1: procedureGENERATEMAXIMAL HIGHRULES(nodeAtLevel2

Ni)
2: for each Cj in Ni .childrendo
3: for each gene g∈ Ni .ant setdo
4: Form a rule on the following form
5: g→ Ni .ant set-{g} ∪ Ni .conseqset2 ∪
6: Cj .consqset3;
7: end for
8: end for
9: end procedure

Advantage of MCR-Miner algorithm

1. It mines all maximal high confidence association
rules.

2. Binary representation saves the memory and speeds
up the intersection processes. In addition, binary
representation makes MCR-Miner algorithm scans the
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Fig. 3: Tree Contains All Nodes Which Mine Maximal High Confidence Association Rules

a→ bcde:50% d → abce :50%

a→ cef :50% d → bef :50%

c→ abde:50% e→ bd :60%

c→ aef:50% e→ f :60%

b→ acde :66.66% e→ acd :60%

b→ def :66.66% f → acbde :100%

Fig. 4: Mined Maximal High Confidence Association Rules.

dataset only once and the measurements of confidence
easier.

3. The tree has 3 levels only; this saves both used space
and time.

4. It overcomes both the computational time and
memory explosion problems of column-enumeration
based method algorithms. Also, it is better than
row-enumeration based method algorithm like
MAXCONF [15]. As consequent, MCR-Miner is
faster than RERII [22], CHARM [23], CARPENTER
[12], Max-Miner [8], and Apriori [7].

5 Experimental Results

We present our experimental results that ran on PC with
Intel(R) core 2 Duo 3.20 GHz, 8.00 GB of RAM,
Windows 7 64 bit system using Java compiler JDK
jdk-7u3-windows-x64 and netbeans-6.7.1-ml-windows
IDE. MCR-Miner algorithm is compared with the more
related algorithm called MAXCONF [15] for mining
maximal high confidence association rules for
up-expressed genes only and also for up/down-expressed
genes. The two algorithms are tested over the microarray
dataset ”Hughes et al 2000” of 300 samples and 6316
genes [23] and ”Spellman et al. 1999” with 77 samples

and 6178 genes [24]. Fig. 5 a. shows the running time in
seconds of the two algorithms on the ”Hughese et al”
dataset; where each algorithm shows is represented with
two curves. The first one (MCR-Miner1 or MAXCONF1)
for mining rules for up-expressed genes only, the second
(MCR-Miner2 or MAXCONF2) for mining rules for
up/down-expressed genes. Fig.5 b. shows the number of
generated rules in both algorithms for up-expressed genes
and for up/down-expressed genes. It is clear that, the two
algorithms (MCR-Miner1 and MAXCONF1) or
(MCR-Miner2 and MAXCONF2) produce the same
number of the maximal high confidence association rules.
Similarly, Fig. 6 a. shows the running time in seconds
(Note that the y-axes of these graphs are in logarithmic
(10) scale) of the two algorithms on the ”Spellman et al”
dataset. Fig.6 b. shows the number of generated rules in
both algorithms. It is clear that, the two algorithms
produce the same number of the maximal high confidence
association rules. The comparative study shows that,
MCR-Miner algorithm is faster than MAXCONF
algorithm.

6 Conclusion

In this paper, we have proposed and implement a new
algorithm called MCR-Miner based on column
(gene)-enumeration method. MCR-Miner algorithm used
an efficient MAR-tree data structure with three levels
only. The MAR-tree is used to efficiently save the gene
with its binary representation. Using the binary
representation for each gene makes the intersection
processes easier and faster than the intersection processes
between samples in MAXCONF algorithm. Moreover,
the binary representation reduces the used memory;
where all association rules are fitted in the available
memory. The experimental results on the real microarray
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Fig. 5: MCR-Miner and MAXCONF Algorithms are Applied
on Hughes Dataset (MCR-Miner1 and MAXCONF1 for up-
expressed genes) and (MCR-Miner2 and MAXCONF2 for
Up/Down-Expressed Genes).

Fig. 6: MCR-Miner and MAXCONF Algorithms are Applied
on Hughes Dataset (MCR-Miner1 and MAXCONF1 for up-
expressed genes) and (MCR-Miner2 and MAXCONF2 for
Up/Down-Expressed Genes).

datasets showed that our algorithm is more efficient and
scalable than MAXCONF algorithm. Our proposed
algorithm has been applied to extract the two kinds of
maximal high association rules; the first one for
up-expressed genes, and the second one for
up/down-expressed genes.
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