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Abstract: Obtaining mode shape values at rotational degrees of freedom (dofs)is a challenge from dynamic test of beam structures,
for the reason that rotational dofs are usually difficult to be measured.This article proposes an expansion method to deal with spatial
incompleteness of measured mode shapes of beam structures. One improvement is that the constrained linear least squares is combined
into traditional expansion procedure proposed by Liu (2011), to estimatemodeling errors in a physical meaning interval; and the
initial guesses on mode-correction coefficients could be obtained using anon-iterative technique for improving the convergence of the
approach. A cantilever beam is used to investigate the proposed method byestablishing two numerical models: one is a beam finite
element model as a baseline; the other is the model to represent real structure with different stiffness distribution compared with the
baseline. One can conclude from numerical results that the approach has a better convergence performance than traditional expansion
method, and spatially incomplete measured modes for beam structures, including higher order modes, can be expand properly and to
be fundamental modal data for model updating or damage detection of beam structures.
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1 Introduction

Though beam structures are wide used in engineering, it
very difficult to obtain rotational mode shape values in
experiment because of the limitations of present test
devices. The mismatch between the measured mode
shape and the corresponding one from finite element
model should be solved firstly for the application of
model updating and damage detection in structures [1,2].

In general, there are two techniques solving spatial
incompleteness of measured mode shapes: one is model
reduction, and the other is modal expansion. Guyan [3]
and Irons [4] firstly proposed static reduction and
expansion method, by partitioning the mass and stiffness
matrices into a set of master and slave dofs. This method
is wide used because it can provide accurate results for
lower order mode shapes, while errors will increase with
the order of mode shapes increase. In addition, the type
and number of master dofs will have a significant
influence on model reduction or modal expansion. For
improving Guyan’s method, inertial terms were taken into

account when estimate slave dofs from measured master
dofs [5,6], while these improved methods also have to be
selected carefully. O’Callahan [7] proposed the
System-Equivalent-Reduction Expansion Process
(SEREP) method, and this method has long been
recognized to be more accurate than Guyan scheme in
matching modal data for both modal expansion and
model reduction. One should note that it is on the
opposite when the experimental mode shapes are not well
correlated with the corresponding analytical one [8]. Liu
(2011) [9] presented an iterative method for dealing with
spatial incompleteness of measured experimental mode
shapes. While estimation of model-correction factors in a
physical meaningful interval is not discussed. Liu and Li
(2013) [10] discussed the application of an iterative
expansion method to offshore platforms, though the
problem of model errors’ estimation in a physical
meaningful interval is studied, how to improve
convergence performance become unsolved. Reference
[11] studied a non-iterative mode shape expansion
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technique, numerical and experimental results
demonstrated the effectiveness of the proposed approach.
The limitation is that discrepancy between the test model
and the corresponding finite element model should in a
certain range.

2 Preliminary: Least squares formulations

In mathematics, a bound constrained least squares
technique could be used to solve inverse problem, and
variables in a mathematical model can be estimated in
prescribed intervals by

min‖Ax −b‖2
2 ,α ≤ x ≤ β (1)

Where x is a variable vector,A and b is coefficient
matrix respectively, andα,β are corresponding bound
conditions.

When A is not full rank, a popular approach is
Tikhonov regularization [12]

min‖Ax−b‖2
2+λ 2‖L (x−x0)‖

2
2 (2)

wherex0 is an initial parameter estimate andL is typically
chosen to yield approximations to thelth order derivative,
l= 0, 1, 2.λ is called the regularization parameter which
can be calculated using Generalized Cross-Validation
(GCV), the Discrepancy principle, and so on [13].

3 Modeling Errors Estimation Based on the
Improvement of initial guess on
mode-correction factors

As studied in reference [9], the model-correction factors
and the mode-correction factors are coupled in the
following equation

(

K♦
n,i j +δ j

T K̃ s
i j

)

α = f −
(

K♦
s,i j −M♦

s,i j

)

δ j (3)

WhereK⋄
n,i j , K̃s

i j , K⋄
s,i j andM⋄

n,i j are theNm-by-Ne , N-
by-Ne , Nm-by-N andNm-by-N matrices, respectively,α
and δ are model-correction factors and mode-correction
factors respectively.

To solve Eq. (3), the possible method is to provide an
initial guess on mode-correction factorsδ , which will have
a significant influence on the iterative solution of Eq. (3).
In the following, our main purpose is to find better initial
guesses onδ .

Contrast to initial values in reference [9]-these values
are obtained from the finite element model directly, we
make an improvement on these initial values based on
measured modal information, by neglecting the modeling
errors, as expressed by

KΦ j
′−λ j

′MΦ j
′ = 0 (4)

WhereK and M are stiffness and mass matrices of the
finite element model,λ ′

j,Φ ′
j are the jth measured

eigenvalues and eigenvectors of the true structure. Eq. (4)
is based on the assumption that

K = K′ (5)

M = M′ (6)

Eq. (5) and Eq. (6) show that modeling errors between the
finite element model and the true model are ignored.

Using ΦT
i to represent eigenvectors of the ith order

from finite element model, then premultiplying Eq. (4),
one obtains

ΦT
i KΦ j

′−λ j
′ΦT

i MΦ j
′ = 0 (7)

Assume the jth modeΦ ′
j is a modification ofΦ ′′

j by
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∑
s=1
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s, j (8)
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Substitute Eq. (8) and Eq. (9) into Eq. (7), one obtains

ΦT
i KΦ ′′

j +
N
∑

s=1
δsΦT

i KΦ ′′
s, j−

(

λ j
′ΦT

i MΦ ′′
j +λ j

′
N
∑

s=1
δsΦT

i MΦ ′′
s, j

)

= 0
(10)

Denote
HΘ

i j = ΦT
i KΦ ′

j (11)

HΘ
s,i j = ΦT

i KΦ ′
s, j (12)

EΘ
i j = λ ∗

j ΦT
i MΦ ′

j (13)

EΘ
s,i j = λ ∗

j ΦT
i MΦ ′

s, j (14)

Thus Eq. (10) can be rewritten as

HΘ
i j +

N

∑
s=1

δs, jH
Θ
s,i j = λ ∗

j EΘ
i j +λ ∗

j

N

∑
s=1

δs, jE
Θ
s,i j (15)

Rearranging Eq. (15), yields

N

∑
s=1

δs, j

(

KΘ
s,i j −λ ∗

j MΘ
s,i j

)

= λ ∗
j EΘ

i j −HΘ
i j (16)
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Letting
G = HΘ

s,i j −λ ∗
j EΘ

s,i j (17)
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Eq. (16) can be rewritten as

G∆ 0
j = λ ∗

j EΘ
i j −HΘ

i j (19)

Analytically, Eq. (19) can be solved using a standard
inverse operation ifG is a nonsingular square matrix,

∆ 0
j = G−1

(

λ ∗
j EΘ

i j −HΘ
i j

)

(20)

Substituting Eq. (20) into Eq. (3), then Eq. (3) can be
uncoupled

(

K♦
n,i j +∆ 0

j
T
K̃ s

i j

)

α = f −
(

K♦
s,i j −M♦

s,i j

)

∆ 0
j (21)

Similar to Eq. (2.1), Eq. (3.19) can be solved employing
the bound constrained least squares technique

min‖Aα −b‖2
2 ,P1 ≤ α ≤ P2 (22)

WhereP1 andP2 define a physical meaningful interval for
modeling errors’ estimation, and

A =
(

K♦
n,i j +∆ 0

j
T
K̃ s

i j

)

(23)

b = f −
(

K♦
s,i j −M♦

s,i j

)

∆ 0
j (24)

4 Numercial Study

A cantilever beam as shown in Figure 1, is used to
investigate the proposed method by establishing two
numerical models: one is a beam model as a baseline
whose stiffness and mass denoted asK andM ; the other
is the model to represent real structure with different
stiffness distribution compared with the baseline, this
model could be called the measured model or true model,
and denoted asK′ , M′ respectively. The length of the
beam is 4 m; Young’s modulus is taken as 3.2×1010 Pa,
and mass density per unit length 125 kg/m. The cross
section area and the moment of inertia are 0.05m2 and
1.66×10−4 m4, respectively.

Fig. 1: A cantilever beam to be measured

A real structure with different stiffness distribution is
established by regarding it as a damaged beam
considering the deterioration of stiffness. Here, two
damages are modeled by reducing stiffness at elements 8
and 13 by 35% and 55%, respectively, from the baseline
model. Besides stiffness reduction at above two damaged
elements, the parameters of the true model are considered
to be slightly different from those of the baseline model
for other elements too. Specifically, the modeling errors
of other elements of the true model are produced based on
the absolute value of the Gaussian distribution, with mean
0 and standard deviation 0.05. The first five frequencies of
the true model are 6.954, 41.90, 117.32, 243.47 and
379.45 Hz, respectively.

Firstly, we demonstrate the correctness and the
feasibility of the approach. Because each node has 2 dofs,
translational and rotational dofs, then we can calculate the
dofs of the beam 2×20 =40. Assume all dofs of the beam
are measured, and mode-correction factors are known and
boundary conditions are imposed as−1 ≤ α ≤ 0.
Implementing the improved method without iteration, one
obtains Fig. 2, which demonstrates that model correction
factors could be estimated perfectly.

Fig. 2: Comparison of preset and estimated model correction
factors

Convergence performance of the approach will be
investigated in the following discussion. As discussed in
reference [9], the difference between the true and
estimated mode shape values at master dofs was
employed to evaluate the performance of convergence,
and denoted asκ . Assume translational dofs could be
measured and the first five modes are expected to be
expanded, which means 20 rotational dofs are taken as
slave ones and should be estimated. Implementing our
proposed approach and traditional technique in reference
[9] with 5 iterations, a comparison of normalizedκ is
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shown in Fig. 3. One can find significant improvement on
convergence performance utilizing our approach, which
means iteration numbers in our proposed method could be
reduced when applied to complex structures. A
comparison of estimated model correction factors
employing traditional expansion method and our
approach imposing the constraint−0.6≤ α ≤ 0 is shown
in Fig. 4. From Fig. 4 one can conclude that our proposed
method could estimate modeling errors in a certain
interval and provide more accurate estimation results,
which also mean a physical meaningful range is easy and
effective to be imposed.

Fig. 3: κ against the number of iterations employing traditional
method and our approach

Fig. 4: Comparison of estimated model correction factors
employing traditional expansion method and our approach

Table 1: MAC values from the existing methods and the
improved approach

Mode
MAC

Guyan Dynamic Serep Improved
1 1 1 0.99999 1
2 0.99993 0.99993 0.99951 0.99998
3 0.99974 0.99974 0.99878 0.99994
4 0.99994 0.99994 0.99976 0.99996
5 0.99894 0.99895 0.99433 0.99983

Then, we compare the performance of mode shape
expansion from the approach to that of present
techniques, such as Guyan, Dynamic, and SEREP
method. In this example, modeling errors are considered
as discussed above, the purpose of the mode shape
expansion not only includes modeling errors’ estimation
in a physical interval, but also with better MAC values
between the true (simulated) spatially complete mode
shapes and expanded one. Assume the constraint on
modeling errors is−1 ≤ α ≤ 0, and implementing the
proposed method, one can obtain MAC values of the first
five mode shape between the true and the expanded as 1,
0.99998, 0.99994, 0.99996 and 0.99983, respectively;
detailed comparison results between Guyan, Dynamic,
SEREP and the approach are shown in Table 1. Fig. 5 to
Fig. 7 is the first three mode shapes comparison results at
slave dofs using the Guyan method and the proposed
approach, respectively. The numerical results indicate that
these modes can be expanded well and modeling errors
can be estimated reasonably in a physical meaningful
range.

Fig. 5: The first mode shape comparison at slave dofs using the
existing methods and the proposed approach
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Fig. 6: The second mode shape comparison at slave dofs using
the existing methods and the proposed approach

Fig. 7: The third mode shape comparison at slave dofs using the
existing methods and the proposed approach

5 Conclusion

In practice, it is impossible for model-correction factors
less than -1, as discussed in reference [9] because when
this factor equal to -1 which means the completely loss of
stiffness; even the member of the structure has been
strengthened, we also can conclude that the factor should
be in a certain interval. This article proposes an expansion
method to deal with the spatial incompleteness of
measured mode shapes of beam structures. One
improvement is that the constrained linear least squares is
combined into traditional expansion procedure proposed

by Liu (2011), to estimate modeling errors in a physical
meaning interval; and the initial guesses on
mode-correction coefficients could be obtained using a
non-iterative technique for improving the convergence of
the approach. Numerical results from the cantilever beam
show that 1) modeling errors could be estimated in a
physical meaningful interval using constrained least
squares effectively, 2) the approach outperforms
traditional mode shape expansion method in convergence
performance, and 3) the proposed method could expand
spatially incomplete measured modes of beam structures
properly, especially for higher order modes.
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