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Abstract: In this work a new optimized symmetric eight-step embedded predictoeator method (EPCM) with minimal phase-lag
and algebraic order ten is presented. The method is based on the signmétistep method of Quinlan-Tremaing][ with eight
steps and eighth algebraic order and is constructed to solve numericBywith oscillatory solutions. We compare the new method
to some recently constructed optimized methods and other methods frditetatire. We measure the efficiency of the methods and
conclude that the new optimized method with minimal phase-lag is noticealdy effient of all the compared methods and for all
the problems solved including the two-dimensional Kepler problem andithal ISchodinger equation.
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1 Introduction numerical solution of the initial value probleni)((see
[17] - [19] and [21]-[23])

Equations of the form

y'(z) = f(z,y), y(@o) =yo and ¥ (z0) =4, (1) 2 Phase-lag analysis of symmetric multistep
methods

are used to mathematical model problems in many areas ) ) o
of quantum chemistry, physical chemistry and chemicaIFo”_he numerical solution of the initial value problef),(
physics, astrophysics, astronomy, quantum mechanicgnultistep methods of the form
celestial mechanics or electronics. m m
These ordinary differential equations are of second order > aiynii =02 bif (@i ynti) (2)
in which the derivative)’ does not appear explicitly. i=0 i=0

Second-order ordinary differential equations have beenii, ,, steps can be used over the equally spaced
integrated numerically ever since the 17th century, in thehteryals {z;}", € [a,b] and h =
context of physical problems. i=0(1)m — 12,:2Nhere\a0\ + |bo| 0.
The multistep methods can be easily applied to obtain thgt ;, () the method is explicit, otherwise it is implicit.
numerical solution of a m-th order initial value problem. ¢ ine method is symmetric them; = a,,_; and
A publication by Quinlan and Tremaind][in 1990 was by = by, i =0(1)[2].

revived the study of symmetric multistep methods. Theypethod ) is associated with the operator

have constructed high order symmetric multistep methods ™

based on the work of Lambert and Watson (& [ L(z) =S awu(z +ih) — h? i b (x + ih) ©)
Many numerical methods have been developed for the ’

|9€i+1 - xi\,

=0 =0
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whereu € C2. Definition 3 For any method corresponding to the
characteristic equatior®) the phase-lag is defined as the

Definition 1 The multistep method?] is called algebraic . . .
leading term in the expansion of

of orderyp if the associated linear operatbrvanishes for
any linear combination of the linearly independent t=v—0(v) (11)
functions1, z, 22, ..., «Pth

Then if the quantity = O(v*!) as v — oo, the order of

If u(xz) has continuous derivatives of sufficiently high phase-lag is q.

order then
Theorem 1[14] The symmetric2k-step method with
L(z) = Cou(x) + Cru/(x)h + -+ + Cqu'?(x)h? + ..., characteristic equation given bg)has phase-lag order
(4)  and phase-lag constantgiven by:

the coefficients”, are given
k

" 23> A;(v) cos(jv) + Ao(v)
Co = ;ai —cvit? + O(v7?) = =1 -

m 23 j245(0)

— P Jj=

Cl ;Z a; (12)

1 1 S The formula proposed from the above theorem gives us a
Cy=~ Z i a; — —— Z i7" -b;,¢=2,3....  direct method to calculate the phase-lag of any symmetric

q! (g —2)!

i=0 i=0 2k- step method.
The orderp is the unique integer for which In our case, the symmetric 8-step method has phase-lag
orderq and phase-lag constangiven by:
Co=-=0Cphy1 =0,Cphi2 #0. (%) 1 P J 9 Y
T
A method is said to be consistent if this order is at least 1, —cv*? 4+ O(vTHY) = 394, (0)F1845 () F8 A3 (0) F241 (0)
ie., if
where
Co=C1=0Cy=0. (6)
) To = 2A4(v) cos(4v) + 2A3(v) cos(3v)

In what follows we will assume that the metho®) (s
consistent. +2A45(v) cos(2v) + 241 (v) cos(v) + Ag(v)

When a symmetric 2k-step method, that is for . .
i = —k(1)k, is applied to the scalar test equation 3 The Embedded Predictor-Corrector pair

form (EPCM)

y' = —w’y 7

3.1 The general m-step predictor-corrector pair

a difference equation of the form f g PP P
orm

k

Z Ai(0)(Ynti + Yn—i) + Ao(v)yn =0 (8) From J.D. Lambert (1991) we have that the general m-step

i=1 predictor-corrector or PC pair is:

is obtained, where = wh, h is the step length and(v), mo m=l

Ay (v),. .., Ap(v) are polynomials of. 2 a;i Ynti = h 2 b fo+i

The characteristic equation associated wahig =0 =0 (14)

m m
Do @iYnyi =h D bi fry
i=0 1=0

Let the predictor and corrector defined Ayl have orders
From Lambert and Watson (1976) we have the following p* andp respectively. The order of a PC method depend on
definitions: the gap betweep* andp and on)\, the number of times
the corrector is called. Ifp* < p and A =< p—p* —1,

the order of the PC methodjis + A(< p) [4] .

We consider the pair of linear multistep methods:

k
D Ai(w) (s + 571 + Ag(v) =0 (9)
=1

Definition2 A symmetric 2k-step method with
characteristic equation given b)(is said to have an
interval of periodicity (0, v3) if, for all v € (0,v3), the

rootss;,: = 1(1)2k of Eqg. (9) satisfy: m m—1
> A Ynti = h? > b ot
_ Li0(v) _—i0(v) ' . i=0 i=0
s1=e , S =¢ , and |s;] <1,1=3(1)2k (15)
(10) m m
whered (v) is a real function of. ;}ai Ynri = I* Z:Obz' Jn+i
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where |af| + b # 0,
bm # 0.

Without loss of generality we assumag, = 1 anda,,, = 1
we can write:

|a0| + |b0| 7é 0, bjn =0 and

Yn+m + Z i Ynyi = h? Z b; f (xn+ivyn+i)
=0 =0

m—1 16
Yntm + Z AQiYn+i = h? ( )

i=0

m—1
(bm.f(xn—i-wm yn-l—m) + Z bif(xn—l-% yn+z)>

=0

and we have:
m—1
Yntm = — D QiYntit
i=0

m—1
+h2 ;) b;(f(xn-i-ia yn-l-i)
B (17)

m—1

Ynd4m = — Z @iYn+i + hzbmf(mn—s-m3yn+m)7L
=0 m—1
+h? Z bif(Tntis Yn+i)

=

where y; = y(z + ih), f; = f(xz +ih,y(z + ih)), i =
—4(1)3, fa = f(x + 4h,y;) andh is the step length.
The characteristic equatiof))(becomes

Z Ai(0)(s" + 57 + Ap(v) =0 (20)
where 4;(v) =

a; + (b; — a}by)v?
0(1)4, ay = a} =1,

by = 0.

- b;‘b4v4,i =

3.2 The m-step embedded predictor-corrector
(EPCM) pair form

From (18) for a; = af, ¢ = 0(1)m — 1, we get:

m—1 m—1
y:;-‘,-'rn = - Zo a; Ynti + h? 2% bff(xnﬂ,ynﬂ)

m—1 21
Ynd+m = — Z a;‘kynw% + hzbmf(xn+may:z+m)+ ( )

=0

! 9 m—1

+h* Y2 bif (Totis Ynti)

=0

where|ag| + [b5| # 0, ag| + |bo| # 0 andb,, # 0.

From this pair, a general predictor-corrector ( PC ) pairlf the method is symmetric thewy = a;;,_;, by = b},
form, for the numerical integration of special second-orde andb; = by, —;, i = 0(1)[%].

initial-value problemsY) is formally defined as follows:

m—1
- aiYntit
=0

m—1
+h? ‘Zo bf f(TrisYnti)
1=

* —
yn+m -

(18)

m—1
Yntm = — ;) aiYnti + W20 f (T Yo )+

B m—1

+h? Zf) bi f(Tntis Ynti)
where |a§| + |b5| # 0, |ao| + |bo| # 0 andb,, # 0.
If the method is symmetric thest = o, ,, b7 = b}, _,,
a; = Qp—_; aNdb; = by,_;, @ = O(I)L 5 J
From (18) for m = 8, we get the form of the symmetric
predictor-corrector eight-step method:

Y= —<y74 + a3 (ys +y-3) + a3 (y2 + y—2) +
+aj (y1 +y-1) + aéyo)

+h2 (b5 (fs + f-5) + 03 (fa + f2) +
67 (1 1) + 5 fo )

Yo = — (y—4 +as (Y3 +y-3) +az (y2 + y—2) +
+a1 (y1 +y-1) + aoy())

+h? (b4 (fa+ foa) +03(fs+ fo3)+
by (fa+ f-2) by (1 + f-2) + bofo)

(19)

For the coefficient$; andb; of the above general m-step
predictor-corrector pair forn2(), we can write:

bi =b; +0=0; —bj +b; = (b — b}) + b;,

if we call 3; = b; — bf, i = 0(1)m — 1, then we get:

bi = Bi + b, (22)
S0 we have:

m—1

h? Z bif($n+i,yn+i) =

= h2 Z (62 + b;)f(xn—ﬁ—ivyn-‘ri) =

=0

m—1
W2 " Bif (Tnyis ynsi) +
=0
m—1
0207 (@0t Ynts)
=0
and we can write:

(23)

m—1

m—1
= 2 aYnyi +h* 2 b f(Tntis Ynri)
i=0 i=0

* —
yn+m -

m—1
Yn4+m = — Z a:yn+i + hzbmf($n+ma y;kLer)
=0

m—1
+h2 ;) ﬁif(xn+ia yn+z)+

(24)

m—1
+h2 ;) brf(-rnJrzaynjLz)
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or
m—1 m—1
> aiYnri + 02 30 U f(@ntis Ynti)

* _
yner__
1=0 =0

m—1 m—1 25
Yntm = — Z:() a;Ynti + h? ;) b;f(xn-i-ivyn-&-i) (25)

m—1
+h2b’rnf(mn+7n7 y:+m) + h2 2%) ﬁif(xn-&-ia yn—i-z)

where|a§| + |b5] # 0, |ag| + |Bo| # 0 andb,, # 0.
From m-step predictor-corrector pait5) we have that

b:, = 0andb,, # 0,

so if we call3,,, = b,, — b, then we get:

B =bm — by, =bm —0=10by, #0 (26)
Finally for:

Bi =b; — bi,i=0(1)m (27)

the m-step predictor-corrector pair fori26) becomes:

m—1 m—1
y;,+m =—- > afyn+i+h2 > bzf(zn+i7yn+i)
i=0 i=0

m
Yntm = Yntm + h? Z:Oﬁzf(xrww Yn+i)
1=

(28)
wherelag| + [b5| # 0, |ag| + [So| # 0.

4.1 The explicit (predictor) method - with
phase-lag order infinite

From the form 29) with m = 8 andbs = 0 we get the
form of the eight-step symmetric explicit methods:

Ya = — (y74 +a3 (ys +y—3) + a2 (y2 + y—2) +
+a1 (y1 +y-1) + aoyo)+

+h? (b3 (fs+ f-3) +b2(fo+ f2)+

+o1 (f1+ f-1) + bofo)-

wherey; = y(x + ih), f; = f(z + ih,y(z + ih)), andh

is the step length.
The characteristic equatioB)(becomes

(30)

4

ZAi(v)(s"’ + 57 + Ag(v) =0 (31)

i=1

WhereAi(v) = a; + V2 b, T = 0(1)4, ay =
1, by=0.

From @30) with

asz = _2a az = 27 a; = _]-7 ag = 07
_ 17671 23622

bs = 12096 ° by = 12096 ° (32)
__ 61449 __ 50516

by = 12096 ° bo =

12096
we obtain the multistep symmetric method of

We call the above method Embedded PrediCtor'CorreCtobuinIan-Tremaine1] with eight steps, eighth algebraic
Method (EPCM), in the sense that the predictor method isyqer, eighth order of phase-lag and interval of periogicit

fully contained in the corrector method (sé&)[

If the method is symmetric thewf = o, _;, bf = b},
andﬂi = ﬂm—i, 1= 0(1) L%J

—1i

4 Construction of the new embedded
predictor-corrector (EPCM) method

From the form ) and without loss of generality we
assumer,,, = 1 and we can write:

m—1 m

Yntm + Z AiYn+i = h? Z bi f(Zrtis Ynti),
i=0 =0
finally we get:
m—1 m
Unim = — Y @iYnyi 02 Y bif (@nsirynri) (29)
i=0 i=0
If the method is symmetric them; = a,,_; and

bi =bpm—i, i=0(1)[F].

(0,v3), wherev? = 0.52.
From @B0) and by keeping the sameg coefficients 82)
and by nullifying the phase-lag, we get:

az = —2, as =2, a] = —1, ay =0,

by =—20b5 + 5, by =1503 — 1,

by =—6b5+ 47,  bi=3

where

A =—192 (cos (v))* + 192 (cos (v))* + (33)

+ (96 — 32702) (cos (v))*
+ (=120 + 404 v?) cos (v) — 137v% 4 24
B =962 (cos (v) — 1)°
wherev = w h, w is the frequency and is the step length.

For small values of) the above formulae are subject to
heavy cancelations.

In this case the following Taylor series expansion must be
used:

1 1 4 164
b§ _ 1767 5767 02 + 64627 .4 520367 6+

— v
7‘16%07%6 7825760 919%§%(10160 10 15850598400

+ 5 5
89669099028662921 320118618202864000 2866814089 14

— vt = v
340606%8%5%@%%%8? 21064363768686837760000

B 1692132100074,147507§11160675§38000 v 18
— . Ve —
48394975134385599421677469‘207201080000 20

~ 2032588964078092403343360000 U +...
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wherev = w h, w is the frequency andl is the step length.  The local truncation error of the above method is given by:

The local truncation error of the above method is given by: 58061 1 (13 y
LTE. = ﬂ 10 (y(lo) + y(8)w2> + O(hu) (34) 31933440 Yy ( ) ( )
725760 " n

. - . . The above optimized implicit symmetric multistep
The above optimized explicit symmetric multistep mnethod 88), has eight steps, tenth algebraic order, tenth
method B83) has eight steps, eight algebraic order, infinite 5 qar of phase-lag (sed]] and interval of periodicity

order of phase-lag (phase-fitted) (sé® pnd an interval (0,v2), wherev? = 2.39021991.
of periodicity (0, v2), wherev? = 0.643168. o 0

4.3 The new EPCM method with minimal

4.2 The implicit method (corrector)
phase-lag

From @9) for m = 8, we get the form of the symmetric
implicit eight-step method: If the coefficients}, i = 0(1)m in pair of linear multistep
Y1 = —y_a — as(ys +y_3) — as(ys + y_o)— methods 15), depend on, (bf = b3 (v)), then from @7)

" we getg; = b; —b; = b, — b} (v) = B;(v), i = 0(1)m. So
—a1(y1 +y-1) + 17 <b4(f4 + [-a) +03(fs + f-3) the embedded predictor-corrector pair form (EPCRB)(
+b2(f2+f—2)+b1(f1+f—1)+bofo)- becomes:
wherey; = y(z +ih), f; = f(z +ih,y(z +ih)), fi = T o A L e
f(x + 4h,y?) andh is the step length. Yntm E{) @iYnti + g{) P () (@ntis Ynsi)

The characteristic equatiof))(becomes

4 ok 2
Z AZ(U)(Sl + S_i) + Ao(v) -0 (35) Yn+m Yn4+m +h lgo Bz(v)f(xn—ma yn—i—z)

i=1 (40)
where where
Ai(v) = +0* i, i=0(1)4, as=1 |ag| + [bg (v)| # 0, ]ag] + |Bo(v)| # O,
From 35) and by keeping the sameg coefficients 82) (  B;(v) = b; — b; (v), i = 0(1)m, b}, (v) = 0. (41)
a), = 17 az = 72, as = 2, ay = 71, ag = 0) we SatiSfy

In the above pair form the coefficient$(v) and j3;(v),
depend onv (wherei = 0(1)m, v = wh, w is the
frequency and is the step length).

as many algebraic equations as possible, but we keep
free. After achieving 10th algebraic order, the coefficient
now depend ofhy:

If the method is symmetric them; = aF, _,,
bo=T0by — 1220 by = —56b, + 20483 bi(v) = by, _;(v) andfi(v) = Brn—i(v), 1=0(1)'F].
(36)  From @0) for m = 8, we get the form of the symmetric
by = 28 by — %’ by = —8by + gggé girgﬁte_gt(ilaepds: predictor-corrector method (EPCM) with
and the phase-lag becomes:
PL=S,  where yi = —(9—4 + a3 (ys +y-3) + a3 (y2 + y—2) +
C = 24192 (cos (g)); + 24192 (cos (v)): 1;22b4+ +af (y1 +y-1) + agyo)
+17671 (cos (v))” v — 96768 (cos (v))” vby— o 1s .
—24192 (cos (v))* + 14152 (cos (v))? v2by— th (bS(”) (fs+ f-3) +b5(v) (f2 + f-2) +
—12096 (cos (v))* — 11811 (cos (v))? v2+ (37) +b1(v) (fr + f-1) + bS(U)fO)
+2109 cos (v) v? + 15120 cos (v) —
N . 2 _ 2 2p
Tzt and PR s = i 02 (B4(0) s+ Foa) + Balo) (Fs 1)+
D =1260 (12 +250%). +82(v) (fo + f-2) + Br(v) (fr + f-1) + Bo(v)fo)
We expand the phase-lag using the Taylor series and ) ) ) (_42)
nullify the leading term (that is the coefficient bf?). wherey; = y(z + ih), fi = f(x +ih,y(z + ih)), i =
After that we obtain the implicit symmetric multistep —4(1)3, fa = f(z + 4h, y7) andh is the step length.
method: The characteristic equatiof))(becomes
ay =1, as = —2, as =2, a1 = —1, 4 L
o 17273 280097 o > Aiw)(s" +57) + Ao(v) =0 (43)
ap = ()—m; 1_M7 (38) 1=1
33961 173531 45767 where . " .
27 Tis1a40° T 814400 ' 725760 Ai(v) = ai + v3(Bi(v) = a7 Ba(v)) — 070} (V) Ba(v), i =
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0(1)4,a}; = 1,b5(v) = 0.

We derive the coefficients; (v) = b; — b} (v), i = 0(1)4,
from (33) and @38) as follow:
Bo(v) = 205 (v) — 2735750 B1(v) = it
—15b3(v), B2(v) = 6b3(v) — 20021, (44)
Ba(v) = 15iz0 — 03(v), Ba(v) = 75375

From @2), (33) and @4) a new eight-step symmetric

embedded predictor-corrector method (EPCM) obtained:

Yi = —y-a+2(ys +y-3)—
—2(y2 +y-2) + (y1 +y—1)+
+h? gb;x ) (fa+ foa)+
+(4g — 6b5(0))(f2 + f-2)+
(15b3( )= BY (i + f-)+
601 b
(S5 - 2005(0)) fo) )
Ya = Z/Z + h2<74255776670 (fff =+ f—4)+
+(T5355 — b5 () (fs + f-3)+
+(6 bgr(v) - 1128710404201)(f2 + f*2)+
Jr(3135?10424307 —15 b§ (v))(fl + f—l)+
+(203(v) — 1300180
wherey; = y(z + ih), f; = f(x +ih,y(x +ih)), f5 =
f(x+4h,yp), b5(v )= 4,
A= —192 (cos (v))* + 192 (cos () +
+ 96 — 3270?) (cos (v))* +
120+404v) cos (v) — 13702 + 24
B:96v (cos (v) — 1)*

v = w h, w is the frequency and is the step length.

For small values of) the above formulae are subject to
heavy cancelations.

In this case the following Taylor series expansion must b

used:
17671 45767 2+ 164627 4

b3(v) = 12096, 725760 i 47739001?}0 v

158500998410_(0 + 89669099520

6662921
32011868865628814%000 344060628114472960
20T R 0000
169213200 47220750 1606?5&8000
48394975343855&816774{3}67201080000U -

20

7 2032588964078092403343360000 v
where v wh, w is the frequency and is the step
length.
In order to find the Local Truncation Error(LTE), we
expressy+;, ¢« = 1(1)4 and f4;, j = 0(1)4 via Taylor
series and we substitute i83). Based on this procedure
we obtain the following expansion for the LTE:

12

The above method (EPCM}Y) has eight steps, tenth
algebraic order, tenth order of phase-lag and an interval of
periodicity (0, v3) wherev = 1.3073505.

5 Numerical results

5.1 The problems

The efficiency of the new optimized symmetric embedded
eight-step predictor-corrector method will be measured
through the integration of five initial value problems with
oscillatory solution.

5.1.1 Duffing’s Equation

y" = —y —y> +0.002cos(1.01 1),
y(0) = 0.200426728067, 1/ (0) = 0,
with ¢ € [0,1000 7).

(47)

Theoretical solution:

y(t) = 0.200179477536 cos(1.01t) + 2.46946143 - 10~*
c0s(3.03t) + 3.04014 - 107 cos(5.05¢)

+3.74-107 % cos(7.07¢) +

Estimated frequencyw = 1.

5.1.2 Nonlinear Equation

—100y+ sin(y), y(0) =0, y'(0) =1 ¢t € [0,20 7].

(48)
The theoretical solution is not known, but we use
y(207) = 3.92823991 - 1074,

Estimated frequencyw = 10.

©5.1.3 Orbital Problem by Stiefel and Bettis

The "almost” periodic orbital problem studied b§][can
be described by

Y +y=0.001e"", (0) =1, y'(0) = 0.99954, y € C,
(49)
or equivalently by
" +u=0.001 cos(x), wu(0)=1, «'(0)=
v"” + v =0.001 sin(x), ©(0)=0, o'(0)= O 9995.
(50)

The theoretical solution of the problend9) is given
below:

Y+iv(z), w,vER

y(r) = u(z
o( ) + 0.0005 z sin(z),

u(z) =c¢

12506213339 v(z) = sin(z) — 0.0005 2 cos(z).
12
LT.E = (m v Thee [Osyf)toeom] of equations5@ has been solved for
2094618289 T , -
526727577600 v 2)h12 +O(h') (46)  Estimated frequencyw = 1.
@© 2014 NSP
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5.1.4 Two-dimensional Kepler problem (Two-Body
Problem)

//:_¢37 ZH:_ z T (51)
(y% +22)2 ( +z )5
with y(0) = 1 —e¢, 3'(0) = 0, 2(0) = 0, 2'(0) =
1+€

, t €[0,10007], where e is the eccentrlcity.

The theoretlcal solution of this problem is given below:
y(t) = cos(u) —e

z(t) = V1 — e?sin(u).

where v can be found by solving the equation
u—e sin(u) —t =0.

We used the estimation = 7

(7}2 +z2

as frequency of the
problem.

5.1.5 Schddinger’s equation - Resonance problem

The radial time-independent Sddinger equation can be
written as:

o) - (1

22

V() - E) y(x)  (52)

where "1 s the centrifugal potential V(x) is the
potent|al Eis theenergyandW( ) = UG V(z)is
the effective potentiallt is valid that hm V( ) =0and

therefore lim W (z) = 0.

T—r 00

We considerE > 0 and divide[0, c0) into subintervals

[a;, b;] so thatlW(z) is a constant with valu&V;. After
this the problem 32) can be expressed by the
approximatiory!’ = (W — E) y;, whose solution is:

yi(z) = A; exp (\/W —E:E)Jr
+B; exp (—\/W— Ex)7 A;, B; € R.

We will integrate problem52) with [ = 0 at the interval
[0, 15] using the well known Woods-Saxon potential:

(53)

Uo Ui q Tr— o
Vix) = ,q= , 54
W=t emer () 6
whereug = =50, a=0.6, zg=7
and ul:_@

and with boundary conditiog(0) = 0. The potential
V(x) decays more quickly thaﬁ%, so for largex
(asymptotic region) the Scbdinger equation 52)

becomes
(l+1)
y//($> = ( -2

- E) @) 69

The last equation has two linearly independent solutions

kxzji(kx) and kxzni(kx), where j; and n; are the

spherical BessedndNeumanrfunctions.
Whenz — oo the solution takes the asymptotic form

y(x) ~ Akxji(kz) — Bkaxn(kx)
~ D[sin(kx — wl/2) + tan(¢;) cos (kx — w1/2)],
(56)
whereJ; is calledscattering phase shiéind it is given by
the following expression:

y(xi) S(wiv1) — y(@it1) S(xi)
y(xiv1) C(z;) — y(xi) C(wig1)’

where S(z) = kxj(kx), C(z) = kxzny(kz) and

x; < x;11 and both belong to the asymptotic region.
Given the energy we approximate the phase shift, the
accurate value of which is/2 for the above problem.

We will use for the energy the valueg! = 341.495874
andE = 989.701916.

As for the frequencyw we will use the suggestion of
Ixaru and Rizea (se§] and [27]):

L {\/E+50,

tan (0;) =

(57)

€ [0, 6.5]

€ [6.5, 15] (°8)

\/E7

5.2 The methods

We have used several multistep methods for the integration
of the five test problems. These are:

—The new optimized eight-step symmetric embedded
predictor-corrector method (EPCM) with tenth
algebraic order and minimal phase-lag5X (New
EPCM 8-step)

—The symmetric 10-step method of Quinlan-Tremaine
of algebraic order terl] (Q-T 10step)

—The optimized symmetric 8-step metho@3) of
algebraic order eight and infinite order of phase-lag
(phase-fitted)§] (Q-T 8step PF)

—The symmetric 8-step method of Quinlan-Tremaine of
algebraic order eightl] (Q-T 8step)

—The 8-step predictor-corrector metho@®her-Cowell
[2] of algebraic order eight: "S-C 8step”

—The 10-stage exponentially-fitted method of Simos and
Aguiar of algebraic order ninel[l] (Simos- Aguiar)

—The symmetric 6-step method of Jenkins of algebraic
order six P] (Jenkins-6step)

—The 2-step, 3-stage exponentially-fitted
predictor-corrector method of Simos and Williams of
algebraic order six]0] (Si-Wi EF1)

—The 3-step, 3-stage exponentially-fitted
predictor-corrector method of Psihoyios and Simos of
algebraic order fivel[2] (Psi-Si EF2)

—The 4-step predictor-corrector method Milne-Simpson
of algebraic order four (M-S PC 4)

~The 4-step predictor-corrector method
Adams-Bashforth - Moulton of algebraic order four
(ABM PC 4).
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5.3 Comparison algebraic order, tenth order of phase-lag and it can be
used to solve numerically initial-value problems with

We present thaccuracy of the tested methods expressed oscillatory solutions, for which we know or we can

by the — log,,(max. error over interval) or log,,(error  estimate the frequency.

at the end point), depending on whether we know theThe form @0) has the advantage that reduces the

theoretical solution or not, versus the CPU time. computational expense if the additions on the factor

In Table1 we see the comparison of the new optimized m—1 i

eight-step symmetric embedded predictor-corrector 2 %iYn+i, are done twice.

method (EPCM) 45 and the multistep symmetric We have applied the new optimized eight-step symmetric
method of Quinlan-Tremainel] with eight steps for all  empedded predictor-corrector method (EPCM) with tenth
the problems solved. i _ algebraic order 45 along with a group of several
In Figure 1 we see the results for the Duffing’s equation, methods from the literature to five oscillatory problems.

in Figure 2 the results for the Nonlinear equation, in \we concluded that that the new optimized eight-step
Figure3 the results for the Stiefel-Bettis almost periodic symmetric embedded predictor-corrector method (EPCM)
problem, in Figures4 and 5 the results for the iy tenth algebraic order and minimal phase-14§) is

two-dimensional Kepler problem for eccentricities €=0.05 poticeably more efficient compared to other methods.
and e=0.8 and in Figurésand?7 we see the results for the

resonance problem for energiés = 989.701916 and

E = 341.495874..

Among all the methods used, the new optimized
eight-step symmetric embedded predictor-corrector
method (EPCM) with tenth algebraic order and minimal Table 1 Comparison for CPU time, Step Length and Maximum
phase-lag is the most efficient. Error

The interval of periodicity of the new optimized

e|ght step symmetnc embedded pred|ct0r Corrector TestProble H M ethod |AccuracydiglﬂsGFUTimeH étepLengtﬂ Maximum Erreo
DuEFinaEauation Q-Tostep 10,85686874  18,2989173 0,05 13839881
method (EPCM) with tenth algebraic order is about 2.5~ ™" v oaees oo om0 e
tlmes |arger than the multlstep SymmetI’IC method Of NonlineaBquation - Q-TBstep 11,63199947 3,9468253  0,003867188 2,3334682
Quinlan-Tremaine with eight steps and eighth algebraic R ——
Order and about two tlmeS |arger than the Opt|m|zed Hew EPCM Bstep  12,02231899  16,7857076 0,06 9,4990723
Symmetrlc 8'Step metho@@) Wlth e|ght StepS and e|ghth Wo-dmens:r;ﬁ;le‘?rabb 0-TBstp 9,260886526 52,0419336 0.02 5.4842R0

New EPCM B-step 9.03466034 30, 7009968 004 9.2329380

=1ondeplabroble Q-Teste 5,978655841 710,3661536 00015 1,05037806

algebraic order. e

The new optimized eight-step symmetric embedded VorgRcHEstep 66148263 anzusime 0o 2.azssem7
predictor-corrector method (EPCM) with tenth algebraic| sy 0T o 947109
order and minimal phase-lag can achieve the reqUIre s s o o e
accuracy with a step-size, four times larger than the EORTUNY  weweecsewp  1norssics  iswore oovsesssst o.servsmz
multistep symmetric method of Quinlan-Tremaine with
eight steps and eighth algebraic order for the
Stiefel-Bettis almost periodic problem, three times large
than the  multistep  symmetric  method  of
Quinlan-Tremaine with eight steps and eighth algebraic
order for the resonance problem and two times larger than
the multistep symmetric method of Quinlan-Tremaine
with eight steps and eighth algebraic order for the other .
problems solved. 10
An interesting remark is that the new optimized eight-step °
symmetric embedded predictor-corrector method (EPCM) °
with tenth algebraic order and minimal phase-lag, is more;l
efficient than the multistep symmetric method of £,
Quinlan-Tremaine, with ten steps and tenth algebraic® .
order.

Duffing's equation

—4—New EPCM 8-step
—Q-T 10step
—6—Q-T 8step PF

—5—Q-T 8step

—&-5-C Sstep

o - v

35 40 45 50 55

6 Conclusions S

25 30
CPU Time (Sec)

We have developed a new optimized eight-step symmetric . . i _
embedded predictor-corrector method (EPCKE)(from  '9- 1 Efficiency for the Duffing equation
the form @0).

The new method (EPCM)46) has eight steps, tenth
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" Nonlinear equation , Two-dimensional Kepler Problem (e=0.8)
» —+—New EPCM 8-step —+—New EPCM 8-step
" —Q-T 10step 6 —QT 10step
10 QT SsepPF QT Suep PP
9 —A—Q-T Sstep ® —A—Q-T 8step.
g ‘: ~8-5.C Ssiep ? . ~8-5.C 8siep
lg . —E-Simos-Aguiar lé —E-Simos-Aguiar
= R —*-Jenkins-6step 0 —#—Jenkins-step
4 —%=Si-Wi EF1 —&Si-Wi EFl
3 ——Psi-Si EF2 ‘ —+—Psi-Si EF2
2 ——M-SPC4 1 ——M-SPC4
! —=-ABMPC 4 / = ABM PC 4
002 1 18 26 34 42 5 58 66 74 82 9 98 106 114 122 13 ° 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
CPU Time (Sec) CPU Time (Sec)
Fig. 2 Efficiency for the Nonlinear equation Fig. 5 Efficiency for the Two-body problem using eccentricity e
=0.8

tiefel-Bettis

12 o EPOM Ste e . .
—$-New EPCM $step Schrédinger's equation (E=989.701916)
" ——Q-T 10step 1 —&—New EPCM 8-step
10
——Q-T Sstep PF 10 ——Q-T 10step
9
—A-Q-T Sstep 9 ——Q-T 8step PF
8
z ., —-5.C Sstep 8 —&-Q-T 8step
]
7
5 5 Simos-Aguiar 2 —8-5.C Sstep
54 <
3
é 5 % Jenkins-6step g —5-Simos-Aguiar
S s
4 —¢Si-Wi EF1 < —%=Jenkins-6step
4
3 —+—Psi-Si EF2 —%Si-Wi EF1
2 - ¢ ——PsiSi EF2
MSPC4 i-Si
1 2
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o 1
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Fig. 3 Efficiency for the Orbital Problem by Stiefel and Bettis
Fig. 6 Efficiency for the Resonance problem using E =

989.701916
Two-dimensional Kepler Problem (e=0.05)
9 —#—New EPCM 8-step
. QT 10step . Schrédinger's equation (E=341,495874
7 ——Q-T 10step
0 Thuep
. ; Tty
- -5 hep
E 5 . 6 —A—Q-T 8step.
; N - Jenkins-Gstep E ° & Simos-Aguiar
2 —+—Psi-Si EF2 3 —=Si-Wi EF1
, ——M-SPC4 2 ——Psi-Si EF2
—#—ABM PC 4 y —a—M-SPC4
’ 0 5 10 15 20 25 30 35 40 45 50 55 60 65 fl —®—ABM PC4
CPU Time (Sec) ot o5 ws 18 17 21 a5 25 a5 a7 a1 s
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Fig. 4 Efficiency for the Two-body problem using eccentricity e o .
=0.05 Fig. 7 Efficiency for the Resonance problem using E =
341.495874
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