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Abstract: In this work a new optimized symmetric eight-step embedded predictor-corrector method (EPCM) with minimal phase-lag
and algebraic order ten is presented. The method is based on the symmetric multistep method of Quinlan-Tremaine [1], with eight
steps and eighth algebraic order and is constructed to solve numerically IVPs with oscillatory solutions. We compare the new method
to some recently constructed optimized methods and other methods from theliterature. We measure the efficiency of the methods and
conclude that the new optimized method with minimal phase-lag is noticeably most efficient of all the compared methods and for all
the problems solved including the two-dimensional Kepler problem and the radial Schr̈odinger equation.
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1 Introduction

Equations of the form

y′′(x) = f(x, y), y(x0) = y0 and y′(x0) = y′0 (1)

are used to mathematical model problems in many areas
of quantum chemistry, physical chemistry and chemical
physics, astrophysics, astronomy, quantum mechanics,
celestial mechanics or electronics.
These ordinary differential equations are of second order
in which the derivativey′ does not appear explicitly.
Second-order ordinary differential equations have been
integrated numerically ever since the 17th century, in the
context of physical problems.
The multistep methods can be easily applied to obtain the
numerical solution of a m-th order initial value problem.
A publication by Quinlan and Tremaine [1] in 1990 was
revived the study of symmetric multistep methods. They
have constructed high order symmetric multistep methods
based on the work of Lambert and Watson (see [2]).
Many numerical methods have been developed for the

numerical solution of the initial value problem (1) (see
[17] - [19] and [21]-[25])

2 Phase-lag analysis of symmetric multistep
methods

For the numerical solution of the initial value problem (1),
multistep methods of the form

m
∑

i=0

aiyn+i = h2
m
∑

i=0

bif(xn+i, yn+i) (2)

with m steps can be used over the equally spaced
intervals {xi}mi=0 ∈ [a, b] and h = |xi+1 − xi|,
i = 0(1)m− 1, where|a0|+ |b0| 6= 0.
If bm = 0 the method is explicit, otherwise it is implicit.
If the method is symmetric thenai = am−i and
bi = bm−i, i = 0(1)⌊m

2 ⌋.
Method (2) is associated with the operator

L(x) =

m
∑

i=0

aiu(x+ ih)− h2
m
∑

i=0

biu
′′(x+ ih) (3)
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whereu ∈ C2.

Definition 1 The multistep method (2) is called algebraic
of orderp if the associated linear operatorL vanishes for
any linear combination of the linearly independent
functions1, x, x2, . . . , xp+1.

If u(x) has continuous derivatives of sufficiently high
order then

L(x) = C0u(x) + C1u
′(x)h+ · · ·+ Cqu

(q)(x)hq + . . . ,
(4)

the coefficientsCq are given

C0 =

m
∑

i=0

ai

C1 =
m
∑

i=0

i · ai

Cq =
1

q!

m
∑

i=0

iq · ai −
1

(q − 2)!

m
∑

i=0

iq−2 · bi, q = 2, 3 . . . .

The orderp is the unique integer for which

C0 = · · · = Cp+1 = 0, Cp+2 6= 0. (5)

A method is said to be consistent if this order is at least 1,
i.e., if

C0 = C1 = C2 = 0. (6)

In what follows we will assume that the method (2) is
consistent.

When a symmetric 2k-step method, that is for
i = −k(1)k, is applied to the scalar test equation

y′′ = −ω2y (7)

a difference equation of the form

k
∑

i=1

Ai(v)(yn+i + yn−i) +A0(v)yn = 0 (8)

is obtained, wherev = ωh, h is the step length andA0(v),
A1(v), . . ., Ak(v) are polynomials ofv.
The characteristic equation associated with (8) is

k
∑

i=1

Ai(v)(s
i + s−i) +A0(v) = 0 (9)

From Lambert and Watson (1976) we have the following
definitions:

Definition 2 A symmetric 2k-step method with
characteristic equation given by (9) is said to have an
interval of periodicity(0, v20) if, for all v ∈ (0, v20), the
rootssi, i = 1(1)2k of Eq. (9) satisfy:

s1 = eiθ(v), s2 = e−iθ(v), and |si| ≤ 1, i = 3(1)2k
(10)

whereθ(v) is a real function ofv.

Definition 3 For any method corresponding to the
characteristic equation (9) the phase-lag is defined as the
leading term in the expansion of

t = v − θ(v) (11)

Then if the quantityt = O(vq+1) as v → ∞, the order of
phase-lag is q.

Theorem 1[14] The symmetric2k-step method with
characteristic equation given by (9) has phase-lag orderq
and phase-lag constantc given by:

−cvq+2 +O(vq+4) =

2
k
∑

j=1

Aj(v) cos(jv) +A0(v)

2
k
∑

j=1

j2Aj(v)

(12)

The formula proposed from the above theorem gives us a
direct method to calculate the phase-lag of any symmetric
2k- step method.
In our case, the symmetric 8-step method has phase-lag
orderq and phase-lag constantc given by:

−cvq+2 +O(vq+4) = T0

32A4(v)+18A3(v)+8A2(v)+2A1(v)

(13)
where

T0 = 2A4(v) cos(4v) + 2A3(v) cos(3v)

+2A2(v) cos(2v) + 2A1(v) cos(v) +A0(v)

3 The Embedded Predictor-Corrector pair
form (EPCM)

3.1 The general m-step predictor-corrector pair
form

From J.D. Lambert (1991) we have that the general m-step
predictor-corrector or PC pair is:
m
∑

i=0

a∗i yn+i = h
m−1
∑

i=0

b∗i fn+i

m
∑

i=0

ai yn+i = h
m
∑

i=0

bi fn+i























(14)

Let the predictor and corrector defined by (14) have orders
p∗ andp respectively. The order of a PC method depend on
the gap betweenp∗ andp and onλ, the number of times
the corrector is called. Ifp∗ < p and λ =< p− p∗ − 1,
the order of the PC method isp∗ + λ(< p) [4] .
We consider the pair of linear multistep methods:
m
∑

i=0

a∗i yn+i = h2
m−1
∑

i=0

b∗i fn+i

m
∑

i=0

ai yn+i = h2
m
∑

i=0

bi fn+i























(15)
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where |a∗0| + |b∗0| 6= 0, |a0| + |b0| 6= 0, b∗m = 0 and
bm 6= 0.
Without loss of generality we assumea∗m = 1 andam = 1
we can write:

yn+m +
m−1
∑

i=0

a∗i yn+i = h2
m−1
∑

i=0

b∗i f(xn+i, yn+i)

yn+m +
m−1
∑

i=0

aiyn+i = h2

(

bmf(xn+m, yn+m) +
m−1
∑

i=0

bif(xn+i, yn+i)
)







































(16)

and we have:

yn+m = −
m−1
∑

i=0

a∗i yn+i+

+h2
m−1
∑

i=0

b∗i f(xn+i, yn+i)

yn+m = −
m−1
∑

i=0

aiyn+i + h2bmf(xn+m, yn+m)+

+h2
m−1
∑

i=0

bif(xn+i, yn+i)























































(17)

From this pair, a general predictor-corrector ( PC ) pair
form, for the numerical integration of special second-order
initial-value problems (1) is formally defined as follows:

y∗n+m = −
m−1
∑

i=0

a∗i yn+i+

+h2
m−1
∑

i=0

b∗i f(xn+i, yn+i)

yn+m = −
m−1
∑

i=0

aiyn+i + h2bmf(xn+m, y∗n+m)+

+h2
m−1
∑

i=0

bif(xn+i, yn+i)























































(18)

where |a∗0|+ |b∗0| 6= 0 , |a0|+ |b0| 6= 0 andbm 6= 0.
If the method is symmetric thena∗i = a∗m−i, b

∗
i = b∗m−i,

ai = am−i andbi = bm−i, i = 0(1)⌊m
2 ⌋.

From (18) for m = 8, we get the form of the symmetric
predictor-corrector eight-step method:

y∗4 = −
(

y−4 + a∗3 (y3 + y−3) + a∗2 (y2 + y−2)+

+a∗1 (y1 + y−1) + a∗0y0

)

+h2
(

b∗3 (f3 + f−3) + b∗2 (f2 + f−2)+

+b∗1 (f1 + f−1) + b∗0f0

)

y4 = −
(

y−4 + a3 (y3 + y−3) + a2 (y2 + y−2)+

+a1 (y1 + y−1) + a0y0

)

+h2
(

b4 (f4 + f−4) + b3 (f3 + f−3)+

+b2 (f2 + f−2) + b1 (f1 + f−1) + b0f0

)























































































(19)

where yi = y(x + ih), fi = f(x + ih, y(x + ih)), i =
−4(1)3, f4 = f(x+ 4h, y∗4) andh is the step length.
The characteristic equation (9) becomes
4

∑

i=1

Ai(v)(s
i + s−i) +A0(v) = 0 (20)

whereAi(v) = ai + (bi − a∗i b4) v
2 − b∗i b4 v

4, i =
0(1)4, a4 = a∗4 = 1, b∗4 = 0.

3.2 The m-step embedded predictor-corrector
(EPCM) pair form

From (18) for ai = a∗i , i = 0(1)m− 1, we get:

y∗n+m = −
m−1
∑

i=0

a∗i yn+i + h2
m−1
∑

i=0

b∗i f(xn+i, yn+i)

yn+m = −
m−1
∑

i=0

a∗i yn+i + h2bmf(xn+m, y∗n+m)+

+h2
m−1
∑

i=0

bif(xn+i, yn+i)







































(21)

where|a∗0|+ |b∗0| 6= 0 , |a∗0|+ |b0| 6= 0 andbm 6= 0.
If the method is symmetric thena∗i = a∗m−i, b

∗
i = b∗m−i

andbi = bm−i, i = 0(1)⌊m
2 ⌋.

For the coefficientsb∗i andbi of the above general m-step
predictor-corrector pair form (21), we can write:

bi = bi + 0 = bi − b∗i + b∗i = (bi − b∗i ) + b∗i ,

if we call βi = bi − b∗i , i = 0(1)m− 1, then we get:

bi = βi + b∗i , (22)

so we have:

h2
m−1
∑

i=0

bif(xn+i, yn+i) =

= h2
m−1
∑

i=0

(βi + b∗i )f(xn+i, yn+i) = (23)

h2
m−1
∑

i=0

βif(xn+i, yn+i) +

+h2
m−1
∑

i=0

b∗i f(xn+i, yn+i)

and we can write:

y∗n+m = −
m−1
∑

i=0

a∗i yn+i + h2
m−1
∑

i=0

b∗i f(xn+i, yn+i)

yn+m = −
m−1
∑

i=0

a∗i yn+i + h2bmf(xn+m, y∗n+m)

+h2
m−1
∑

i=0

βif(xn+i, yn+i)+

+h2
m−1
∑

i=0

b∗i f(xn+i, yn+i)























































(24)
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or

y∗n+m = −
m−1
∑

i=0

a∗i yn+i + h2
m−1
∑

i=0

b∗i f(xn+i, yn+i)

yn+m = −
m−1
∑

i=0

a∗i yn+i + h2
m−1
∑

i=0

b∗i f(xn+i, yn+i)

+h2bmf(xn+m, y∗n+m) + h2
m−1
∑

i=0

βif(xn+i, yn+i)







































(25)

where|a∗0|+ |b∗0| 6= 0 , |a∗0|+ |β0| 6= 0 andbm 6= 0.
From m-step predictor-corrector pair (15) we have that
b∗m = 0 andbm 6= 0,
so if we callβm = bm − b∗m, then we get:

βm = bm − b∗m = bm − 0 = bm 6= 0 (26)

Finally for:

βi = bi − b∗i , i = 0(1)m (27)

the m-step predictor-corrector pair form (25) becomes:

y∗n+m = −
m−1
∑

i=0

a∗i yn+i + h2
m−1
∑

i=0

b∗i f(xn+i, yn+i)

yn+m = y∗n+m + h2
m
∑

i=0

βif(xn+i, yn+i)























(28)
where|a∗0|+ |b∗0| 6= 0, |a∗0|+ |β0| 6= 0.

We call the above method Embedded Predictor-Corrector
Method (EPCM), in the sense that the predictor method is
fully contained in the corrector method (see [8]).

If the method is symmetric thena∗i = a∗m−i, b
∗
i = b∗m−i

andβi = βm−i, i = 0(1)⌊m
2 ⌋.

4 Construction of the new embedded
predictor-corrector (EPCM) method

From the form (2) and without loss of generality we
assumeam = 1 and we can write:

yn+m +

m−1
∑

i=0

aiyn+i = h2
m
∑

i=0

bif(xn+i, yn+i),

finally we get:

yn+m = −
m−1
∑

i=0

aiyn+i + h2
m
∑

i=0

bif(xn+i, yn+i) (29)

If the method is symmetric thenai = am−i and
bi = bm−i, i = 0(1)⌊m

2 ⌋.

4.1 The explicit (predictor) method - with
phase-lag order infinite

From the form (29) with m = 8 andb8 = 0 we get the
form of the eight-step symmetric explicit methods:

y4 = −
(

y−4 + a3 (y3 + y−3) + a2 (y2 + y−2)+

+a1 (y1 + y−1) + a0y0

)

+

+h2
(

b3 (f3 + f−3) + b2 (f2 + f−2)+

+b1 (f1 + f−1) + b0f0

)

.

(30)

whereyi = y(x + ih), fi = f(x + ih, y(x + ih)), andh
is the step length.
The characteristic equation (9) becomes

4
∑

i=1

Ai(v)(s
i + s−i) +A0(v) = 0 (31)

whereAi(v) = ai + v2 bi, i = 0(1)4, a4 =
1, b4 = 0.

From (30) with

a3 = −2, a2 = 2, a1 = −1, a0 = 0,

b3 = 17671
12096 , b2 = − 23622

12096 ,

b1 = 61449
12096 , b0 = − 50516

12096 ,

(32)

we obtain the multistep symmetric method of
Quinlan-Tremaine [1], with eight steps, eighth algebraic
order, eighth order of phase-lag and interval of periodicity
(0, v20), wherev20 = 0.52.
From (30) and by keeping the sameai coefficients (32)
and by nullifying the phase-lag, we get:

a∗3 = −2, a∗2 = 2, a∗1 = −1, a∗0 = 0,
b∗0 = −20 b∗3 +

601
24 , b∗1 = 15 b∗3 − 101

6 ,
b∗2 = −6 b∗3 +

109
16 , b∗3 = A

B
where
A = −192 (cos (v))

4
+ 192 (cos (v))

3
+

+
(

96− 327 v2
)

(cos (v))
2

+
(

−120 + 404 v2
)

cos (v)− 137 v2 + 24

B = 96 v2 (cos (v)− 1)
3

wherev = ω h, ω is the frequency andh is the step length.

(33)

For small values ofv the above formulae are subject to
heavy cancelations.
In this case the following Taylor series expansion must be
used:

b∗3 = 17671
12096 − 45767

725760 v
2 + 164627

47900160 v
4 − 520367

15850598400 v
6+

+ 76873
89669099520 v

8 − 9190171
3201186852864000 v

10−
− 6662921

34060628114472960 v
12 − 2866814089

204363768686837760000 v
14−

− 10228341391
16921320047270166528000 v

16−
− 1074205110763

48394975335192676270080000 v
18−

− 1485941749021
2032588964078092403343360000 v

20 + . . . ,
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wherev = ω h, ω is the frequency andh is the step length.
The local truncation error of the above method is given by:

L.T.E. =
45767

725760
h10

(

y(10)n + y(8)n ω2
)

+O(h12) (34)

The above optimized explicit symmetric multistep
method (33) has eight steps, eight algebraic order, infinite
order of phase-lag (phase-fitted) (see [6]) and an interval
of periodicity(0, v20), wherev20 = 0.643168.

4.2 The implicit method (corrector)

From (29) for m = 8, we get the form of the symmetric
implicit eight-step method:

y4 = −y−4 − a3(y3 + y−3)− a2(y2 + y−2)−
−a1(y1 + y−1) + h2

(

b4(f
∗
4 + f−4) + b3(f3 + f−3)

+b2(f2 + f−2) + b1(f1 + f−1) + b0f0

)

.

whereyi = y(x + ih), fi = f(x + ih, y(x + ih)), f∗
4 =

f(x+ 4h, y∗4) andh is the step length.
The characteristic equation (9) becomes
4

∑

i=1

Ai(v)(s
i + s−i) +A0(v) = 0 (35)

where

Ai(v) = αi + v2 βi, i = 0(1)4, α4 = 1.

From (35) and by keeping the sameai coefficients (32) (
a4 = 1, a3 = −2, a2 = 2, a1 = −1, a0 = 0) we satisfy
as many algebraic equations as possible, but we keepb4
free. After achieving 10th algebraic order, the coefficients
now depend onb4:

b0 = 70 b4 − 12629
3024 , b1 = −56 b4 +

20483
4032 ,

b2 = 28 b4 − 3937
2016 , b3 = −8 b4 +

17671
12096

(36)

and the phase-lag becomes:

PL = C
D
, where

C = 24192 (cos (v))
4
+ 24192 (cos (v))

4
v2b4+

+17671 (cos (v))
3
v2 − 96768 (cos (v))

3
v2b4−

−24192 (cos (v))
3
+ 14152 (cos (v))

2
v2b4−

−12096 (cos (v))
2 − 11811 (cos (v))

2
v2+

+2109 cos (v) v2 + 15120 cos (v)−
−96768 cos (v) v2b4 − 409 v2 + 24192 v2b4−
−3024 and
D = 1260

(

12 + 25 v2
)

.

(37)

We expand the phase-lag using the Taylor series and
nullify the leading term (that is the coefficient ofh10).
After that we obtain the implicit symmetric multistep
method:

a4 = 1, a3 = −2, a2 = 2, a1 = −1,

a0 = 0 b0 =
17273

72576
, b1 =

280997

181440
, (38)

b2 = − 33961

181440
, b3 =

173531

181440
, b4 =

45767

725760

The local truncation error of the above method is given by:

L.T.E. = − 58061

31933440
h12y(12)n +O(h14) (39)

The above optimized implicit symmetric multistep
method (38), has eight steps, tenth algebraic order, tenth
order of phase-lag (see [7]) and interval of periodicity
(0, v20), wherev20 = 2.39021991.

4.3 The new EPCM method with minimal
phase-lag

If the coefficientsb∗i , i = 0(1)m in pair of linear multistep
methods (15), depend onv, (b∗i = b∗i (v)), then from (27)
we getβi = bi− b∗i = bi− b∗i (v) = βi(v), i = 0(1)m. So
the embedded predictor-corrector pair form (EPCM) (28)
becomes:

y∗n+m = −
m−1
∑

i=0

a∗i yn+i + h2
m−1
∑

i=0

b∗i (v)f(xn+i, yn+i)

yn+m = y∗n+m + h2
m
∑

i=0

βi(v)f(xn+i, yn+i)























(40)
where

|a∗0|+ |b∗0(v)| 6= 0, |a∗0|+ |β0(v)| 6= 0,

βi(v) = bi − b∗i (v), i = 0(1)m, b∗m(v) = 0. (41)

In the above pair form the coefficientsb∗i (v) andβi(v),
depend onv (where i = 0(1)m, v = ω h, ω is the
frequency andh is the step length).
If the method is symmetric thena∗i = a∗m−i,
b∗i (v) = b∗m−i(v) andβi(v) = βm−i(v), i = 0(1)⌊m

2 ⌋.
From (40) for m = 8, we get the form of the symmetric
embedded predictor-corrector method (EPCM) with
eight-steps:

y∗4 = −
(

y−4 + a∗3 (y3 + y−3) + a∗2 (y2 + y−2)+

+a∗1 (y1 + y−1) + a∗0y0

)

+h2
(

b∗3(v) (f3 + f−3) + b∗2(v) (f2 + f−2)+

+b∗1(v) (f1 + f−1) + b∗0(v)f0

)

y4 = y∗4 + h2
(

β4(v) (f4 + f−4) + β3(v) (f3 + f−3)+

+β2(v) (f2 + f−2) + β1(v) (f1 + f−1) + β0(v)f0

)































































(42)
whereyi = y(x + ih), fi = f(x + ih, y(x + ih)), i =
−4(1)3, f4 = f(x+ 4h, y∗4) andh is the step length.
The characteristic equation (9) becomes
4

∑

i=1

Ai(v)(s
i + s−i) +A0(v) = 0 (43)

where
Ai(v) = a∗i + v2(βi(v) − a∗i β4(v)) − v4b∗i (v)β4(v), i =
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0(1)4, a∗4 = 1, b∗4(v) = 0.
We derive the coefficientsβi(v) = bi − b∗i (v), i = 0(1)4,
from (33) and (38) as follow:

β0(v) = 20b∗3(v)− 1800151
72576 , β1(v) =

3335237
181440

−15 b∗3(v), β2(v) = 6 b∗3(v)− 1270021
181440 ,

β3(v) =
173531
181440 − b∗3(v), β4(v) =

45767
725760

(44)

From (42), (33) and (44) a new eight-step symmetric
embedded predictor-corrector method (EPCM) obtained:

y∗4 = −y−4 + 2(y3 + y−3)−
−2(y2 + y−2) + (y1 + y−1)+

+h2
(

b∗3(v)(f3 + f−3)+

+( 10916 − 6 b∗3(v))(f2 + f−2)+
+(15 b∗3(v)− 101

6 )(f1 + f−1)+

+( 60124 − 20 b∗3(v))f0

)

y4 = y∗4 + h2
(

45767
725760 (f

∗
4 + f−4)+

+( 173531181440 − b∗3(v))(f3 + f−3)+
+(6 b∗3(v)− 1270021

181440 )(f2 + f−2)+
+( 3335237181440 − 15 b∗3(v))(f1 + f−1)+

+(20b∗3(v)− 1800151
72576 )f0

)



























































































(45)

whereyi = y(x + ih), fi = f(x + ih, y(x + ih)), f∗
4 =

f(x+ 4h, y∗4), b
∗
3(v) =

A
B
,

A = −192 (cos (v))
4
+ 192 (cos (v))

3
+

+
(

96− 327 v2
)

(cos (v))
2
+

+
(

−120 + 404 v2
)

cos (v)− 137 v2 + 24

B = 96 v2 (cos (v)− 1)
3

v = ω h, ω is the frequency andh is the step length.

For small values ofv the above formulae are subject to
heavy cancelations.
In this case the following Taylor series expansion must be
used:
b∗3(v) =

17671
12096 − 45767

725760 v
2 + 164627

47900160 v
4−

− 520367
15850598400 v

6 + 76873
89669099520 v

8−
− 9190171

3201186852864000 v
10 − 6662921

34060628114472960 v
12−

− 2866814089
204363768686837760000 v

14−
− 10228341391

16921320047270166528000 v
16−

− 1074205110763
48394975335192676270080000 v

18−
− 1485941749021

2032588964078092403343360000 v
20 + . . . ,

where v = ω h, ω is the frequency andh is the step
length.
In order to find the Local Truncation Error(LTE), we
expressy±i, i = 1(1)4 andf±j , j = 0(1)4 via Taylor
series and we substitute in (33). Based on this procedure
we obtain the following expansion for the LTE:

L.T.E. =
( 12506213339

5794003353600
y(12)n +

+
2094618289

526727577600
y(10)n ω2

)

h12 +O(h14) (46)

The above method (EPCM) (45) has eight steps, tenth
algebraic order, tenth order of phase-lag and an interval of
periodicity(0, v20) wherev20 = 1.3073505.

5 Numerical results

5.1 The problems

The efficiency of the new optimized symmetric embedded
eight-step predictor-corrector method will be measured
through the integration of five initial value problems with
oscillatory solution.

5.1.1 Duffing’s Equation

y′′ = −y − y3 + 0.002 cos(1.01 t),

y(0) = 0.200426728067, y′(0) = 0, (47)

with t ∈ [0, 1000π].

Theoretical solution:
y(t) = 0.200179477536 cos(1.01 t) + 2.46946143 · 10−4

cos(3.03 t) + 3.04014 · 10−7 cos(5.05 t)
+ 3.74 · 10−10 cos(7.07 t) + ... .
Estimated frequency:w = 1.

5.1.2 Nonlinear Equation

y′′ = −100 y+ sin(y), y(0) = 0, y′(0) = 1 t ∈ [0, 20π].
(48)

The theoretical solution is not known, but we use
y(20π) = 3.92823991 · 10−4.
Estimated frequency:w = 10.

5.1.3 Orbital Problem by Stiefel and Bettis

The ”almost” periodic orbital problem studied by [5] can
be described by

y′′ + y = 0.001 ei x, y(0) = 1, y′(0) = 0.9995 i, y ∈ C,
(49)

or equivalently by

u′′ + u = 0.001 cos(x), u(0) = 1, u′(0) = 0,
v′′ + v = 0.001 sin(x), v(0) = 0, v′(0) = 0.9995.

(50)
The theoretical solution of the problem (49) is given
below:

y(x) = u(x) + i v(x), u, v ∈ R
u(x) = cos(x) + 0.0005x sin(x),
v(x) = sin(x)− 0.0005x cos(x).

The system of equations (50) has been solved for
x ∈ [0, 1000π].
Estimated frequency:w = 1.
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5.1.4 Two-dimensional Kepler problem (Two-Body
Problem)

y′′ = − y

(y2 + z2)
3

2

, z′′ = − z

(y2 + z2)
3

2

, (51)

with y(0) = 1 − e, y′(0) = 0, z(0) = 0, z′(0) =
√

1+e
1−e

, t ∈ [0, 1000π], where e is the eccentricity.

The theoretical solution of this problem is given below:
y(t) = cos(u)− e

z(t) =
√
1− e2 sin(u).

where u can be found by solving the equation
u− e sin(u)− t = 0.
We used the estimationw = 1

(y2+z2)
3

4

as frequency of the

problem.

5.1.5 Schr̈odinger’s equation - Resonance problem

The radial time-independent Schrödinger equation can be
written as:

y′′(x) =

(

l(l + 1)

x2
+ V (x)− E

)

y(x) (52)

where l(l+1)
x2 is the centrifugal potential, V (x) is the

potential, E is theenergyandW (x) = l(l+1)
x2 + V (x) is

theeffective potential. It is valid that lim
x→∞

V (x) = 0 and

therefore lim
x→∞

W (x) = 0.

We considerE > 0 and divide[0,∞) into subintervals
[ai, bi] so thatW (x) is a constant with valueWi. After
this the problem (52) can be expressed by the
approximationy′′i = (W − E) yi, whose solution is:

yi(x) = Ai exp
(
√

W − E x
)

+

+Bi exp
(

−
√

W − E x
)

, Ai, Bi ∈ R.
(53)

We will integrate problem (52) with l = 0 at the interval
[0, 15] using the well known Woods-Saxon potential:

V (x) =
u0

1 + q
+

u1 q

(1 + q)2
, q = exp

(

x− x0

a

)

, (54)

whereu0 = −50, a = 0.6, x0 = 7

and u1 = −u0

a

and with boundary conditiony(0) = 0. The potential
V (x) decays more quickly thanl (l+1)

x2 , so for largex
(asymptotic region) the Schrödinger equation (52)
becomes

y′′(x) =

(

l(l + 1)

x2
− E

)

y(x) (55)

The last equation has two linearly independent solutions
k x jl(k x) and k xnl(k x), where jl and nl are the

spherical BesselandNeumannfunctions.
Whenx → ∞ the solution takes the asymptotic form

y(x) ≈ Ak x jl(k x)−B k xnl(k x)
≈ D[sin(k x− π l/2) + tan(δl) cos (k x− π l/2)],

(56)
whereδl is calledscattering phase shiftand it is given by
the following expression:

tan (δl) =
y(xi)S(xi+1)− y(xi+1)S(xi)

y(xi+1)C(xi)− y(xi)C(xi+1)
, (57)

where S(x) = k x jl(k x), C(x) = k xnl(k x) and
xi < xi+1 and both belong to the asymptotic region.
Given the energy we approximate the phase shift, the
accurate value of which isπ/2 for the above problem.
We will use for the energy the values:E = 341.495874
andE = 989.701916.
As for the frequencyω we will use the suggestion of
Ixaru and Rizea (see [26] and [27]):

ω =

{√
E + 50, x ∈ [0, 6.5]√
E, x ∈ [6.5, 15]

(58)

5.2 The methods

We have used several multistep methods for the integration
of the five test problems. These are:

–The new optimized eight-step symmetric embedded
predictor-corrector method (EPCM) with tenth
algebraic order and minimal phase-lag (45) (New
EPCM 8-step)

–The symmetric 10-step method of Quinlan-Tremaine
of algebraic order ten [1] (Q-T 10step)

–The optimized symmetric 8-step method (33) of
algebraic order eight and infinite order of phase-lag
(phase-fitted) [6] (Q-T 8step PF)

–The symmetric 8-step method of Quinlan-Tremaine of
algebraic order eight [1] (Q-T 8step)

–The 8-step predictor-corrector method Störmer-Cowell
[2] of algebraic order eight: ”S-C 8step”

–The 10-stage exponentially-fitted method of Simos and
Aguiar of algebraic order nine [11] (Simos- Aguiar)

–The symmetric 6-step method of Jenkins of algebraic
order six [9] (Jenkins-6step)

–The 2-step, 3-stage exponentially-fitted
predictor-corrector method of Simos and Williams of
algebraic order six [10] (Si-Wi EF1)

–The 3-step, 3-stage exponentially-fitted
predictor-corrector method of Psihoyios and Simos of
algebraic order five [12] (Psi-Si EF2)

–The 4-step predictor-corrector method Milne-Simpson
of algebraic order four (M-S PC 4)

–The 4-step predictor-corrector method
Adams-Bashforth - Moulton of algebraic order four
(ABM PC 4).
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5.3 Comparison

We present theaccuracyof the tested methods expressed
by the− log10(max. error over interval) or− log10(error
at the end point), depending on whether we know the
theoretical solution or not, versus the CPU time.
In Table 1 we see the comparison of the new optimized
eight-step symmetric embedded predictor-corrector
method (EPCM) (45) and the multistep symmetric
method of Quinlan-Tremaine [1] with eight steps for all
the problems solved.
In Figure1 we see the results for the Duffing’s equation,
in Figure 2 the results for the Nonlinear equation, in
Figure3 the results for the Stiefel-Bettis almost periodic
problem, in Figures 4 and 5 the results for the
two-dimensional Kepler problem for eccentricities e=0.05
and e=0.8 and in Figures6 and7 we see the results for the
resonance problem for energiesE = 989.701916 and
E = 341.495874..
Among all the methods used, the new optimized
eight-step symmetric embedded predictor-corrector
method (EPCM) with tenth algebraic order and minimal
phase-lag is the most efficient.
The interval of periodicity of the new optimized
eight-step symmetric embedded predictor-corrector
method (EPCM) with tenth algebraic order is about 2.5
times larger than the multistep symmetric method of
Quinlan-Tremaine with eight steps and eighth algebraic
order and about two times larger than the optimized
symmetric 8-step method (33) with eight steps and eighth
algebraic order.
The new optimized eight-step symmetric embedded
predictor-corrector method (EPCM) with tenth algebraic
order and minimal phase-lag can achieve the required
accuracy with a step-size, four times larger than the
multistep symmetric method of Quinlan-Tremaine with
eight steps and eighth algebraic order for the
Stiefel-Bettis almost periodic problem, three times larger
than the multistep symmetric method of
Quinlan-Tremaine with eight steps and eighth algebraic
order for the resonance problem and two times larger than
the multistep symmetric method of Quinlan-Tremaine
with eight steps and eighth algebraic order for the other
problems solved.
An interesting remark is that the new optimized eight-step
symmetric embedded predictor-corrector method (EPCM)
with tenth algebraic order and minimal phase-lag, is more
efficient than the multistep symmetric method of
Quinlan-Tremaine, with ten steps and tenth algebraic
order.

6 Conclusions

We have developed a new optimized eight-step symmetric
embedded predictor-corrector method (EPCM) (45) from
the form (40).
The new method (EPCM) (45) has eight steps, tenth

algebraic order, tenth order of phase-lag and it can be
used to solve numerically initial-value problems with
oscillatory solutions, for which we know or we can
estimate the frequency.
The form (40) has the advantage that reduces the
computational expense if the additions on the factor
m−1
∑

i=0

aiyn+i, are done twice.

We have applied the new optimized eight-step symmetric
embedded predictor-corrector method (EPCM) with tenth
algebraic order (45) along with a group of several
methods from the literature to five oscillatory problems.
We concluded that that the new optimized eight-step
symmetric embedded predictor-corrector method (EPCM)
with tenth algebraic order and minimal phase-lag (45) is
noticeably more efficient compared to other methods.

Table 1 Comparison for CPU time, Step Length and Maximum
Error
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