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Abstract: Fixed Charge Transportation Problem (FCTP) is considered to be an NP-hard problem. Several genetic algorithms based on
spanning tree and Prfer number were presented. Most of such methods do not guarantee the feasibility of all the generated chromosomes
and need a repairing procedure for feasibility. Contrary to the findings inprevious works, this paper introduces an Artificial Immune
System for solving Fixed Charge Transportation Problems (AISFCTP).AISFCTP solves both balanced and unbalanced FCTP without
introducing a dummy supplier or a dummy customer. In AISFCTP a codingschema is designed and algorithms are developed for
decoding such schema and allocating the transported units. These are used instead of spanning tree and Prfer number. Therefore, a
repairing procedure for feasibility is not needed, i.e. all the generatedantibodies are feasible. Besides, some mutation functions are
developed and used in AISFCTP. Due to the significant role of mutation function on the AISFCTPs quality, its performances are
compared to select the best one. For this purpose, various problem sizes are generated at random and then a robust calibration is applied
using the relative percentage deviation (RPD) method and paired t-tests. In addition, two problems with different sizes are solved to
evaluate the performance of the AISFCTP and to compare its performance with most recent methods.
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1 Introduction

The fixed charge transportation problem (FCTP) is
considered to be an NP-hard problem[1]. Usually,
anFCTP is formulated and solved as a mixed integer
network programming problem. Theoretically, the FCTP
can be solved by any mixed integer programming;
however, these methods are not employed because of their
inefficient and expensive computation. Generally, solving
methods can be classified as exact or heuristic methods.
Exact methods for solving the FCTP include the cutting
planes method[2], the vertex ranking method [3], and the
branch-and-bound method [4], amongst others. Exact
methods are, however, generally not very useful when a
problem reaches a certain level, because they do not make
the most use of the special network structure of the FCTP.
Therefore, heuristic methods have been proposed, such as
the adjacent extreme point search method [5,6], and the
Lagrangian relaxation method [7,8]. Although these
methods are usually computationally efficient, the major

disadvantage of heuristic methods is the possibility of
terminating at a local optimum that is far distant from the
global optimum. Recently, some meta-heuristic methods
employed in the FCTP, such as the Tabu search method
for FCTPs[9], genetic algorithms (GA) based on a
spanning tree with Prfer numbers [10] and GAs based on
a matrix permutation representation [11], have improved
the effective coding of the spanning tree method based on
edge sets [12,19]. The GA creates a sorted set of edges to
encode the spanning tree, which is efficient compared
with evolution strategies at a certain level [13]. Moreover,
to improve solution quality, Hajiaghaei[14] addressed a
nonlinear FCTP using a spanning tree based GA.
Nevertheless, the quality of solutions attained largely
depends on the randomness.

On the other hand, Immune system is made up of
numerousB cells and T cells which are constantly
produced in the bone marrow and thymus, respectively.
The level of B cell simulation depends not only on the
success of the match to the antigen, but also on how well
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it matches other B cells in the immune system. If the
stimulation of B cells reaches a certain threshold, the B
cell is transformed into a blast that begins to differentiate
rapidly, producing clones that turn on a mutation
mechanism which generates mutations in the gene coding
for the antibody molecule, which is called somatic
hypermutation. However, if the stimulation level falls
below the threshold, the B cell will not replicate and will
die timely. Some special Artificial Immune Systems
(AIS) are developed to solve complex optimization
problems. One of them is aiNet [15,16] that inspired by
biological immune system. Opt-aiNet [15] is an
application of aiNetin function optimization.
Opt-aiNetconsiders the optimized objective function as
antigen, and the candidate solutions as antibodies. The
candidate antibodies evolve according to the matching
degree between antibodies and antigen that is fitness. The
better the matching between them, the less the mutation
degree of candidate antibody, and vice verse.AIS has used
in many applications such as job shop scheduling
problems [17,18]. To improve the solution quality of the
FCTP, this paper aims to introduce an Artificial Immune
System for solving both balanced and unbalanced
FCTP(AISFCTP) without introducing a dummy supplier
or a dummy customerand study the effect of its factors on
the performance. In addition to that two problems with
different sizes have been solved to evaluate the
performance of the AISFCTP and to compare its
performance with hybrid particle swarm method proposed
by El-Sherbiny and Alhamali, [24], and the GA proposed
in[14,19]. The rest of the paper is organized as follows: in
section 2, FCTP is described. In section 3, the proposed
AISFCTP is described, and in section 4 the parametric
analysis is carried out. Numerical experiments with
proposed AISFCTP are presented in section 5. Finally,
the conclusion and future work are reported in section 6.

2 Fixed charge transportation problem

Fixed Charge Transportation Problem (FCTP) can be
described as a distribution problem in which there arem
suppliers (warehouses or factories) andn customers
(destinations or demand points). Each of them suppliers
can ship to any of then customers at a shipping cost per
unit cij (unit cost for shipping from supplier i to customer
j) plus a fixed costfij , assumed for opening this route.
Each supplieri = 1, 2, ...,m has siunits of supply and
each customerj = 1, 2, ..., n demands dj units. The
objective is to determine which routes are to be opened
and the size of the shipment, so that the total cost of
meeting demand, given the supply constraints, is
minimized. The stander mathematical model of FCTP can
be represented as follows:

Min z =

m
∑

i=1

n
∑

j=1

(cijxij + fijyij) (1)

s.t

m
∑

i=1

yij ≥ bj forj = 1, ..., n (2)

n
∑

j=1

xij ≤ aj fori = 1, ...,m (3)

∀i, j xij ≥ 0

yij = 0 if xij = 0

yij = 1 if xij > 0

3 The Proposed Algorithm

In this paper, a typical immune algorithm structure is
utilized. The algorithm preserves the essential principles
of natural immune systems including the cloning,
mutation, and clonal selection. The pseudo code of the
main steps for the proposed algorithm is presented as
follows:
Step 1: Setg = 1.
Step 2: Create initial population ofl antibodiesAi using
the coding procedure.

Step 3: Seti = 1.
Step 4: CloneithAntibodyAiinthepopulationCN times.

Step 5: Mutate each of theCN clones.
Step 6: Evaluate each of theCN clones.
6.1. Apply decoding procedure.
6.2. Apply allocating procedure.

6.3. Calculate the fitness of each antibodyAi.
Step 7: Get the mutated clone with the Best Fitness(BF).
Step 8: IfBF fitness better than the fitness ofAi thenBF
replacesAi else go to step 9.

Step 9: Seti = i +1.
Step 10: Repeat from step 4 to step 9 untili > l.

Step 11: Calculate the affinity between each two antibodies
in the population.
Step 12: Select the antibodies for the new mutation based
on the affinity.
Step 13: Create new antibodies to substitute the removed
antibodies.

Step 14:g = g + 1.
Step 15: Repeat step 3 to step 14 untilg > number of
iterations.

The implementation of the immune algorithm is often
different for each problem handled. That is, the
representation and hence the creation of the solutions, the
mutation, and the affinity should be tailored and
implemented to fit the case at hand. For the FCTP, the
problem of interest in this research, the details of the main
steps are adapted in the following subsections.
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3.1 Coding procedure and initialization

One of the most important issues when designing the AIS
lies on its solution (antibody) representation. In order to
construct a direct relationship between the problem
domain and the AISFCTP, the proposed coding scheme
(antibody structure) consists of the set of all the integer
numbers in the interval [1,m+n] with any sequence and
without any repetition; where the length of scheme is
equal tom + n, wherem is the number of suppliers andn
is the number of customers. Therefore, the length of each
antibodyAi equal to the sum of the problem dimensions
and the suppliers numbers represented by the integer
numbers from 0 tom and the demands integer numbers
from m +1 to m + n. Figure 2 depicts a sample antibody
example, which is used to code a 4x5 FCTP such as
problem in Table 1. As shown in Figure 1, the cell values
are between 1 and 4+5. We can realize that any number
can not be repeated.

8 3 9 5 4 7 2 1 6

Figure 1. An Example of proposed antibody structure

The population is initialized randomly by applying the
coding procedurel times to createl antibodiesAi wherel
represents the population size. In this algorithm, the
Rand(1, m+ n) is a function that returns a random integer
number in the interval[1,m + n], Mod(x, y) is a function
that returns the reminder ofx when it is divided byy and
Q. Remove(k) is a function that eliminatekth element of
queueQ. The pseudo code for the coding procedure of
creating individual antibody is presented as follows:
Step 1: Create a Create collection listQ = {1, 2,. . . ,m +n
}.
Step 2: Setj = 1.
Step 3: Generate an integer number between 1 andm +n
and set it to variablec. Take the cellAi(j)
Step 4: Setk = Mod(c, Length(Q)); where Mod(c,
Length(Q)) is a function that returns the reminder ofc
when it is divided by length(Q).
Step 5: Add Q[k] to the antibodyAiin the positionj.
Step 6: Remove the itemk from the listQ
Step 7:j = j + 1.
Step 8: Repeat from step 3 to step 7 untilj > n + m .
Step 9: Return the antibodyAi , wherei =1,. . . ,l andl is
the population size

3.2 Decoding procedure

The decoding procedure is used to decode the antibody
Aiinto suppliers orderS and customers orderD. The
inputs of this procedure are the generated antibodyAi, the
number of suppliersm, and the number of customersn
while the results are the sequence of suppliersS and the
sequence of customersD. Figure 2 exhibits the results of

applying decoding procedure on the antibody presented in
Figure 1.

Figure 2. Illustrativx example of decodirg procedure

The pseudo code for the decoding procedure is
presented as follows:
Step 1: Setj = 1.
Step 2: Take the cellAi(j)
Step 3: IfAi(j) ?n then addAi(j) to the supplier orderS.
Step 4: IfAi(j) > n then addAi(j) to the customer orderD.
Step 5:j = j + 1.
Step 6: Repeat from step 2 to step 5 untilj > n + m .
Step 7: Return the supplier orderSand the customer order
D.

3.3 Allocating procedure

The Allocating procedure allocates the transported units
based on the order coming from decoding procedure. In
other words, this procedure finds a feasible solution for
FCTP based on the outputs of the decoding procedure.
This procedure guarantees the validity of both the first (2)
and the second (3) constraints. Also, this procedure can
be used to solve both balanced and unbalanced
transportation problems without introducing a dummy
supplier or a dummy customer. The pseudo code for the
allocating procedure is presented as follows:
Step 1: Seti equal to the first value in suppliers’ orderS
and setj equal to the first value in customers’ orderD. i.e.
i = S(1) andj = D(1).
Step 2: Ifai= bj then{setxijequal toai , removeS(1), and
removeD(1)}
Step 3: Ifai> bj then{setxijequal tobj , setai equal to
ai- bj , and removeD(1)}
Step 4: Ifai< bj then{setxijequal toai , setbj equal to
bj - ai, and removeS(1)}
Step 5: Repeat from step 1 to step 4 until (length of queue
S= 0 or length of queueD = 0).
Step 6: Returnxij ∀ i =1, 2,. . . ,m andj =1, 2,. . . ,n.

The inputs of the allocating procedure are the sequence
of suppliersSand the sequence of customersD (the output
of procedure 2). Based on these sequences the allocating
procedure allocates unitsXij(feasible solution) of FCTP.
Figure 3 presents an illustrative example of applying this
procedure.
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3.4 Evaluating the Solutions

Each antibody is evaluated to determine its fitness. As
mentioned above each antibody is decoded using the
decoding procedure and its result used as an input for the
allocating procedure. The solution resulted from the
allocating procedure is evaluated using objective function
(1). The value of objective (1) is assigned to the antibody
as its fitness.

3.5 Cloning and Mutation

Each antibody is cloned (copied) number of times,
determined by the number of Cloning Number (CN). The
clones are then mutated to get new antibodies that are
different from their parent.

In the proposed AISFCTP, six different mutation
methods are developed and tested.

Thefirst mutation method is a uniform random where
the number of swaps is defined by a random number in the
interval [1,MNS] whereMNS is a parameter representing
Max Numbers of Swaps. The number of swaps (NS) for
this mutation is represented by (4).

NS = Rand(1,MSN) (4)

The second MFis based on generating a random
number NS ∈ [1, n + m]. Therefore generating two
random numbers (j and k) representing two different
positions and swap them. This process is known as
two-point-swap. This two-point-swap is performedNS
times. The number of swaps (NS) for this mutation is
represented in (5)

NS= Rand(1,n + m) (5)

The third MF is based on a uniform random number
located in the range of 10% to 30% of the sum of problem
dimensions (n + m). The number of swaps (NS) for this
mutation is represented by (6), where r is a random
number in the interval [0.1, 0.3].

NS= Rand(1, r(m+n)) (6)

The fourth MF is based on time where more is the
time elapsed; less will be the number of swaps. First start
with applying random number of two-points-swap till a
pre-defined ratio of time is elapsed. After that the two
points swap MF is applied for the remaining time. The
time is represented by the ratio of current iteration to the
total number of iterations.

The fifth MFis based on applying either non uniform
swap times (the thirdMF) or Inverse SwapMFs. A
random numberr ∈[0, 1] is generated and ifr >
pre-defined valuev, then the non uniform swap time will
be applied; elseInverse Swap MFwill be applied. The
inverse swap MFs is applied through converting the order
of the antibody positions.

The remaining five mutation methods are functions of
two parameters. The first parameter is the non-uniform
factor based on which the number of swaps is determined.
The second parameter is the degree of non-uniformity (u).
All the functions are designed to be directly related withu
[24,25]

The sixth mutation methodis based on the fitness of
the solution. As the FCTP is a minimization problem, the
function is designed to be directly related with the
Normalized Fitness (NF) of the solution. That is,
solutions with normalized fitness closer to one, i.e.
relatively bad solutions, will be subject to more number
of swaps. This actually gives the chance for low affinity
solutions to mutate more in order to improve their
affinities. The number of swaps for this mutation function
is adapted with (7) and the normalized fitness of each
antibody is calculated using (8).

NS = MSN (1−(1−NF )u) (7)

NF =
LowestF itness − Fitness

LowestF itness − HighestF itness
(8)

The seventh mutationmethod is designed to be
inversely related with the ratio (T) of the current iteration
number (CIN) and the total number of iterations (TNI).
That is, the more the search goes, the less the number of
swaps is. This is really intuitive as in contrast to the first
stages of the search where a real exploration of the search
space through significant changes in the solutions are
required, at the last stages of the search fine tuning with
little changes of the supposed-to-be near-optimal
solutions is more reasonable. The number of swaps (NS)
for this mutation is represented in (9) where u is the
degree of non-uniformity.

NS = MNS(1−(Tu) , where T =
CIN

TNI
(9)

The eighth mutation methodis based on both the time
and the normalized fitness of the solution. It basically
uses the average of these two factors to decide the number
of swaps. Basically, the function is designed to be directly
related with the fitness but inversely related with the time.
The average of Time and normalized Fitness (TF) is
calculated as represented in (10) and the number of swaps
for this mutation is adapted with (11).

TF = 1
2 (NF + (1− T ) (10)

NS = MNS(1−(1−TF )u) (11)

In the ninth and the tenth mutation methods, we
include a random factor (R) so that the number of swaps
is based on the non-uniform factor, time and fitness
respectively, but with some randomization. The random
factorR takes values between zero and one. The functions
behave almost the same way as the original ones when
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Rand is close to zero. The closer theR to one is, the
closer the number of swaps to the max swaps no is. These
two mutation functions are suggested to allow the search
to escape from local optima by occasionally increasing
the number of swaps. The number of swaps for these two
mutations is adapted with (12) and (13), respectively.

NS = MSN × R(1−NF )u (12)

NS = MSN × R(Tu) (13)

3.6 Affinity Function

The selection of the antibodies from one generation to the
next one depends on some measurement of the affinity
(similarity) among all the antibodies of the current
generation. The calculations of the affinityAF between
each two antibodies are applied to prevent similar
solutions with high evaluation from being copied to the
next generation and hence dominating the search. This is
technically applied to reduce the chance of a premature
convergence to local optima.

The technique used to check the similarity between
every two antibodies in a population counts the number of
similar variables in the two solutions. The affinity
function of two antibodiesAj andAk is represented as in
(14).

AF (Aj , Ak) =
∑

i yi

where yi =

{

1 if the ith varible of Aj = the ith varible of Ak

0 Otherwise

(14)
The basic idea is that the more the number of similar

variables in the two antibodies is, the higher the similarity
between them. Based on a specific parameter, the
proposed algorithm eliminates those solutions that have
AF more than a specific parameter -Number of
Similarities (NS).

4 Parametric analysis

In this section, two techniques are used in order to
discover the best mutation function from the tenth
implemented. Which are the Relative Percentage
Deviation (RPD) and the paired sample t-test. Because
the scale of the objective functions in each problem is
different, they could not be used directly. Therefore, the
RPD is used for each combinatioin [21]. RPD is
calculated by using (15).

RPD =
A lgsol −Minsol

Minsol

× 100 (15)

where Algsol and Minsol are the obtained objective
values for each replication of trial in a given combination
and the obtained best solution, respectively. After

Table 1: Characteristics of FCT test problems
Problem
size

Total
supply

Rang of
variable
costs

Rang of fixed
costs

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

14×18 310 1 10 90 250
5×10 1,500 1 8 100 400
10×10 3,000 1 8 150 400
10×20 4,000 1 10 100 500
30×30 7,000 1 10 10 100

Table 2: The Comparitive results of theRPDfor theMF
MF RPDof the test problems (%) Mean

RPD
14x18 5x10 10x10 10x20 30x30

1 1.5 11.9 3.1 8.7 3.7 5.8
2 2 3.4 7.9 10.4 17.1 8.2
3 1.7 4.7 5.5 8 10.4 6.1
4 1.7 4.9 7.2 8.7 16.1 7.7
5 2.8 7 8.5 13.1 18.1 9.9
6 0.3 4.5 1.6 2.9 2.9 2.4
7 0.2 0.0 0.0 0.0 0.0 0.0
8 0.1 5.2 1.4 1.9 1.2 2.0
9 1 8.1 2.7 6 3 4.2
10 0 2.6 0.1 2.2 0.8 1.1

converting the objective values toRPDs, the meanRPD is
calculated for each trial. Five problems with different size
are generated and used to discover the best mutation
function from the implemented seven. The characteristics
of these problems are presented in Table1.

As illustrated in Table2, the quality of the results of
using the seventh mutation method is very close to the
tenth mutation method and both are superior to the others.
But the seventh mutation method is most superior.
Therefore, in the next section, the seventh mutation
method will be used in our comparison with the most
recent algorithms in the literatures.

In addition to the above, in order to statistically test
the significance of effectiveness of the results using
different mutation methods, the paired sample t-tests were
used to determine the significant differences in theRPD
values obtained using the ten MFs, for each of the pairs.
For the purpose of comparisons theRPDvalues obtained
using all the 50 problems were used. The results of the
tests are summarized in Table3.
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Inputs:  

D 4 5 1 3 2 Represents the Customers 
order 

     

S 3 4 2 1 Represents the Suppliers order 

Processing:  

 D1 D2 D3 D4 D5 ai Tai 

S1      57 57 

S2      93 93 

S3    50  50   

S4      75 75 

bj 88 57 24 73 33 275  

Tbj 88 57 24 23 33 225  

 

 D1 D2 D3 D4 D5 ai Tai 

S1      57 57 

S2      93 93 

S3    50  50   

S4    23  75 52 

bj 88 57 24 73 33 275  

Tbj 88 57 24   33 202  

 
 D1 D2 D3 D4 D5 ai Tai 

S1      57 57 

S2      93 93 

S3    50  50   

S4    23 33 75 19 

bj 88 57 24 73 33 275  

Tbj 88 57 24   169  

 
 D1 D2 D3 D4 D5 ai Tai 

S1      57 57 

S2      93 93 

S3    50  50   

S4 19   23 33 75   

bj 88 57 24 73 33 275  

Tbj 69 57 24   150  

 

 

 D1 D2 D3 D4 D5 ai Tai 

S1      57 57 

S2 69     93 24 

S3    50  50  

S4 19   23 33 75  

bj 88 57 24 73 33 275  

Tbj  57 24   81  

 
 D1 D2 D3 D4 D5 ai Tai 

S1      57 57 

S2 69  24   93  

S3    50  50  

S4 19   23 33 75  

bj 88 57 24 73 33 275  

Tbj  57    57  

 
 D1 D2 D3 D4 D5 ai Tai 

S1  57    57  

S2 69  24   93  

S3    50  50  

S4 19   23 33 75  

bj 88 57 24 73 33 275  

Tbj        

 

Output:  

The final allocation is:  

 D1 D2 D3 D4 D5 ai 

S1  57    57 

S2 69  24   93 

S3    50  50 

S4 19   23 33 75 

bj 88 57 24 73 33 275 

 
 

Figure 3. Illustrative example of applying allocation algorithm 
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Table 3: The p-values of paired sample t-tests of the mutation
functions (Basedvalues)

MF 10 9 8 7 6 5 4 3 2
1 0.004 0.018 0.003 0.000 0.000 0.012 0.003 0.006 0.003
2 0.280 0.057 0.170 0.000 0.315 0.023 0.372 0.055
3 0.049 0.016 0.166 0.002 0.615 0.016 0.071
4 0.739 0.029 0.292 0.000 0.513 0.011
5 0.020 0.714 0.016 0.000 0.002
6 0.639 0.011 0.882 0.000
7 0.000 0.000 0.000
8 0.348 0.020
9 0.029

Based on the data presented in Table3 and Figure 4, it
can be concluded at 0.01 level of significance the quality
of the results using the seventh MF is very close to the
tenth one and both are superior to the others. But the
seventh MF is most superior. This corroborates the results
obtained based on theRPD analysis. Therefore, in the
next section, the seventh MF will be used in comparing
with the by El-Sherbiny and Alhamali [23], M.
Hajiaghaei et al. [14] methods for solving FCTPs.

 

RPD

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

MFs

Figure 4. Fitted mean Plot forRPDat each MF

5 Numerical experiments

To evaluate the performance of the proposed AISFCTP
algorithm two problems with different sizes, previously
addressed by M. Hajiaghaei et al. [14] and El-Sherbiny
and Alhamali,[23] are solved, comparing with the
solution presented by them. The sizes of the problems are
4×5 and 5×10, respectively. The variable costs, and the
Fixed costs for first problem is given in Table4. The
parameters used for the proposed method in these
problems are optimally tuned parameters and operators
from experimental results.

Concerning the first problem, the obtained local
optimal solution from proposed algorithm is the same as
the solution found by M. Hajiaghaei et al. [14], and
El-Sherbiny & Alhamali [23], is equal to 1484 for this
problem. The transportation allocation matrix for this
solution is shown in Table5.

Table 4: Data of the first problem [14,23].
Plants ai Costumers

Shipping
costscij

Fixed costsfij

1 2 3 4 5 1 2 3 4 5
1 57 8 4 3 5 8 60 88 95 76 97
2 93 3 6 4 8 5 51 72 65 87 76
3 50 8 4 5 3 4 67 89 99 89 100
4 75 4 6 8 3 3 86 84 70 92 88

bj 88 57 24 73 33

Table 5: Transportation allocation matrix found in [14,23] and
the proposed AISFCTP for the first problem.

D1 D2 D3 D4 D5 ai

S1 57 57
S2 69 24 93
S3 50 50
S4 19 23 33 75
bj 88 57 24 73 33

Table 6: Data of the second problem [14][23]
Plant Costumers

Shipping costs cij
ai 1 2 3 4 5 6 7 8 9 10

1 157 8 4 3 5 2 1 3 5 2 6
2 293 3 3 4 8 5 3 5 1 4 5
3 150 7 4 5 3 4 2 4 3 7 3
4 575 1 2 8 1 3 1 4 6 8 2
5 310 4 5 6 3 3 4 2 1 2 1

bj 225 150 90 215 130 88 57 124 273 133
Fixedcosts fij
1 2 3 4 5 6 7 8 9 10

1 160 488 295 376 297 360 199 292 481 162
2 451 172 265 487 176 260 280 300 354 201
3 167 250 499 189 340 216 177 495 170 414
4 386 184 370 292 188 206 340 205 465 273
5 156 244 460 382 270 180 235 355 276 190

Concerning the second problem, the variable costs, the
fixed costs and the supplies and demands from each of the
plant 1 to 5 and for each customer 1to10 are given in Table
6.

The obtained local optimal solution for this problem
by the proposed algorithm is 6255, the solution found by
El-Sherbiny & Alhamali [23] is 6296, while the solution
found by M. Hajiaghaei et al. [14] is 6305. The
transportation allocation matrixes for Hajiaghaei et al.
[14] method, El-Sherbiny & Alhamali (2012) [23]
method and the proposed AISFCTP algorithm for the
second problem are shown in Tables7,8,9 respectively.
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Table 7: Transportation allocation matrix found by M.
Hajiaghaei et al. [14] for the 2nd problem [14].

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10ai

S1 90 67 157
S2 150 124 19 293
S3 5 88 57 150
S4 225 210 63 77 575
S5 273 37 310
bj 225 150 90 215 130 88 57 124 273 133

Table 8: Transportation allocation matrix for the 2nd problem
found in [23].

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10ai

S1 130 27 157
S2 15 90 124 64 293
S3 88 30 32 150
S4 225 135 215 575
S5 241 69 310
bj 225 150 90 215 130 88 57 124 273 133

Table 9: Transportation allocation matrix found by the proposed
AISFCTP for the 2nd problem.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10ai

S1 27 130 157
S2 106 63 124 293
S3 88 57 5 150
S4 225 44 215 91 575
S5 268 42 310
bj 225 150 90 215 130 88 57 124 273 133

6 Conclusion

This paper has proposed an artificial immune algorithm
for solving fixed charge transportation problem
(AISFCTP). AISFCTP solves both balanced and
unbalanced FCTP without introducing a dummy supplier
or a dummy customer. In AISFCTP the presented
schema, decoding and allocation procedures are used
instead of spanning tree used with genetic algorithm.
While using the spanning tree and Prfer number with the
GA may result in non-feasible solutions, the AISFCTP
guarantees the feasibility of all the generated solutions.In
addition, ten mutation functions are developed and used
in AISFCTP. Due to the significant role of mutation
function on the AISFCTP’s quality, its performances are
compared to select the best one. Also, the comparative
study of the AISFCTP with the hybrid particle swarm
method presented by El-Sherbiny & Alhamali [23], and
M. Hajiaghaei et al. [14] showed that the proposed
algorithm (AISFCT) is superior to the others. The
performance of AISFCTP and the solution quality prove
that AISFCTP is highly competitive and can be
considered as a viable alternative to solve FCTPs.

Future work includes further experimentation with
parameters of AISFCT, testing the proposed AISFCTP on

other real life problems, and investigating using other
metaheuristic techniques combined with the proposed
decoding and allocation procedures for solving problems.
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