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Abstract: Control chart patterns (CCPs) recognition is an important issue in statistical process control, since abnormal CCPs exhibited
in control charts can be associated with certain assignable causes and then help to quickly eliminate assignable causes of process
variation. Most of the existing studies assume that the observed processdata needs to be recognized are basic types of abnormal CCPs.
However, in practical situations, the observed process data may be concurrent CCPs which are mixed together by two basic CCPs.
In this study, an integrated scheme using independent component analysis (ICA) and support vector machine (SVM) is proposed for
recognizing concurrent CCPs. The proposed ICA-SVM scheme initiallyuses ICA with concurrent patterns for generating independent
components (ICs). The hidden basic patterns of the concurrent patterns can be discovered in these ICs. The ICs are then used as
input variables for the SVM for building a CCP recognition model. Experimental results reveal that the proposed ICA-SVM scheme
can produce accurate and stable recognition results. It outperforms the three comparison models and is able to effectively recognize
concurrent control chart patterns.

Keywords: Control chart pattern recognition, concurrent control chart pattern, independent component analysis, support vector
machine.

1 Introduction

Control charts are important statistical process control
tools for determining whether a process is in control or
out of control. A process is in control when only common
cause variability exists. A process is out of control when a
data point falls outside the control limits or a series of
data points exhibit unnatural/abnormal patterns [1]. If a
process is out of control, corrective action should be taken
to search for and eliminate assignable causes of variation.
Since unnatural control chart patterns (CCPs) associate a
specific set of assignable causes in manufacturing
processes, effective recognition of unnatural CCPs is an
important issue in SPC. Five basic CCPs are commonly
exhibited in control charts including normal (NOR),
systematic (SYS), cyclic (CYC), trend (TRE) and shift
(SHI) [2,3]. Except for the normal pattern, all other
patterns are abnormal CCPs and indicate that the process

being monitored is out of control and requires adjustment.
Figure1 shows these five basic control chart patterns.

There have been many approaches proposed for CCP
recognition [3,4,5]. Most existing studies are concerned
with the recognition of single abnormal control chart
patterns (as shown in Figure1). However, in real
applications, concurrent patterns, where two single
patterns exist together, are frequently encountered, which
may be associated with different assignable causes. When
a concurrent pattern occurs, most existing approaches will
classify the input pattern into one of predefined single
CCPs. Unfortunately, single CCPs cannot represent the
characteristics of the concurrent patterns and further
tracking of its assignable causes also becomes impossible.
Concurrent patterns are more difficult to recognize than
single patterns due to the complexity of the pattern
interaction. Without loss of generality, Figure2 shows six
concurrent CCPs which are mixed by two basic patterns.
Compared to the patterns illustrated in Figure1, it can be
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(a) Normal (b) Systematic

(c) Cyclic (d) Trend

(e) Shift

Fig. 1. Five basic control chart patterns.

observed from Figure2 that the concurrent CCPs are
more difficult to recognize than the basic CCPs.

Only few studies have addressed the recognition of
concurrent CCPs. Guh and Tannock [6] used the
back-propagation neural network (BPN) to recognize
concurrent CCPs. Chen et al. [7] integrated wavelet
method and back-propagation neural network for on-line
recognition of mixture CCPs. Wang et al. [8] proposed an
integrated approach by combining wavelet analysis and
neural network for the recognition of concurrent CCPs.
These results indicated that neural network-based
approaches for recognizing concurrent CCPs can perform
well.

Departing from previous approaches, our novel hybrid
approach for concurrent CCPs recognition is explored by
integrating independent component analysis (ICA) and
support vector machine (SVM). ICA is a novel feature
extraction technique to find independent sources given
only observed data that are mixtures of the unknown
sources, without any prior knowledge of the mixing
mechanisms [9]. The independent sources, called
independent components (ICs), are hidden information of
the observable data. ICA has been employed successfully
in various fields of multivariate data processing, from
signal processing to time series prediction [9]. However,

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Six concurrent CCPs: (a) Shift+Cyclic; (b)
Shift+Systematic; (c) Shift+Trend; (d) Systematic+Cyclic;
(e) Trend+Cyclic; (f) Trend+Systematic.

there are still few applications of using ICA in control
chart pattern recognition. Lu et al. [10] integrated ICA,
engineering process control and BPN to recognize shift
and trend patterns in correlated process. Lu [11] proposed
an ICA-based monitoring scheme to identify shift pattern
in an autocorrelated process. Lu et al. [12] combined ICA
and SVM for diagnosing mixture CCPs which are mixed
by the normal and other abnormal basic patterns.
However, their work did not consider the issue of
recognition of concurrent CCPs.

Support vector machine (SVM), based on statistical
learning theory, is a novel neural network algorithm [13].
It can lead to great potential and superior performance in
practical applications. This is largely due to the structure
risk minimization principles in SVM, which has greater
generalization ability and is superior to the empirical risk
minimization principle as adopted in neural networks.
The SVM has attracted the interest of researchers and has
been applied many applications such as diseases
classification and process monitoring [14,15,16,17,18].
However, relatively few studies have been conducted
using SVM for CCP recognition [12].

The proposed ICA-SVM scheme first uses ICA for the
observed process data contained mixture patterns for
generating independent components. The estimated ICs
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are then served as the independent sources of the mixture
patterns. The hidden basic patterns of the mixture patterns
could be discovered in these ICs. The ICs are then used as
the input variables of the SVM for building CCP
recognition model.

The rest of this paper is organized as follows. Section 2
gives brief overviews of ICA and SVM. The proposed
model is described in Section 3. Section 4 presents the
experimental results and this study is concluded in
Section 5.

2 Methodology

2.1 Independent component analysis

In the basic conceptual framework of ICA algorithm
[9], it is assumed that m measured variables,
X = [x1,x2, . . . ,xm]

T be a multivariate data matrix of size
m×n, m ≤ n, consisting of observed mixture signalsxi of
size 1× n, i = 1,2, . . . ,m. In the basic ICA model, the
matrix X can be modeled as [9]

X = AS =
m

∑
i=1

aisi, (1)

whereai is the ith column of them×m unknown mixing
matrixA; si is theith row of them×n source matrixS. The
vectorssi are latent source signals that cannot be directly
observed from the observed mixture signalsxi. The ICA
model aims at finding anm×m de-mixing matrixW such
that

Y = [yi] = WX, (2)

whereyi is theith row of the matrixY, i = 1,2, . . . ,m. For
using vectorsyi to estimate the independent latent source
signals (si), yi must be statistically independent, and are
called independent components (ICs). When de-mixing
matrix W is the inverse of mixing matrixA, i.e.
W = A−1, ICs (yi) can be used to estimate the latent
source signalssi.

The ICA modeling is formulated as an optimization
problem by setting up the measure of the independence of
ICs as an objective function and using some optimization
techniques for solving the de-mixing matrixW. Several
existing algorithms can be used to perform ICA modeling
[9]. In general, the ICs are obtained by using the
de-mixing matrix W to multiply the matrix X, i.e.
Y = WX. The de-mixing matrixW can be determined
using an unsupervised learning algorithm with the
objective of maximizing the statistical independence of
ICs. And the statistical independence of ICs can be
measured in terms of their non-Gaussian properties.

Normally, non-Gaussianity can be verified by two
common statistics: kurtosis and negentropy. The kurtosis

of a random variabley, fourth-order cumulant, is
classically defined by

kurt(y) = E(y4)−3(E(y2))2 (3)

If variable y is assumed to be zero mean and unit
variance, the right-hand side simplifies toE(y4)−3. This
shows that kurtosis is simply a normalized version of the
fourth moment E(y4). For a Gaussiany, the fourth
moment equals 3(E(y2))2. Thus, kurtosis is zero for a
Gaussian random variable and non-zero for most
non-Gaussian random variables.

Unlike kurtosis, negentropy is determined according to
the information quantity of (differential) entropy. Entropy
is a measure of the average uncertainty in a random
variable. The differential entropyH of random variabley
with densityp(y) defined asH(y) = −

∫
p(y) logp(y)dy.

According to a fundamental result of information theory,
a Gaussian variable will have the highest entropy value
among a set of random variables with equal variance [9].
For obtaining a measure of non-Gaussianity, the
negentropyJ is defined as follows:

J(y) = H(ygauss)−H(y) (4)

whereygauss is a Gaussian random vector having the same
covariance matrix asy.

The negentropy is always non-negative and is zero if
and only if y has a Gaussian distribution. Since the
problem in using negentropy is computationally very
difficult, an approximation of negentropy is proposed as
follows:

J(y)≈ [E{G(y)}−E{G(v)}]2 (5)

where v is a Gaussian variable of zero mean and unit
variance, andy is a random variable with zero mean and
unit variance.G is a nonquadratic function, and is given
by G(y) = exp(−y2/2) in this study. The FastICA
algorithm proposed by [9] is adopted in this paper to
solve for the de-mixing matrixW.

The ICA model in Eq.(1) shows the limitation of the
ICA model that is, one cannot determine the order of the
ICs because of the simultaneous unknowns ofS and A.
Hyvärinen et al. [9] suggested that ICs can be sorted
according to their non-Gaussianity. In this paper, the ICs
are sorted based on their kurtosis values.

2.2 Support vector machine

The basic idea of applying SVM to pattern recognition
can be stated briefly as follows. We can initially map the
input vectors into one feature space (possible with a
higher dimension), either linearly or non-linearly, which
is relevant with the selection of the kernel function. Then,
within the feature space from the first, we seek an
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optimized linear division, that is, construct a hyperplane
which separates two classes (this can be extended to
multi-class).

A description of SVM algorithm is follows. Let
{(xi,yi)}

N
i=1, xi ∈ R

d , yi ∈ {−1,1} be the training set with
input vectors and labels. Here,N is the number of sample
observations andd is the dimension of each observation,
yi is the known target. The algorithm is to seek for the
hyperplanew · xi + b = 0, where w is the vector of
hyperplane andb is a bias term, to separate the data from
two classes with maximal margin width 2/‖w‖2, and the
all the points under the boundary is named support vector.
The hyperplane can be optimized using SVM by solving
the following optimization problem [13].

Min Φ(x) =
1
2
‖w‖2

S.t. yi(wT xi +b)≥ 1, i = 1,2, . . . ,N. (6)

Since it is difficult to solve Eq. (6) directly, then Eq.
(6) must be transformed into a dual problem by Lagrange
method. The value of in the Lagrange method must be non-
negative real coefficients. Problem (6) is transformed into
the following dual problem.

Max Φ(w,b,ξ ,α,β ) =
N

∑
i=1

αi −
1
2

N

∑
i=1
j=1

αiα jyiy jxix j

S.t.
N

∑
j=1

α jy j = 0, 0≤ αi ≤C, i = 1,2, . . . ,N. (7)

In Eq. (7), C is the penalty factor and determines the
degree of penalty assigned to an error. It can be viewed as
a tuning parameter which can be used to control the trade-
off between maximizing the margin and the classification
error.

In general, it could not find the linear separate
hyperplane in all application data. In the non-linear data,
transforming the original data to higher dimension of
linear separate is the best solution. The higher dimension
is called feature space which improves the data separated
by classification. The common kernel function are linear,
polynomial, radial basis function (RBF) and sigmoid.
Although several choices for the kernel function are
available, the most widely used kernel function is the
RBF kernel defined asK(xi,x j) = exp(−γ‖xi − x j‖

2),
γ ≥ 0 [13], whereγ denotes the width of the RBF. Thus,
the RBF is applied in this study. The original SVM was
designed for binary classifications. Constructing
multi-class SVM is still an ongoing research issue. In this
study, we used multi-class SVM method proposed by
[14]. For more details, please refer to [14].

3 The Proposed Integrating Recognition
Scheme

This study combines ICA and SVM for recognizing
concurrent control chart patterns. Figure3 shows the
research scheme of the proposed ICA-SVM model. As
shown in Figure3, the proposed scheme consists of two
stages. In the training stage, the aim is to find the best
parameter setting to train SVM model for concurrent CCP
recognition. The first step of the training stage is to
generate six concurrent CCPs as shown in Figure2. Then,
they are used as training samples to build SVM model.
Since the RBF kernel function is adopted in this study, the
performance of SVM is mainly affected by the setting of
parameters of two parameters i.e.C andγ [19]. There are
no general rules for the choice of the parameters. In this
study, the grid search proposed by [19] is used in this
study for parameters setting. The trained SVM model
with best parameter set is preserved and used in the
monitoring stage for concurrent CCP recognition.

Fig. 3. The research scheme of the proposed ICA-SVM
model.

In the monitoring stage, the first step is to collect
observed data from monitoring multivariate process. Then
the collected monitoring data is combined with a
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generated pseudo variable which contains normal pattern
to produce an input data matrix for performing ICA. This
design is based on the assumption of ICA that the
dimension of input variables is needed more than two.
After using ICA to the input data matrix, two ICs are
estimated. In order to find the target IC containing
unnatural pattern, the two ICs are sorted based on their
non-Gaussianality by kurtosis values. As the kurtosis
value of a normal distributed variable is equal to zero, the
IC contains the largest kurtosis value is considered as the
target IC. Finally, the trained SVM is utilized to the target
IC to produce CCP recognition results.

As an example, Figure4(a) shows the observed data
collected from the monitoring process and Figure4(b)
depicts the pseudo variable containing normal pattern. It
is assumed that observed data are mixed by the shift and
systematic patterns. Then, the ICA model is used to the
data to generate two ICs which are illustrated in Figures
4(c) and 4(d). It is clear that Figure4(c) can be used
represent concurrent pattern containing systematic and
cyclic patterns and considered as the target IC. Figure
4(d) represents the normal pattern. The trained SVM
model is used to the target IC to recognize the pattern
exhibited in the IC. According to the SVM results, the
process monitoring task is conducted to identify which
basic patterns are exhibited in the process.

4 Experimental Results

In this study, five basic CCPs (as shown in Figure1) are
used to construct six concurrent CCPs which are used for

(a) (b)

(c) (d)

Fig. 4. (a) the observed concurrent data; (b) the pseudo
variable containing normal pattern; (c) the IC represents
the concurrent pattern containing the shift and systematic
patterns; (d) the IC represents the normal pattern.

training and testing the proposed ICA-SVM scheme. The
five basic patterns are generated using the same equations
and values of different pattern parameters, as used by [3].
The parameters along with the equations used for
simulating the basic CCPs are given in Table1. The
values of different parameters for abnormal patterns are
randomly varied in a uniform manner between the limits.
It is assumed that, in the current approach for pattern
generation, all the patterns in an observation window are
complete. The observation window used in this study is
32 data points.

Based on the equations of basic CCPs, the equations
of generating concurrent CCPs are shown in Table2. The
parameters setting of the concurrent CCPs are the same as
that in Table1.

Features of observation window, such as mean,
standard deviation, kurtosis and slop characteristics are
adopted in literatures to improve the performance of CCP
recognition [3]. However, features may ignore some
useful information contained in the original data points of
observation window since they are abstract information of
the data points. Therefore, the proposed ICA-SVM model
directly uses the 32 data pints of observation window as
inputs of the SVM model. That is, there are 32 input
variables used in the proposed model for CCP
recognition. In order to demonstrate the performance of
the proposed ICA-SVM scheme, the single SVM model
without using ICA as preprocessing is constructed. It also
directly uses the data pints of observation window as
inputs.

After using the grid search method to the two models,
the best parameter sets for the ICA-SVM and single SVM
models are (C = 2−1,γ = 2−15) and (C = 2−2,γ = 2−15),
respectively. Note that the model selection details of the
three models are omitted for saving space. The
recognition results of the ICA-SVM and single SVM
models are respectively illustrated in Table3 and Table4.

From Table3 and Table4, it can be found that the
average correct classification rates of the proposed
ICA-SVM model and the single SVM model are 97.23%
and 62.98%, respectively. The proposed model
outperforms the single SVM model in all testing mixture
CCPs. Therefore, the proposed ICA-SVM scheme can
effectively recognize concurrent control chart patterns
mixed by two basic patterns.

To further evaluate the recognition performance of the
proposed ICA-SVM model, a novel neural network
algorithm called extreme learning machine (ELM) is also
used in this study. The design of the ELM proposed by
Huang et al. [20] is based on a single-hidden layer
feedforward neural network (SLFNN) with a wide variety
of hidden nodes, which randomly generates hidden
parameters before analytically determining the output
weights [21,22]. Prior investigations have reported that
the ELM tends to provide better generalization
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Table 1. Parameters for simulating basic control chart patterns

CCPs Pattern equations Pattern parameters

NOR x(t) = u+ γ(t)σ Mean(u) = 0
Standard deviation(σ) = 1

SYS x(t) = u+ γ(t)σ +d(−1)t Systematic departure(d) = (1(σ) to 3(σ))

CYC x(t) = u+ γ(t)σ +a ·sin(2πt/p)
Amplitude(a) = (1.5(σ) to 2.5(σ))
Period(p) = (8 and 16)

TRE x(t) = u+ γ(t)σ + ig Gradient(g) = (0.05(σ) to 0.1(σ))

SHI
x(t) = u+ γ(t)σ + ks
k = 1 if t > L, elsek = 0.

Shift magnitude(s) = (1.5(σ) to 2.5(σ))
Shift position(L) = (7,13,19)

Table 2. Equations for simulating concurrent control chart patterns

Control chart patterns Pattern equations
Shift+Cyclic x(t) = u+ γ(t)σ + ks+a ·sin(2πt/p)
Shift+Systematic x(t) = u+ γ(t)σ + ks+d(−1)t

Shift+Trend x(t) = u+ γ(t)σ + ks+ ig
Systematic+Cyclic x(t) = u+ γ(t)σ +d(−1)t +a ·sin(2πt/p)
Trend+Cyclic x(t) = u+ γ(t)σ + ig+a ·sin(2πt/p)
Trend+Systematic x(t) = u+ γ(t)σ + ig+d(−1)t

Table 3. Confusion matrix of testing results using the proposed ICA-SVM model.

True pattern class
Identified patterns class

Shift+Trend Shif+Cyc Shift+Sys Trend+Cyc Trend+Sys Sys+Cyc
Shift+Trend 92.97% 0.00% 7.03% 0.00% 0.00% 0.00%
Shift+Cyc 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%
Shift+Sys 0.00% 0.00% 98.44% 0.00% 1.56% 0.00%

Trend+Cyc 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%
Trend+Sys 0.00% 0.00% 2.34% 0.00% 97.66% 0.00%
Sys+Cyc 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
Average 97.23%

performance and a much faster learning speed than SVM
model [20]. Therefore, the single ELM model using the
original data as direct inputs and the ICA-ELM model
utilizing the same procedure as the ICA-SVM model
described earlier are used as comparison models in this
study.

It is known that the most important and critical
parameter of ELM is the number of hidden nodes and
ELM tends to be unstable in a single run forecasting [21,
22]. Therefore, the single ELM and ICA-ELM models
with different numbers of hidden nodes varying from 1 to
30 were constructed. For each number of nodes, the
single ELM and ICA-ELM models are repeated 30 times
and the number of hidden nodes that gives the smallest
testing RMSE value is selected for the single ELM and
ICA-ELM models. In this study, the ELM model with 30
hidden nodes and the ICA-ELM model using 21 hidden
nodes have smaller RMSE values. Therefore, they are the
best models of the ELM and ICA-ELM models,
respectively

Table5 and Table6 show respectively the recognition
results of the ICA-ELM and single ELM models. The
average correct classification rates of the ICA-ELM and
single ELM models are respectively 54.44% and 21.63%.
Compared to the recognition results of the ICA-SVM
model, we find that the ICA-ELM and ELM models
cannot perform well for recognizing concurrent CCPs.
Thus, the ICA-SVM model still has the highest average
correct classification rate.

In order to assess the robustness of the ICA-SVM
method, the performance of the single SVM, single ELM,
ICA-ELM and ICA-SVM models was tested using 10
independent runs. Based on the findings in Table7, it can
be observed that the ICA-SVM method outperforms the
three comparison models under all runs. This indicates
that the ICA-SVM approach indeed provides better
classification accuracy than the other three approaches.
Nevertheless, the ICA-SVM method has the lowest
standard deviation (S.D.) and hence can provide a more
stable classification result. It is worth to note that the
recognition performances of the ICA-ELM and
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Table 4. Confusion matrix of testing results using the single SVM model.

True pattern class
Identified patterns class

Shift+Trend Shif+Cyc Shift+Sys Trend+Cyc Trend+Sys Sys+Cyc
Shift+Trend 37.11% 16.41% 35.94% 4.69% 1.56% 0.00%
Shift+Cyc 0.00% 96.88% 0.00% 3.13% 0.00% 0.00%
Shift+Sys 0.00% 0.00% 75.00% 0.78% 24.22% 0.00%

Trend+Cyc 0.00% 50.00% 0.00% 50.00% 0.00% 0.00%
Trend+Sys 0.00% 3.13% 7.81% 11.72% 77.34% 0.00%
Sys+Cyc 0.00% 17.19% 3.13% 1.56% 6.25% 71.88%
Average 62.98%

Table 5. Confusion matrix of testing results using the ICA-ELM model.

True pattern class
Identified patterns class

Shift+Trend Shif+Cyc Shift+Sys Trend+Cyc Trend+Sys Sys+Cyc
Shift+Trend 76.56% 14.06% 7.42% 0.00% 0.39% 1.56%
Shift+Cyc 8.59% 33.59% 14.84% 35.94% 5.47% 1.56%
Shift+Sys 16.41% 23.44% 30.47% 16.41% 13.28% 0.00%

Trend+Cyc 29.69% 14.84% 0.00% 46.88% 8.59% 0.00%
Trend+Sys 14.06% 2.34% 7.81% 0.00% 75.78% 0.00%
Sys+Cyc 15.63% 17.19% 9.38% 15.63% 14.06% 28.13%
Average 54.45%

Table 6. Confusion matrix of testing results using the single ELM model.

True pattern class
Identified patterns class

Shift+Trend Shif+Cyc Shift+Sys Trend+Cyc Trend+Sys Sys+Cyc
Shift+Trend 37.89% 23.44% 12.89% 4.69% 17.58% 1.17%
Shift+Cyc 33.59% 21.09% 19.53% 7.81% 16.41% 1.56%
Shift+Sys 38.28% 21.88% 12.50% 10.16% 14.06% 3.13%

Trend+Cyc 37.50% 17.19% 21.09% 7.03% 15.63% 1.56%
Trend+Sys 28.91% 17.97% 21.09% 8.59% 21.88% 1.56%
Sys+Cyc 28.13% 23.44% 20.31% 7.81% 15.63% 4.69%
Average 21.63%

ICA-SVM models are, respectively, better that that of the
single ELM and SVM models. This indicates that the ICA
model can effectively extract useful information from the
observed concurrent CCPs and can be used to further
improve the recognition accuracies of the SVM and ELM
models.

5 Conclusions

Effective recognition of concurrent CCPs is an
important and challenging task in statistical process
control. In this study, a scheme for recognizing
concurrent CCPs by integrating ICA and SVM is
proposed. The proposed scheme, firstly, uses ICA to the
observed concurrent pattern to generate ICs. Then, the
SVM model is used for the target IC for pattern
recognition. Six concurrent CCPs are used in this study
for evaluating the performance of the proposed method.

Experimental results show that the proposed ICA-SVM
scheme can produce accurate and stable recognition
results and outperforms the single SVM, single ELM and
ICA-ELM models. According to the results, it can be
concluded that the ICA-SVM scheme is an effective
alternative to recognize concurrent control chart patterns
in manufacturing processes.
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Table 7. Robustness evaluation of the ICA-SVM, single SVM, ICA-ELM and single ELM models.

Methods ICA-SVM Single SVM ICA-ELM Single ELMRuns
1 97.23% 62.98% 54.45% 21.63%
2 95.56% 69.83% 59.13% 29.20%
3 97.00% 59.13% 60.94% 23.68%
4 96.15% 59.74% 53.49% 24.16%
5 94.11% 60.22% 49.40% 31.43%
6 93.75% 60.34% 51.44% 23.08%
7 94.59% 63.94% 52.52% 24.40%
8 94.59% 61.54% 43.87% 24.88%
9 99.76% 61.66% 37.86% 29.63%
10 92.07% 63.70% 52.52% 32.60%

Average 95.48% 62.31% 51.56% 26.47%
S.D. 0.022 0.031 0.068 0.039
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