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Abstract: Using the Bonsai trees primitive and Gentry’s CPA-secure (chosen-plaintext attack) public-key encryption (PKE) scheme,
we propose an efficient chosen-ciphtertext secure PKE scheme over lattice. If the decision variant of the learning with errors (LWE)
problem is hard and the one-time signature used in this scheme is strong unforgeable, the proposed PKE scheme is indistinguishable
against the adaptive chosen-ciphtertext attack (IND-CCA2). One of the characters for this scheme is that, before any encryption
operation, the encryption algorithm uses a new choice rule to fix the public parameter matrixes used in the encryption operation.
With the help of this new choice rule, we can achieve the chosen-ciphtertextsecurity with much shorter the public key size in contrast
to the lattice-based encryption scheme proposed in STOC’09 by Peikert. Moreover, as a CCA-secure PKE scheme, the message-to-
ciphtertext expanse factor of this scheme which is controlled efficiently is nearly closed to the message-to-ciphtertext expanse factor
of Gentry’s scheme which is CPA secure. Due to the quantum intractability ofthe LWE problem on which the scheme is based, the
proposed PKE scheme is secure even in quantum-era.

Keywords: Lattice-based cryptography; chosen-ciphtertext attack; bonsai tree; learning with errors problem, message-to-ciphtertext
expanse factor.

1. Introduction

Post-quantum cryptography provides the security
protection even in the quantum era and it has been a hot
topic in recent years. As a typical post-quantum
cryptography, lattice-based cryptography has gained more
and more attentions in the public key cryptography field.
Regev defined a natural intermediate problem called the
learning with errors (LWE) problem and gave the
quantum reduction between the LWE problem and the
standard lattice hard problem in 2005 [16]. Since then the
LWE problem has provided the foundations for many
lattice-based cryptosystems, including the PKE schemes
[8,16], (H)IBE ((hierarchical) identity-based encryption)
schemes [1,2,5,7], CCA-secure encryption schemes [13,
14] and others cryptosystems [6,9,10,15,17]. Peikert
constructed a naturalLWE- based encryption scheme which
acts as a KEM (key encapsulation machine) in [13] to
against the adaptive chosen-ciphtertext attack [12]. This
construction can be seen as an alternative to the other
CCA-secure encryption scheme in [14]. One of the

interesting techniques in the construction of [13] is that
2k matrices are used to simulate the decryption oracle in
the security proof. The other interesting techniques in
[13] (also [14]) is that hybrid encryption technical is used
to reduce the ciphtertext size which is important to
present a higher efficiency. Even then, the public key in
[13] consists of 2k + 1 random matrices which do
increase the overhead at computation, memory and
transfers. So it is necessary to reduce the public key size
in the lattice-based CCA-secure encryption scheme. On
the other hand, note that the proposed lattice-based PKE
schemes are secure against chosen-plaintext attack (CPA)
and there still no an efficient lattice-based CCA-secure
PKE scheme is proposed which can be used to encrypt
the message directly. In fact, we can transform a
lattice-based HIBE into a CCA-secure PKE scheme by
[4], while the message-to-ciphtertext expanse factor (M-C
factor) in this case is very large. Hence, it is interesting to
build an IND-CCA2 secure PKE scheme with the small
M-C factor and the short public key size.

In this paper we combine a lattice-based CPA-secure
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PKE scheme [8] and the bonsai trees primitive [5] to
design an efficient CCA-secure PKE scheme over lattice.
Based on the hardness of the decision variant LWE
problem and the strong unforgeability of a one-time
signature scheme, this scheme is provably IND-CCA2
secure. It is similar with [13] and [14] in this paper that
we also use some random matrices to achieve the
IND-CCA2 security. While it is differ from [13] that we
give a new choice rule to choose the public matrices used
in the encryption process. This choice rule help us
successfully simulate the decryption oracle by onlyk + 1
random matrices in the security proof of the proposed
scheme. As a result, the public key size of the proposed
scheme is efficiently reduced. Moreover, the M-C factor
of this scheme is also controlled effectively. More
precisely, the M-C factor is shorter than that in the
CCA-secure KEM of [13] and it is only little larger than
that of [?] which is CPA-secure.

This paper is organized as follows, Section 2
introduces some basic tools and notations for our
construction; Section 3 proposes our lattice-based
chosen-ciphtertext secure PKE scheme and Section 4
proves the security of the proposed scheme and analyzes
its efficiency. At last, we give an summarize in Section 5.

2. Primitives

2.1. Notations

Throughout the paper, we use bold lower-case letters to
denote vectors in column form, and bold upper-case letters
to denote matrices. Let‖ · ‖ be the Euclidean norm. By
convention, we say a norm of a matrix is the norm of its
the longest column. IfO is a description of classify the
growth of functions, then the functionpoly(n) denotes an
unspecified functionf(n) = O(nc) for some constantc.
We see a functiong(n) is negligible ifg(n) = 1/poly(n).
We see a functiong(n) is in ω(f(n)) if it grows faster
thancf(n) for any constantc. For any matrixT, T̃ denotes
the Gram-Schmidt orthogonalized matrix.Dα denotes the
Gaussian distribution overR with parameterα.

2.2. Lattice

Let B = {b1,b2, · · · ,bn} be a set ofn linearly
independent vectors. Then-dimensional lattice generated
by B is defined asΛ = {Bc =

∑
i∈[n] cibi, ci ∈ Z},

whereB acts as a basis for this lattice. A trapdoor basis of
a lattice is such a basis that vectors from this basis are the
smallest vectors of this lattice. In fact, if the norms of
vectors from a basis are small enough, they can still be
recognized as a trapdoor basis. In cryptographic
applications, any trapdoor basis is kept secret by its
holder.

In our construction, more attentions should be pay to
two special integer lattices which defined by a matrix
A ∈ Zn×m

q . More precisely, for a prime numberq and a
vectory ∈ Zn

q , those two lattices are defined as follows:
Λ⊥
q (A) = {x ∈ Zm

q ,Ax = 0(modq)} and
Λy
q(A) = {x ∈ Zm

q ,Ax = y(modq)}.

2.3. Learning with Errors Problem

Definition 1.For parameters(n,m, q), s ∈ Zn
q and an

error distribution χ over Zm
q , As,χ is a distribution

obtained by computing{A,Ats + x(modq)} where
A ∈ Zn×m

q is chosen uniformly and randomly and errors
vector x is chosen according to the distributionχ. The
Learning with Errors problem is defined as follows:
Given a sample fromAs,χ, output s with a noticeable
probability. The decision variant LWE problem is to
distinguishAs,χ from the uniform distribution.

Regev [16] shows that for certain noise distributions,
denoted Φ̄m

α , the LWE problem is as hard as the
worst-case SIVP problem (shortest independent vectors
problem) under a quantum reduction. This standard error
distribution Φ̄m

α is a Gaussian distribution overZm
q with

deviation qα >
√
n. We can sample an errors vector

according to the distribution̄Φm
α as follows: Samplem

numbers η1, η2, · · · ηm according to a Gaussian
distributionDα overR , and computeei = ⌊qηi⌉(modq)
where symbol⌊x⌉ denotes the closest integer tox. Then
let e = (e1, · · · , em) be an error vector in the LWE
problem.

We should note that a trapdoor basisT of lattice
Λ⊥
q (A) can be used to solve a LWE instance

y = Ats + e(modq) as follows and more details are
referred to [?].

1. ComputeTy = Te(modq). Due to the fact that both
T ande with short norm, thenTe(modq) = Te holds with
an overwhelming probability.

2. Computee= T−1Te(modq).
3. Find vectors from A,e, y.

2.4. Discrete Gaussian Distribution

The Gaussian distribution over lattice has been widely
used in the lattice-based cryptography. The Gaussian
function onRm with parameterσ > 0 can be defined as:
ρσ(x) = exp(π||x||/σ2). For a matrixA ∈ Zn×m

q , the
discrete Gaussian distribution on latticeΛ⊥

q (A) is defined
by

DΛ⊥
q (A),σ(x) =

ρσ,c(x)

ρσ,c(Λ⊥
q (A))

.

In fact, the distributionDΛ⊥
q (A),σ(x) can be viewed as a

“conditional” distribution, resulting from sampling
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x ∈ Rn from a Gaussian with the parameterσ, and under
the condition of the eventx ∈ Λ⊥

q (A).
For ann-dimension latticeΛ and positive real number

ǫ > 0, there is an important notion called the smoothing
parameterηǫ(Λ) which is defined to be the smallest
positive σ such thatρ1/σ(Λ∗\{0}) ≤ ǫ [11]. The key
property of the smoothing parameter is that ifσ > ηǫ(Λ),
then every coset of the latticeΛ has roughly equal mass.
Moreover, for almost all matrixesA ∈ Zn×m

q , there is a
negligibleǫ such thatηǫ(Λ⊥

q (A)) is less thanω(
√
logm).

We recall two main results in the lattice-based
cryptography as the following Propositions which are
important to our constructions. More details can be found
in [5,3].

Proposition 1.[5] (Bonsai tree)Let BS be a trapdoor
basis of latticeΛ⊥

q (AS) where AS ∈ Zn×m
q , whose

columns generate the entire groupZn
q . Let A′ ∈ Zn×m′

q

be a arbitrary matrix ands ≥ ‖B̃S‖ω(log n) be a
Gaussian parameter. Hence, there exists a probabilistic
polynomial-time (PPT) algorithm
ExBasis(BS ,A = (A′,AS), s) that outputs a trapdoor
basisT of the latticeΛ⊥

q (A) satisfying‖T̃‖ ≤ ‖B̃S‖.

Proposition 1 as know as the bonsai trees primitive,
shows that a trapdoor basis of the latticeΛ⊥

q (AS) can be
used to sample a trapdoor basis of relate lattice
Λ⊥
q ((A

′,AS)).

Proposition 2.[3] (The Trapdoor Sampling
Algorithm)There is a PPT algorithm that, on input1n,
outputs a matrixA ∈ Zn×m

q , and a full-rank setS, where
the distribution ofA is statistically close to the uniform
distribution over Zn×m

q and ‖S‖ ≤ O(n log q). In
particularly, the setS can be efficiently converted to be a
trapdoor basis of the latticeΛ⊥

q (A).

Proposition 2 shows how to sample an essentially
uniform matrixA ∈ Zn×m

q with a trapdoor basis of lattice
Λ⊥
q (A).

2.5. Gentry’s Encryption Scheme

We introduce Gentry’s encryption scheme as follows. The
details are referred to [?].

KeyGen Run the trapdoor sampling algorithm in
Proposition 2 to obtain a matrixA ∈ Zn×m

q together with
a trapdoor basisT of lattice Λ⊥

q (A). Matrix A is the
public key andT the secret key.

Encryption To encrypt a messageM ∈ Zm×m
2 ,

choose a uniform random matrixS∈ Zn×m
q and an “error

matrix” X ∈ Zm×m
q according to the distribution̄Φm×m

α .
Output the ciphertextC = AtS+ 2X + M(modq).

Decryption ComputesE = TtC(modq), and then
outputM = T−tE(mod2).

Gentry’s encryption scheme is CPA-secure and its
correctness is used to prove that the correctness of our

scheme is satisfied. Moreover it is clear that the M-C
factor of this scheme is logq.

2.6. One-time Signature Scheme

Definition 2.A signature scheme is a triple of the PPT
algorithms as follows:KeyGen. Outputs a verification key
vk and signing keysk. Sign.Givensk and a messageµ,
outputs a signatureσ. Verification. Given a verification
keyvk, a messageµ and a signatureσ, either accepts the
signature or rejects the signature for messageµ.

The notion of the security we required in our construction
is the strong existential unforgeability under one-time
chosen-message attack which defined as follows: generate
vk andsk by the KeyGen algorithm and sendsvk to the
adversary. And then choose a messageµ and computes its
signatureσ, sendsσ to the adversary. The adversary wins
the game if he can output some(µ∗, σ∗) 6= (µ, σ) which
can be accepted by the Verification algorithm. The
signature scheme is a one-time strong existential
unforgeable signature if the advantage of any adversary in
above game is negligible.

2.7. IND-CCA2 Security of the Encryption
Scheme

Definition 3.A Cryptosystem is indistinguishable against
adaptive chosen-ciphtertext attack (IND-CCA2) if for any
efficient adversary, its advantage in the follows attack
game is negligible.

Setup Phase. The challenger runs the key generation
algorithm to generate the public key and the secret key of
the cryptosystem. The challenger sends the public key to
the adversary.

Decryption query. The adversary makes a series of
arbitrary queries to the decryption oracle. The decryption
oracle decrypts the queried ciphertext into corresponding
plaintext, sends the plaintext to the adversary.

Challenge. The adversary prepares two messagesM0,
M1 with the same length, and sends them to the encryption
oracle. The encryption oracle randomly chooses a bitb ∈
{0, 1} , encryptsMb into a target ciphtertextcb.

Decryption query. The adversary continues to submit
a series of arbitrary queries to the decryption oracle
exceptc = cb.

Guess. At lastly, the adversary should output a guess
b′. If b′ = b the adversary wins the attack game.

The advantage of the adversary in above game is
defined to beadv = |p(b = b′)− 1/2|.

3. Lattice-based CCA-secure Encryption
Scheme

Parameters. Let n be a secure parameter and
m = ⌊8n log q⌋ for q = poly(n). An errors distribution
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parameterα = 1/poly(n). There is a Gaussian sample
parameters which is the same as the definition of the
Proposition 1. Letk be the length of the verification key
in a strong unforgeable one-time signature scheme.

Key Generation. Let Ssign be a strong unforgeable
one-time signature scheme whose verification key is
vk ∈ {0, 1}k. We assume that the hamming weightl of
the verification key equals to⌊k/2⌋ or ⌊k/2⌋ + 1. Runs
the trapdoor sampling algorithm in Proposition 2, outputs
a matrix A statistically close to the uniform distribution
and the trapdoor basisT of the latticeΛ⊥

q (A). Randomly
chooses matrixesAi ∈ Zn×m

q for i = 1, 2, · · · , k. Then,
the public keys are matrixes(A,Ai) and secret key isT.

Encryption To encrypt a message
M ∈ Z

(l+1)m×(l+1)m
2 , the encryption algorithm operates

the following steps:
Step 1. Chooses a signing keysk and a verification

key vk whose hamming weigh is l. Set
vk = (vk1, vk2, · · · , vkk) wherevki ∈ {0, 1}.

Step 2. Chooses public matrixesAi as follows, if
vki = 1, matrix Ai is chosen, otherwise, ifvki = 0, no
matrix is chosen. Supposingvkji = 1 where
i = 1, 2, · · · , l, then letA = (A,Aj1 ,Aj2 , · · · ,Ajl).

Step 3. Chooses a random matrixS∈ Z
n×(l+1)m
q and

an errors matrixX ∈ Φ̄
(l+1)m×(l+1)m
α . Then computes

C = A
t
S+ 2X + M(modq).

Step 4. Computes an one-time signatureσ on C using
signing keysk which is generated in Step 1.

Hence,(C, vk, σ) is the ciphtertext ofM .
Decryption In order to decrypt a ciphtertext

(C, vk, σ), the decryption algorithm operates as follows:
Step 1. Inputs(C, vk, σ) to the verification algorithm

of the Ssign scheme, if output “1” goes to step 2,
otherwise, aborts.

Step 2. Chooses public matrixesAi as shown as Step
2 in the encryption algorithm. Then parse
A = (A,Aj1 ,Aj2 , · · · ,Ajl).

Step 3. Inputs (A,A,T, s) to the algorithm in
Proposition 1 which outputs a trapdoor basisT1 of the
latticeΛ⊥

q (A).
Step 4. ComputesE = Tt

1C(modq), and then
computesM = T−t

1 E(mod2).

4. Analysis on the Proposed scheme

4.1. Correctness

Let (C, vk, σ) be the ciphtertext generated by the
encryption algorithm. Sinceσ is generated by the Ssign
scheme, then it can be accepted by the verification
algorithm of the Ssign signature scheme in Step 1. It is
clear that the decryption algorithm can finish the step 2 to
fix public matrixes and get matrixA. The decryption
algorithm can sample a trapdoor basis ofΛ⊥

q (A) from
Proposition 1. Then Step 3 is finished. SinceT1 is a

trapdoor basis of latticeΛ⊥
q (A) and the errors matrixX is

sampled from the distribution̄Φ(l+1)m×(l+1)m
α , all entries

of T1 and X are sufficiently small. Then
E = Tt

1C = Tt
1(2X + M)(modq) will equal to

Tt
1(2X + M) over integer with an overwhelming

probability [?]. Hence, T−t
1 E = 2X + M . So

M = T−t
1 E(mod2).

The correctness is proven.

4.2. Security

Theorem 1.If the LWE problem whose errors matrix is
sampled from the distibution̄Φ(l+1)m×(l+1)m

α is hard and
the one-time signature scheme used in our construction is
strong unforgeable, the proposed PKE scheme is
IND-CCA2 secure.

Proof. In order to prove Theorem 1, we give four
games and we show that Gamei and Gamei + 1 are
indistinguishable for any PPT adversary. Hence we will
prove that Theorem 1 holds.

Game 1. It is the same as the standard IND-CCA2
game in Section 2.7.

Game 2. It is the same as Game 1, but, for any
decryption query(vk∗, ∗, ∗), an errors symbol⊥ is
always returned as the answer.

Game 3. Game 3 is the same as Game 2, but, in the
setup phase, ifvk∗ji = 1 then choose a random matrix as
thejith public matrix. Otherwise, the public matrixes are
all the outputs of the trapdoor sampling algorithm in
Proposition 2. Namely, the trapdoor basis of lattice
Λ⊥
q (Ai) are known to the challenger whenvk∗i = 0.

Game 4. It is the same as Game 3, except, in the
challenge ciphtertext(vk∗,C∗, σ∗), C∗ is generated
uniformly and randomly, moreover, it is independent on
vk∗ andσ∗.

We give four claims to show that Game 1∼ Game 4
are indistinguishable.

Claim 1. If the one-time signature scheme used in our
construction is strong existential unforgeable, then Game
1 and Game 2 are indistinguishable for any PPT adversary.

The proof of Claim 1 can be found in [14] and we omit
it.

Claim 2. Game 2 and Game 3 are statistically
indistinguishable for any PPT adversary.

Proof. By proposition 2, we know that the distribution
of the output matrix in trapdoor sampling algorithm is
statistically close to the uniform distribution. Hence, ifwe
replace some public matrixes with the outputs of the
trapdoor sampling algorithm, the adversary can not
distinguish it. Then Claim 2 holds.

Claim 3. Game 3 and Game 4 are computational
indistinguishable under the hardness hypothesis of the the
decision version LWE problem whose the errors

distribution is distributed according toΦ
(l+1)m×(l+1)m

α .
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Proof. If there is a PPT adversaryA can distinguish
Game 3 and Game 4 with advantageε, then we can
construct a challengerC to solve the decision version
LWE problem.

Suppose the challengerC wants to distinguish the
uniform distribution overZn×(l+1)m

q × Z
(l+1)m×(l+1)m
q

and the distribution{(B,C)|C = BtS+ X(modq)} where
B ∈ Z

n×(l+1)m
q , S ∈ Z

n×(l+1)m
q and the errors matrix

X ∈ Φ
(l+1)m×(l+1)m

α . C interacts withA to simulate
either Game 3 or Game 4 as follows:

Setup Phase. C generates a signing key and a
verification key of the Ssign scheme, denotedvk∗ and
sk∗ respectively. Letvk∗ji = 1 for i = 1, 2, · · · , l and
vk∗j′

i

= 0 for i = 1, 2, · · · , k − l. Running the trapdoor
sampling algorithmk − l times to outputk − l matrixes
Bi with the trapdoor basis of the corresponding lattice
Λ⊥
q (Bi). Let B = (B0,B2, · · · ,Bl) whereBi ∈ Zn×m

q .
Then setAji = Bi for i = 1, 2, · · · , l andAj′

i
= Bi for

i = 1, 2, · · · , k − l. Hence, A = B0 and Ai for
i = 1, 2, · · · , k are public key matrixes .

Decryption Oracle. The adversary can adaptively
query the decryption oracle, and the challenger simulates
the decryption oracle in this phase. For a ciphtertext
(vk,C, σ), if vk = vk∗ outputs an error symbol⊥,
otherwise,vk 6= vk∗, sincevk andvk∗ are with the same
hamming weigh, then there exist some position satisfies
vkj = 1 andvk∗j = 0. As shown as the setup phase,C
knows the trapdoor basis of latticeΛ⊥

q (Aj). Hence,C can
run the Bonsai trees algorithm in Proposition 1 to
generate a trapdoor basis of latticeΛ⊥

q (A) where A

satisfiesC = A
t
S + X(modq). Then he decrypts the

ciphtertext into a message by the trapdoor basis of
Λ⊥
q (A).

Challenge. A randomly chooses two messageM b

with the same length forb ∈ {0, 1} and sends them toC.
The challengerC randomly chooses a bitb ∈ {0, 1},
samples a matrixC′∗ from the uniform distribution or a
LWE problem instance defined above and computes
C∗ = 2C′∗ + M b. Generates the one-time signatureσ∗ of
C∗ using the signing keysk∗. Hence(σ∗,C∗, vk∗) as the
challenge ciphtertext.C sends (σ∗,C∗, vk∗) as the
challenge toA.

Decryption Oracle. The adversaryA continues to
query the decryption oracle which are answered as
described above. In this phase, any form of(vk∗, ∗, ∗) is
queried would return an error symbol⊥.

It is clear that, if C′∗ is an uniform matrix,
2C′∗ + M b(modq) is also an uniform matrix and ifC′∗ is
a LWE problem instance then2C′∗ + M b(modq) is
identical to the distribution of the encryption algorithm in
the proposed scheme. Hence, if the adversary can
distinguish the Game 3 and Game 4 with some advantage
ε, thenC can distinguish the uniform distribution and the
distribution obtained by computing LWE peoblem
instance with the same advantage. Hence, the LWE
problem can be solved byC. Claim 3 is proven.

Table 1 Efficiency Comparison

Schemes Public key length (bit) the M-C factor Security

[12] (2kmn+ nl)logq (km/l + 1) log q′ + vs/l CCA
Our scheme (k + 1)mnlogq logq + vs/(l + 1)2m2 CCA

[8] mnlogq logq CPA

Claim 4. The advantage for any adversary in Game 4
is 0.

Proof. SinceC∗ is chosen uniformly and randomly,
then the adversary wins in game 4 always with probability
1/2, so Claim 4 is proven.

Put four Claims together, we know that any PPT
adversary wins the standard IND-CCA2 game with a
negligible advantage.

Theorem 1 is proven.

4.3. Efficiency

We firstly note one fact is that the scheme in [13] is more
efficient at computation cost than our scheme, for, the first
scheme is built by hybrid encryption techniques which
the PKE algorithm only used to encrypt the symmetric
key while our scheme is in the public key setting which is
used to encrypt the message. The advantage of our
scheme is that both the public key size and the M-C factor
are short. Table 4.1 shows the comparison details in
which vs denotes the length of the verification key and
the one-time signature. Namely, in contrast to Peikert’s
construction, we efficiently reduce the public key size of
our scheme down to(k + 1)mnlogq bits. So our scheme
presents good efficiency at memory and transfers. At the
same time, a logical assumption is thatvs ≪ (l + 1)2m2,
then the M-C factor of this scheme is only little larger
than the M-C factor of [8] log q .

5. Conclusions

We present an efficient IND-CCA2 secure PKE scheme
using the Bonsai tree primitive and Gentry’s encryption
scheme in this paper. The public key size of the propose
scheme is reduced efficiently and the M-C factor of the
propose scheme is also controlled to be a logical number.
Based on the hardness of the decision variant of the LWE
problem and the strong unforgeability of the one-time
signature scheme used in this paper, we prove that the
propose scheme is IND-CCA2 secure.
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