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Abstract: Suppose that both Alice and Bob receive independent random bits withgbias, which are influenced by an independent

noise. From the received random bits, Alice and Bob are willing to ext@tinton randomness, without any communication. The

extracted common randomness can be used for authentication dss&eeently, Bogdanov and Mossel derived an upper bound of
the agreement probability, based on the min-entropy of outputs. In ther,pae derive a generalized upper bound of the probability

of extracting common random bits from correlated sources, usingéhgiRntropy of order A(1— ¢), wheree is the error probability

of the binary symmetric noise. It is shown that the generalized upperhiswalways less than or equal to the previous bound.

Keywords. Renyi entropy, common randomness, agreement probability, sdrattion, information reconciliation.

1 Introduction min-entropyk of outputs B]. In their result, it is shown
that there is no protocol that can achieve higher

e . 1— .
Recent research has studied the exploitation of processinggiﬁleerger?;verﬁssglgzszgn bige dgi).nltnrkfr:; é)r?t[r)c?gg/ v;(fa

deviations for the unique identification of electronic
. order V(1 - ¢), where¢ is the error probability of the

devices, by extracting unique information, which is - ) : X
influenced by the internal electronic characteristics ef th binary symmetric noise. It is shown that the new upper
bound is always less than or equal to the previous upper

device fl]. However, since the extraction process can be .
influenced by random noise, which is affected by bound, based on the min-entropy of the generated outputs.

temperature, electro-magnetic waves, or interference

between other devices, a small deviation in the extraction

process can result in a disagreement between the final

results on both sides. Therefore, a good information

distillation algorithm is required, to increase the This paper is organized as follows. In Section 2, we

agreement probability for a pair of extraction processes. briefly summarize the related work, and explain basic
In this paper, we derive an upper bound of agreemennotions of entropies for self-containedness. In Section 3,

probability of common random bits that are the new upper bound of agreement probability that the

independently extracted by Alice and Bob, without any same random bits are extracted from correlated sources is

communication from correlated sources, when noisederived. In addition, because theeli entropy can be

independently and uniformly occurs between each bitapproximated by the Shannon entropy for small error

There are several studies for the theoretical performancerobability €, we will represent the new bound in terms of

of single bit extraction by Alice and Bol2[,[3]. A trivial the Shannon entropy. In Section 4, numerical simulations

protocol is known, in which both sides use the fidbit on the upper bounds of agreement probability with the

of the generatea-bit random data. Recently, Bogdanov various error probabilitye and output bias will be

and Mossel derived an upper bound, based on theresented Finally, we conclude this paper in Section 5.
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; [6] showed that it is possible to securely communicate
Alice Bob . .

N — between Alice and Bob, under the assumption of the
presence of noise in communication channels from Alice
) ¥ - v 9y to Bob, and to an adversary Eve. By taking various
K' The agreement probabilty K assumptions on the adversary’s ability, many applications

. . have been derived in the field of physical layer security.
Fig. 1. Security models of random agreement. Among them, information reconciliation processes

are proposed in order to solve many problems in
cryptography and security issueg§,9,11,12,13 14,15,
16]. In this problem, it is assumed that Alice and Bob

want to share a secret key by generating random numbers
7 . from a correlated source with noise, instead of securely
M T~ \Y transferring from Alice to Bob. Here, an adversary Eve
v

can access the correlated random source with independent

Alice E\{e Bob noise and observe the noiseless discussion medsage
N i . . . :
Insecure chanigh— [ tirsacure channel Through an interactive protocol, Alice, Bob, and even Eve
receive correlated information, which is characterized by

independent repetitions of a random experimented Br
as depicted in Fig2. Maurer [7/] and Ahlswede and
Csisar [8] showed that it is possible to generate common
randomnes& between Alice and Bob, without disclosing
any information orK to Eve. In their results, Alice and

Fig. 2: Security models of information reconciliation problem.

2 Preliminaries Bob have an insecure communication channel in both
directions. Information reconciliation problems are
2.1 Related Works similar to randomness extraction, or correlation

distillation problems. However, the major issue for
In this subsection, two cases are considered as relateidformation reconciliation problems is to make sure that
research fields of this paper. Firstly, physically uncldeab the adversary Eve cannot obtain any informatiorkormas
functions (PUFs) are widely studied for various well as to extract common informatidfon both sides.
applications I]. The PUF is usually embedded in a
physical electronic device, and generates output that is
easily evaluated and hard to predict, based on the use2.2 Definitions of Entropies and Related Notions
input. It is known that every device has slightly distinct _ . _ . _
characteristics, due to fabricational variations thancan N this subsection, we briefly introduce the definitions of
be completely removed, despite many tries of getting ridVarous entropies. Suppose that the generataatput bits
of it, for decades. Instead of trying to prevent it, the PUF &€ considered as a symbol. Then, the randomness of the
exploits the phenomenon to generate a unique signatur@UtpUt can be measured by various entropies, based on the

of the device, which can be used for authentication or thg<Dit blocks. For a random variable of thebit random

generation of a secret. bits, the Shannon entropy is defined as
Consider that Alice extracts a signature sequence He(X) = — Pr(z)log, Pr(2).
from a PUF at timet;, and later Bob also extracts the ZEZ

k
signature sequence from the same PUF at tignd-or ?

successful authentication, the extracted outputs shauld b~ Note that the maximum value of Shannon entropy is
the same. However, since electronic characteristics ar&-bit, which can be obtained when the probability of each
easily affected by their environments, such as temperaturéymbol occurring is equal to /2. There are other
and electro-magnetic fields, the generated output can bentropy definitions as measures of randomness or
slightly changed. This situation can be modeled byuncertainty. The Bnyi entropy of ordetr for the random
extracting output from a random source with noise, whichvariableX is defined asj0]

is the case considered in this paper, and is depicted in 1 u

Fig. 1. In this case, it is important to ensure that the Rak(X) = 7= 109 Z Pr(z) 1)
generated output is always the same with the same input, Zhok

for the use of authentication. whereX is a random variable representikepit random

In the seminal work by Shanno#][ the well-known \514es. Note that the @yi entropy produces different
pessimistic conclusion on perfect secrecy states tha@alues, according to the value of order Another widely

prefect secrecy is possible only when both sides share gseq entropy notion is the min-entropy defined as
secret key that is as long as the user message to be

protected, if an adversary can perfectly access the Mk(X) = —log, supPr(z).
cipher-text. After that, Wynerg] and Csisar and Korner 2P
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The statistical distance between two distributidhs Lemma 2. [3] For a function h : {0,1}" — {0,1}, we

andD’ over a sample spad@ is defined as have
S [Prw)—Pr(w)|. E[h(x)h(y)] < E[h(x)]/(X~9).
weQ b D

. L . ) A probability distributionD is said to bed-close to
A probability distribution D is said to bed-close to Renyi entropyry of order a if there is a probability
min-entropyt, if there is a probability distributio®’ of distributionD’ of Rényi entropyry of ordera, where the
min-entropyt, where the statistical distance betwen giagistical distance betwe@nandD' is less thard. Using
andD'is less thard. Then, Bogdanov and Mossel proved (he ghove lemmas, we can similarly prove the new upper

the following theorem. bound, as in the following theorem.
Theorem 1. [3] For any two functions fg : {0,1}" —
{0,1}¥ that are &-close to min-entropy t and evegy<
1/2, we have

Theorem 2. Suppose that the k-bit outputs functions
f,g : {0,1}" — {0,1}X are &-close to Rnyi entropy §
of ordera =1/(1—¢). Then, fore < 1/2, we have

- —te/(1-¢)
e =80 <2 e Pr{f(x) = g(y)] < 2%a/079) 425,

If the outputs f(x) and g(y) at each side are exactly Proof: The first steps of this proof can be carried out
uniform, the sizek of the output is equal to the inthe same way as given iB][ However, we repeat them
min-entropy t and & = 0. Then, for generated /& for the self-containedness. Suppose thatkiét outputs
common random bits (i.e.k = 1/¢), the agreement functionsf andg have the Rnyi entropy of ordeor. For
probability of the outputs of Alice and Bob is less than z< {0,1}¥, let f, andg, be the function§0,1}" — {0,1},

1/2 [3]. defined as

Suppose that andy are binary sequences with length
n. Each sequence is generated by the following random f 1, ff(x)=z
processy;, thei-th bit of x, is independently selected from 2(X) = 0, otherwise

the sef{0,1}. In this casey;, thei-th bit ofy, is the same as
x; with the probability 1-¢, and 1—x; with the probability  anq similarly,
€. That s, the probability that each side extracts a differen ’

bit is €. Without loss of generality, we can set the error 1, ifgx) =z
probability ase < 1/2. 0z(x) = { ’ .
Suppose that there is a protocol to generate the same 0, otherwise

k-bit on both sides of Alice and Bob, which can be _ .

represented by a pair of functions and g, such as BY using the same method in3][ the agreement
f,g : {0,1}" — {0,1}, where f(x) andg(y) mean the probability can be bounded as

k-bit outputs of Alice and Bob fronm-bit inputsx andy,

respectively. It is assumed that the inputsandy are P =0Wl= % Pi(f(x)=2)A(9(y)=2)] (2)

uniform. ze{0,1}K

= Y E[f(x),0(y)] ®)

z€{0,1}k
3 Uppel' Bound Of Common Random B|t < z \/E[fZ(X) fz(y)]E[gz(X)gz(Y)} (4)
Extraction 2e{0,1}k
The same auxiliary lemmas are required to derive the new < 3 \/E[fz(x)]1/<1*£)E[gz(x)]l/(lff) (5)
upper bound, based on th&Ri entropy, which is given ze{0,1}%
in [3]. The first lemma is a consequence of the fact that
E(xy). [T (X),0(y)] is an inner product of andg. < \/ > E[f00]Y/2e)
xe{0,1}k

Lemma 1. [3] For every pair of functions fg : {0,1}" —
R, we have X > E[gz(x))V/(1-¢). (6)
x€{0,1}K

Exy)e [F()IW)] < 1/ Epxy)e [T (F(Y)]
The first equality in 2) comes fromf(x) = g(y) =z,
% 1/ Epxy)e [9(X) (9(Y)]- and the second equality iB)(is satisfied from the fact
that f(x) = zandg(y) = zif and only if f;(X)g,(y) = 1.
The next lemma is a result of the hypercontractive The inequalities in 4 and &) are obtained from
inequality. Lemmas 1 and 2, respectively. Finally, the last inequality
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in (6) can be derived from the Cauchy-Schwarz It is well-known that the Renyi's entropy converges to
inequality. the Shannon entropy, which can be checkedfer 1,

From the assumption of this theorefmandg generate
k-bit outputs that ar@-close to Rnyi entropyr4 of order Re(X) = log, Z [Pr(z)]®
a=1/(1—¢). Let p; be the expectations d&[f;(x)] = l-a ze{0,1}k

E . Then, the right side of the last inequality can be _
re[\?vzrgt)ga]n as 9 quality _ 1002 ¥ ae oy P1(2) —100; 3 e (0.1 [P1(2)]*

l1-a
d
p%/ (1-) _ o—ra(l-a) _ o—era/(e-1) = —wlogz z [Pr(2)]? |q=1
ze{0,1}% z€{0,1}k
=— Z Pr(z)log, Pr(z)
This is because of the definition of the2®yi entropy of SO
order a given in (). Note that this is a more = Hx(X).

straightforward representation than the previous aproac )
[3], which uses the inequalitg, < 2, by the definition of ~ Therefore, fora — 1, the Renyi entropy of ordera
the min-entropy. converges to the Shannon entropy. From Theorem 3, for

Next, by the same argument iB]] we can prove the €0, we haver =1/(1-¢) — 1, then we have

case that the functionsandg are close Rnyi entropy of o —eHy
ordera distributions Letd’ > J. By taking a larger value Pf(x) =g(y)] <2
of n, there existf’ andg’ of Renyi entropy of ordea, such 0

that Pf # '] < &' and Pfg # ¢] < &'. Clearly, we have Now, it is possible to show that the upper bound in

Pr{f =g x Prif = f]x Prig=g] = Prif’=g]. Thenfor  rheorem 3 is always less than or equal to thagin [
0’ <« 1, we have the following inequality

Theorem 3. For a > I(l and two arbitrary functions
B f,g : {0,1}" — {0, 1}, suppose that thedRyi entropy
Prif(x) = g(x)] <Pf'(x) =g (x)](1-95)? of order a and min-entropy of the outputs from f and g
® are equal to i and t, respectively. Then we have
=Pif'09 =g 0]+ 5 k& 1) auatiok pectively

2—era/(1—6) < 2—st/(17£)_

o / /k—1
= PiF'00 = g 0]+ PrF (0 =g (0] 5 k2 oroof
< Prf'(x) = ¢ (x)] + 28’ We have
< 2fa/(E=1) 4 oy log, $ pf<log, § PSS pe
B zEF z€F zeFy
=(a—-1)log, s .
when PH(X) = ¢ (X)] < 2(1— &)2/(2— &'). Becaused (a—1)log supp;

k
is an arbitrary value, the theorem is proved. z

O Therefore if the factofa — 1) on the right side is moved to

Because the order of thebRyi entropy is equal ta the left side and multiplied by-1 on both sides, we have

1/(1-¢), for e — 0, we havear — 1. Therefore, we can 1 u
obtain an upper bound with respect to the Shannon entropy la = 1—a log, p; >t

; - a
of the extracted output, with very small error probabikity Zehk

Corollary 1. For € — 0, we have

4 Numerical Results
PI{f (x) = g(y)] <27 . :
If the functions f and g produce common random bits
with statistical biagy, the bias can reduce the amount of
where H is the Shannon entropy for the k-bit random output entropies. Fig3 shows a comparison between the
blocks. upper bounds of the agreement probability, based on the
min-entropy and Bnyi entropy of ordein, with respect
to the biasn of the output bits. In this case, it is assumed
Proof: that the output biag is equal to the error probability.
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Fig. 3: The new upper bound of agreement probability in terms Fig. 5: Comparison of the upper bounds, based amR and

of bias of output bits. min-entropies with the error probabiligy= 0.01.
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Fig. 4. Comparison of the upper bounds, based @ny and Fig. 6: Comparison of the upper bounds, based @ny and
min-entropies with the error probabiligy= 0.001. min-entropies with the error probabilig/= 0.1.

This corresponds to the case that the functiénsnd g that by taking &-bit part from then-bit random input, the
produce the output values with statistical bias that isuniformity of the input sequence can be broken. The
proportional to the error probability. The top line with the effect of the bias at the output is illustrated in Fgyfor
block squares in FigB corresponds to the previous upper the ftrivial case. Note that the proposed upper bound is
bound of the agreement probability presented3jn The  always less than or equal to the previous one presented in
center line with the red circles in Fi@ shows the new Theorem3.

upper bound, based on theeR®i entropy of order The next four figures from Figd to Fig. 7 show the

a =1/(1—¢) presented in this paper. Finally, for comparison results between theeryi entropy and
comparison, the bottom line with the blue triangles min-entropy, with respect to the four fixed error
depicts the agreement probability of the trivial extractio probabilities. Moreover, these figures show the main
that is choosing the firdt bits from the inputs. Consider statement in Corollari, which states that the new upper
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Shannon entropy based tighter upper bound can be used
instead, because theéRyi entropy converges to the

o

5 Reny ©2) Shannon entropy, for the same size of random blocks.
o9 1 k\ —4A— Shannon
0.8 \\‘\ \\ —v— Trivial
07 Acknowledgement
NN ’

This work was supported by the National Research
\L}k Foundation of Korea (NRF) grant funded by the Korea
= s government (MEST) (NRF-2011-0016664). This work

N
~

Agreement Probability
o
(4
;/'

03 e was supported by the Power Generation and Electricity
o2 aaa e Delivery of the KETEP grant funded by the Korea
JYVY VYV VIV IVIVVVIYIVVVIVYVVYY government Ministry of Trade, Industry and Energy
0.10.0 0.1 0.2 0.3 0.4 0.5 (20131020400760)
Bias of Outputs The authors are grateful to the anonymous referee for a

careful checking of the details and for helpful comments
that improved this paper.

Fig. 7: Comparison of the upper bounds, based @my® and

min-entropies with the error probabiligy= 0.2. References

[1] G. E. Suh and S. Devadas, “Physical Unclonable Functions
for Device Authentication and Key Generation,®noc. the

bound can be approximated by using the Shannon 44th Design Automation Conflune, (2007).
entropy, when the error probability is sufficiently low. [21K. Yang, “On the impossibility of non-interactive
Therefore’ in F|gs4 and5' the upper bound’ based on the correlation distribution,” Theoret. Comput. Sci. 382,
Shannon entropy, is almost equal to the proposed upper 157-166 (2007). ,
bound, based on the&Ryi entropy of order A(1— ¢). [3] A. Bogdan_ov and E. Mossel, “On Extracting Common
However, for the cases of the error probabilitees- 0.1 Random Bits From Correlated SourceEE. Trans. Inf.
or 0.2, there are some deviations between the two lines, _ 1N€o" 57, 6351-6355 (2011).
based on the &nyi and Shannon entropies, respectively. 1 ¢ E S,é‘angon' ch;]mrggng;é'o?nl;hfg‘% of secrecy
Note that the lines obtained by substitutingriyi entropy [5] Zy%e\r?vf,’ne? “T%lzt\./vireec-tés Ch’annnge" éyst 'i'.ech 54
values with the Shannon entropy values in Figsnd7 1355-1387 ’(1975) ' B
cannot be legitimate upper bounds. However, because[6] | CsiszAr and J'_ lorner. “Broadcast channels with
there are still large differences between the upper bounds ;

o . . ; I confidential messages/EEE Trans. Inf. Theory|T-24,
and the trivial case (i.e., just taking the fitsbits from 339-348 (1978). g Y

the correlated-bit inputs), we can think that it may be (7] y. maurer, “Secret key agreement by public discussion from

possible to find better strategies for the agreement, " common information,’TEEE Trans. Inf. Theory39, 733—

although the new bound is closer to the trivial case than 742 (1993).

the previous one. Also, note that as pointed outdh [  [8]R. Ahlswede and I. Csigz, “Common randomness in

when the error probability is large enough, it is more information theory and cryptography. |. Secret sharing,”

possible to find better protocols for the agreement, IEEE Trans. Inf. Theory39, 1121-1132 (1993).

because the deviation between the upper bound and thg9] U. Maurer and S. Wolf, “Secret-key agreement over

trivial case is greater than that with the lower error unauthenticated public channels—part I: definitions and a

probability. completeness resullEEE Trans. Inf. Theory49, (2003).

[10] A. Renyi, “On measures of entropy and information,”
in Proc. 4th Berkeley Symp. Mathematical Statistics and
Probability, 1, 547-561 (1961).

[11] U. Maurer, R. Renner, and S. Wolf, “Unbreakable keys

. from random noise,” irBecurity with Noisy DataP. Tuyls,

For the problem of extracting common randomness by g syoric, and T. Kevennar, Eds. Springer-Verlag, 21-44

Alice and Bob from correlated sources that are influenced (2007).

by independent random noise without any bias, we derivg12] A. A. Gohari and V. Anantharam, “Information-theoretic

the new upper bound of the agreement probability on both  ~ key agreement of multiple terminals—part IEEE Trans.

sides, based on theeRyi entropy. We then prove that the Inf. Theory 56, 3973-3996 (2010).

new upper bound is always tighter than the previous[13] A. Gohari and V. Anantharam, “Information-theoretic key

bound, based on the min-entropy, because of the agreement of multiple terminals—part Il: Channel models,”

properties of Rnyi entropy. Moreover, foe — 0, the IEEE Trans. Inf. Theory56, 3997-4010 (2010).

5 Conclusion

© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 2, 673-679 (2014)Wwww.naturalspublishing.com/Journals.asp —r~ S‘p 679

Young-Sik Kim
received B.S., M.S., and
Ph.D. degrees in electrical
engineering and computer
science from Seoul National
University in 2001, 2003, and

[14] I. Csisar and P. Narayan, “Common randomness and secrey
key generation with a helpedEEE Trans. Inf. Theory46,
344-366 (2000).

[15] A. Khisti, S. N. Diggavi, and G. Wornell, “Secret-key
generation with correlated sources and noisy channels,” in
Proc. IEEE Int. Symp. Inf. Thearforonto, Canada, 1005—
1009 (2008). 2007, respectively. He joined

[16] S. Watanabe and Y. Oohama, “Secrey key agreement Semiconductor Division
from vector Gaussian sources by rate limited public -~ Samsung Electronicls
communications,” inProc. IEEE Int. Symp. Inf. Theory and carried out research and

Austin, TX, USA, 2597-2601 (2010). development for secure hardware IPs for various
embedded systems, especially for smart-cards until the
end of August in 2010. He is an assistant professor at
Chosun University, Gwangju, Korea. He is an Editor of

the Journal of Communications and Networks (JCN) from

2013. His research interests include cryptographic
engineering and information theory including hardware

security, embedded security, physical layer securitya dat

hiding, channel coding, and signal design.

Dae-Woon Lim received
the B.S. and M.S. degrees
in department of electrical
: = engineering from KAIST,
5 25 y Daejeon, Korea, in 1994 and
s 1997, respectively. In 2006,
< he received the Ph.D. degree
\/ in electrical engineering and
‘ _ computer science from Seoul
National University. From
1997 to 2002 he was with LG Industrial Systems as a
senior research engineer, where he developed recognition
algorithm, real-time tracking algorithm, and electricl tol
collection system. He is currently an associate professor
in department of information and communication
engineering at Dongguk University, Seoul, Korea. His
research interests are in the area of signal processing,
wireless communications, cryptography, and security.

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Preliminaries
	Upper Bound of Common Random Bit Extraction
	Numerical Results
	Conclusion

