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Abstract: Suppose that both Alice and Bob receive independent random bits without any bias, which are influenced by an independent
noise. From the received random bits, Alice and Bob are willing to extract common randomness, without any communication. The
extracted common randomness can be used for authentication or secrets. Recently, Bogdanov and Mossel derived an upper bound of
the agreement probability, based on the min-entropy of outputs. In this paper, we derive a generalized upper bound of the probability
of extracting common random bits from correlated sources, using the Rènyi entropy of order 1/(1−ε), whereε is the error probability
of the binary symmetric noise. It is shown that the generalized upper bound is always less than or equal to the previous bound.
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1 Introduction

Recent research has studied the exploitation of processing
deviations for the unique identification of electronic
devices, by extracting unique information, which is
influenced by the internal electronic characteristics of the
device [1]. However, since the extraction process can be
influenced by random noise, which is affected by
temperature, electro-magnetic waves, or interference
between other devices, a small deviation in the extraction
process can result in a disagreement between the final
results on both sides. Therefore, a good information
distillation algorithm is required, to increase the
agreement probability for a pair of extraction processes.

In this paper, we derive an upper bound of agreement
probability of common random bits that are
independently extracted by Alice and Bob, without any
communication from correlated sources, when noise
independently and uniformly occurs between each bit.
There are several studies for the theoretical performance
of single bit extraction by Alice and Bob [2],[3]. A trivial
protocol is known, in which both sides use the firstk-bit
of the generatedn-bit random data. Recently, Bogdanov
and Mossel derived an upper bound, based on the

min-entropyk of outputs [3]. In their result, it is shown
that there is no protocol that can achieve higher
agreement probability than 2−kε/(1−ε). In this paper, we
derive a new upper bound, based on the Rènyi entropy of
order 1/(1− ε), whereε is the error probability of the
binary symmetric noise. It is shown that the new upper
bound is always less than or equal to the previous upper
bound, based on the min-entropy of the generated outputs.

This paper is organized as follows. In Section 2, we
briefly summarize the related work, and explain basic
notions of entropies for self-containedness. In Section 3,
the new upper bound of agreement probability that the
same random bits are extracted from correlated sources is
derived. In addition, because the Rènyi entropy can be
approximated by the Shannon entropy for small error
probabilityε, we will represent the new bound in terms of
the Shannon entropy. In Section 4, numerical simulations
on the upper bounds of agreement probability with the
various error probabilityε and output bias will be
presented Finally, we conclude this paper in Section 5.
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Fig. 1: Security models of random agreement.

Fig. 2: Security models of information reconciliation problem.

2 Preliminaries

2.1 Related Works

In this subsection, two cases are considered as related
research fields of this paper. Firstly, physically unclonable
functions (PUFs) are widely studied for various
applications [1]. The PUF is usually embedded in a
physical electronic device, and generates output that is
easily evaluated and hard to predict, based on the user
input. It is known that every device has slightly distinct
characteristics, due to fabricational variations that cannot
be completely removed, despite many tries of getting rid
of it, for decades. Instead of trying to prevent it, the PUF
exploits the phenomenon to generate a unique signature
of the device, which can be used for authentication or the
generation of a secret.

Consider that Alice extracts a signature sequence
from a PUF at timet1, and later Bob also extracts the
signature sequence from the same PUF at timet2. For
successful authentication, the extracted outputs should be
the same. However, since electronic characteristics are
easily affected by their environments, such as temperature
and electro-magnetic fields, the generated output can be
slightly changed. This situation can be modeled by
extracting output from a random source with noise, which
is the case considered in this paper, and is depicted in
Fig. 1. In this case, it is important to ensure that the
generated output is always the same with the same input,
for the use of authentication.

In the seminal work by Shannon [4], the well-known
pessimistic conclusion on perfect secrecy states that
prefect secrecy is possible only when both sides share a
secret key that is as long as the user message to be
protected, if an adversary can perfectly access the
cipher-text. After that, Wyner [5] and Csisźar and K̈orner

[6] showed that it is possible to securely communicate
between Alice and Bob, under the assumption of the
presence of noise in communication channels from Alice
to Bob, and to an adversary Eve. By taking various
assumptions on the adversary’s ability, many applications
have been derived in the field of physical layer security.

Among them, information reconciliation processes
are proposed in order to solve many problems in
cryptography and security issues [7,8,9,11,12,13,14,15,
16]. In this problem, it is assumed that Alice and Bob
want to share a secret key by generating random numbers
from a correlated source with noise, instead of securely
transferring from Alice to Bob. Here, an adversary Eve
can access the correlated random source with independent
noise and observe the noiseless discussion messageF .
Through an interactive protocol, Alice, Bob, and even Eve
receive correlated information, which is characterized by
independent repetitions of a random experimented PrXYZ,
as depicted in Fig.2. Maurer [7] and Ahlswede and
Csisźar [8] showed that it is possible to generate common
randomnessK between Alice and Bob, without disclosing
any information onK to Eve. In their results, Alice and
Bob have an insecure communication channel in both
directions. Information reconciliation problems are
similar to randomness extraction, or correlation
distillation problems. However, the major issue for
information reconciliation problems is to make sure that
the adversary Eve cannot obtain any information onK, as
well as to extract common informationK on both sides.

2.2 Definitions of Entropies and Related Notions

In this subsection, we briefly introduce the definitions of
various entropies. Suppose that the generatedk output bits
are considered as a symbol. Then, the randomness of the
output can be measured by various entropies, based on the
k-bit blocks. For a random variable of thek-bit random
bits, the Shannon entropy is defined as

Hk(X) =− ∑
z∈F2k

Pr(z) log2Pr(z).

Note that the maximum value of Shannon entropy is
k-bit, which can be obtained when the probability of each
symbol occurring is equal to 1/2k. There are other
entropy definitions as measures of randomness or
uncertainty. The R̀enyi entropy of orderα for the random
variableX is defined as [10]

Rα ,k(X) =
1

1−α
log2 ∑

z∈F2k

Pr(z)α (1)

whereX is a random variable representingk-bit random
values. Note that the R̀enyi entropy produces different
values, according to the value of orderα. Another widely
used entropy notion is the min-entropy defined as

Mk(X) =− log2 sup
z∈F2k

Pr(z).
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The statistical distance between two distributionsD
andD′ over a sample spaceΩ is defined as

∑
ω∈Ω

|Pr
D
(ω)−Pr

D′
(ω)|.

A probability distribution D is said to beδ -close to
min-entropyt, if there is a probability distributionD′ of
min-entropyt, where the statistical distance betweenD
andD′ is less thanδ . Then, Bogdanov and Mossel proved
the following theorem.

Theorem 1. [3] For any two functions f,g : {0,1}n →
{0,1}k that are δ -close to min-entropy t and everyε ≤
1/2, we have

Pr
(x,y)ε

[ f (x) = g(y)]< 2−tε/(1−ε)+2δ .

If the outputs f (x) and g(y) at each side are exactly
uniform, the size k of the output is equal to the
min-entropy t and δ = 0. Then, for generated 1/ε
common random bits (i.e.,k = 1/ε), the agreement
probability of the outputs of Alice and Bob is less than
1/2 [3].

Suppose thatx andy are binary sequences with length
n. Each sequence is generated by the following random
process:xi , thei-th bit of x, is independently selected from
the set{0,1}. In this case,yi , thei-th bit of y, is the same as
xi with the probability 1−ε, and 1−xi with the probability
ε. That is, the probability that each side extracts a different
bit is ε. Without loss of generality, we can set the error
probability asε ≤ 1/2.

Suppose that there is a protocol to generate the same
k-bit on both sides of Alice and Bob, which can be
represented by a pair of functionsf and g, such as
f ,g : {0,1}n → {0,1}k, where f (x) andg(y) mean the
k-bit outputs of Alice and Bob fromn-bit inputsx andy,
respectively. It is assumed that the inputsx and y are
uniform.

3 Upper Bound of Common Random Bit
Extraction

The same auxiliary lemmas are required to derive the new
upper bound, based on the Rènyi entropy, which is given
in [3]. The first lemma is a consequence of the fact that
E(x,y)ε [ f (x),g(y)] is an inner product off andg.

Lemma 1. [3] For every pair of functions f,g : {0,1}n →
R, we have

E(x,y)ε [ f (x)g(y)]≤
√

E(x,y)ε [ f (x)( f (y)]

×
√

E(x,y)ε [g(x)(g(y)].

The next lemma is a result of the hypercontractive
inequality.

Lemma 2. [3] For a function h : {0,1}n → {0,1}, we
have

E[h(x)h(y)]≤ E[h(x)]1/(1−ε).

A probability distributionD is said to beδ -close to
Rènyi entropy rα of order α if there is a probability
distributionD′ of Rènyi entropyrα of orderα, where the
statistical distance betweenD andD′ is less thanδ . Using
the above lemmas, we can similarly prove the new upper
bound, as in the following theorem.

Theorem 2. Suppose that the k-bit outputs functions
f ,g : {0,1}n → {0,1}k are δ -close to R̀enyi entropy rα
of orderα = 1/(1− ε). Then, forε ≤ 1/2, we have

Pr[ f (x) = g(y)]≤ 2−εrα/(1−ε)+2δ .

Proof: The first steps of this proof can be carried out
in the same way as given in [3]. However, we repeat them
for the self-containedness. Suppose that thek-bit outputs
functions f andg have the Ŕenyi entropy of orderα. For
z∈ {0,1}k, let fz andgz be the functions{0,1}n →{0,1},
defined as

fz(x) =

{

1, if f (x) = z
0, otherwise

and similarly,

gz(x) =

{

1, if g(x) = z
0, otherwise.

By using the same method in [3], the agreement
probability can be bounded as

Pr[ f (x) = g(y)] = ∑
z∈{0,1}k

Pr[( f (x) = z)∧ (g(y) = z)] (2)

= ∑
z∈{0,1}k

E[ fz(x),gz(y)] (3)

≤ ∑
z∈{0,1}k

√

E[ fz(x) fz(y)]E[gz(x)gz(y)] (4)

≤ ∑
z∈{0,1}k

√

E[ fz(x)]1/(1−ε)E[gz(x)]1/(1−ε) (5)

≤

√

∑
x∈{0,1}k

E[ fz(x)]1/(1−ε)

×

√

∑
x∈{0,1}k

E[gz(x)]1/(1−ε). (6)

The first equality in (2) comes fromf (x) = g(y) = z,
and the second equality in (3) is satisfied from the fact
that f (x) = z andg(y) = z if and only if fz(x)gz(y) = 1.
The inequalities in (4) and (5) are obtained from
Lemmas 1 and 2, respectively. Finally, the last inequality
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in (6) can be derived from the Cauchy-Schwarz
inequality.

From the assumption of this theorem,f andg generate
k-bit outputs that areδ -close to R̀enyi entropyrα of order
α = 1/(1− ε). Let pz be the expectations ofE[ fz(x)] =
E[gz(y)]. Then, the right side of the last inequality can be
rewritten as

∑
z∈{0,1}k

p1/(1−ε)
z = 2−rα (1−α) = 2−εrα/(ε−1).

This is because of the definition of the Rènyi entropy of
order α given in (1). Note that this is a more
straightforward representation than the previous approach
[3], which uses the inequalitypz ≤ 2t , by the definition of
the min-entropy.

Next, by the same argument in [3], we can prove the
case that the functionsf andg are close Ŕenyi entropy of
orderα distributions Letδ ′ > δ . By taking a larger value
of n, there existf ′ andg′ of Renyi entropy of orderα, such
that Pr[ f 6= f ′] ≤ δ ′ and Pr[g 6= g′] ≤ δ ′. Clearly, we have
Pr[ f = g]×Pr[ f = f ′]×Pr[g= g′] = Pr[ f ′ = g′]. Then for
δ ′ ≪ 1, we have the following inequality

Pr[ f (x) = g(x)]≤ Pr[ f ′(x) = g′(x)](1−δ ′)−2

= Pr[ f ′(x) = g′(x)](1+
∞

∑
k=2

kδ ′k−1)

= Pr[ f ′(x) = g′(x)]+Pr[ f ′(x) = g′(x)]
∞

∑
k=2

kδ ′k−1

≤ Pr[ f ′(x) = g′(x)]+2δ ′

≤ 2−εrα/(ε−1)+2δ ′

when Pr[ f ′(x) = g′(x)] ≤ 2(1− δ ′)2/(2− δ ′). Becauseδ
is an arbitrary value, the theorem is proved.

�

Because the order of the Rènyi entropy is equal toα =
1/(1− ε), for ε → 0, we haveα → 1. Therefore, we can
obtain an upper bound with respect to the Shannon entropy
of the extracted output, with very small error probabilityε.

Corollary 1. For ε → 0, we have

Pr[ f (x) = g(y)]≤ 2−εHk

where Hk is the Shannon entropy for the k-bit random
blocks.

Proof:

It is well-known that the Renyi’s entropy converges to
the Shannon entropy, which can be checked forα → 1,

Rk(X) =
1

1−α
log2 ∑

z∈{0,1}k

[Pr(z)]α

=−
log2 ∑z∈{0,1}k Pr(z)− log2 ∑z∈{0,1}k[Pr(z)]α

1−α

=−
d

dα
log2 ∑

z∈{0,1}k

[Pr(z)]α |α=1

=− ∑
z∈{0,1}k

Pr(z) log2Pr(z)

= Hk(X).

Therefore, forα → 1, the R̀enyi entropy of orderα
converges to the Shannon entropy. From Theorem 3, for
ε → 0, we haveα = 1/(1− ε)→ 1, then we have

Pr[ f (x) = g(y)]≤ 2−εHk.

�

Now, it is possible to show that the upper bound in
Theorem 3 is always less than or equal to that in [3].

Theorem 3. For α > 1 and two arbitrary functions
f ,g : {0,1}n → {0,1}k, suppose that the R̀enyi entropy
of order α and min-entropy of the outputs from f and g
are equal to rα and t, respectively. Then we have

2−εrα/(1−ε) ≤ 2−εt/(1−ε).

Proof:
We have

log2 ∑
z∈F2k

pα
z ≤ log2 ∑

z∈F2k

pα−1
z ∑

z∈F2k

pz

= (α −1) log2 sup
z∈F2k

pz.

Therefore if the factor(α−1) on the right side is moved to
the left side and multiplied by−1 on both sides, we have

rα =
1

1−α
log2 ∑

z∈F2k

pα
z ≥ t.

�

4 Numerical Results

If the functions f and g produce common random bits
with statistical biasη , the bias can reduce the amount of
output entropies. Fig.3 shows a comparison between the
upper bounds of the agreement probability, based on the
min-entropy and R̀enyi entropy of orderα, with respect
to the biasη of the output bits. In this case, it is assumed
that the output biasη is equal to the error probabilityε.
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Fig. 3: The new upper bound of agreement probability in terms
of bias of output bits.
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Fig. 4: Comparison of the upper bounds, based on Rènyi and
min-entropies with the error probabilityε = 0.001.

This corresponds to the case that the functionsf and g
produce the output values with statistical bias that is
proportional to the error probability. The top line with the
block squares in Fig.3 corresponds to the previous upper
bound of the agreement probability presented in [3]. The
center line with the red circles in Fig.3 shows the new
upper bound, based on the Rènyi entropy of order
α = 1/(1 − ε) presented in this paper. Finally, for
comparison, the bottom line with the blue triangles
depicts the agreement probability of the trivial extraction
that is choosing the firstk bits from the inputs. Consider

0.0 0.1 0.2 0.3 0.4 0.5
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
gr

ee
m

en
t P

ro
ba

bi
lit

y

Bias of Outputs

 Renyi (0.01)
 min
 Shannon
 Trivial

Fig. 5: Comparison of the upper bounds, based on Rènyi and
min-entropies with the error probabilityε = 0.01.
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Fig. 6: Comparison of the upper bounds, based on Rènyi and
min-entropies with the error probabilityε = 0.1.

that by taking ak-bit part from then-bit random input, the
uniformity of the input sequence can be broken. The
effect of the bias at the output is illustrated in Fig.3 for
the trivial case. Note that the proposed upper bound is
always less than or equal to the previous one presented in
Theorem3.

The next four figures from Fig.4 to Fig. 7 show the
comparison results between the Rènyi entropy and
min-entropy, with respect to the four fixed error
probabilities. Moreover, these figures show the main
statement in Corollary1, which states that the new upper
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Fig. 7: Comparison of the upper bounds, based on Rènyi and
min-entropies with the error probabilityε = 0.2.

bound can be approximated by using the Shannon
entropy, when the error probabilityε is sufficiently low.
Therefore, in Figs.4 and5, the upper bound, based on the
Shannon entropy, is almost equal to the proposed upper
bound, based on the Rènyi entropy of order 1/(1− ε).
However, for the cases of the error probabilitiesε = 0.1
or 0.2, there are some deviations between the two lines,
based on the R̀enyi and Shannon entropies, respectively.
Note that the lines obtained by substituting Rènyi entropy
values with the Shannon entropy values in Figs.6 and7
cannot be legitimate upper bounds. However, because
there are still large differences between the upper bounds
and the trivial case (i.e., just taking the firstk-bits from
the correlatedn-bit inputs), we can think that it may be
possible to find better strategies for the agreement,
although the new bound is closer to the trivial case than
the previous one. Also, note that as pointed out in [3],
when the error probability is large enough, it is more
possible to find better protocols for the agreement,
because the deviation between the upper bound and the
trivial case is greater than that with the lower error
probability.

5 Conclusion

For the problem of extracting common randomness by
Alice and Bob from correlated sources that are influenced
by independent random noise without any bias, we derive
the new upper bound of the agreement probability on both
sides, based on the Rènyi entropy. We then prove that the
new upper bound is always tighter than the previous
bound, based on the min-entropy, because of the
properties of R̀enyi entropy. Moreover, forε → 0, the

Shannon entropy based tighter upper bound can be used
instead, because the Rènyi entropy converges to the
Shannon entropy, for the same size of random blocks.
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