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Abstract: Using the Bonsai trees primitive and Gentry’s CPA-secure (chokentgxt attack) public-key encryption (PKE) scheme,
we propose an efficient chosen-ciphtertext secure PKE schemdattiee. If the decision variant of the learning with errors (LWE)
problem is hard and the one-time signature used in this scheme is strargaatfle, the proposed PKE scheme is indistinguishable
against the adaptive chosen-ciphtertext attack (IND-CCAZ2). Oneethtaracters for this scheme is that, before any encryption
operation, the encryption algorithm uses a new choice rule to fix the publémeder matrixes used in the encryption operation.
With the help of this new choice rule, we can achieve the chosen-ciphtegeutity with much shorter the public key size in contrast
to the lattice-based encryption scheme proposed in STOC’09 by Peikereéover, as a CCA-secure PKE scheme, the message-to-
ciphtertext expanse factor of this scheme which is controlled efficientlgasiy closed to the message-to-ciphtertext expanse factor
of Gentry’s scheme which is CPA secure. Due to the quantum intractabilityeof WE problem on which the scheme is based, the
proposed PKE scheme is secure even in quantum-era.

Keywords: Lattice-based cryptography; chosen-ciphtertext attack; bonsailé@®ing with errors problem, message-to-ciphtertext
expanse factor.

1. Introduction interesting techniques in the construction @8][is that
2k matrices are used to simulate the decryption oracle in

Post-quantum  cryptography provides the securitytN€ security proof. The other interesting techniques in
protection even in the quantum era and it has been a hdt-3l (@lso [14]) is that hybrid encryption technical is used
topic in recent years. As a typical post-quantum © reduce the ciphtertext size which is important to
cryptography, lattice-based cryptography has gained mor@€Sent a higher efficiency. Even then, the public key in
and more attentions in the public key cryptography field.[13 consists of 2k + 1 random matrices which do
Regev defined a natural intermediate problem called thdncrease the overhead at computation, memory and
learning with errors (LWE) problem and gave the transfers. So itis necessary to reduce the public key size
guantum reduction between the LWE problem and the! the lattice-based CCA-secure encryption scheme. On
standard lattice hard problem in 20QB5]. Since then the ~ the other hand, note that the proposed lattice-based PKE
LWE problem has provided the foundations for many Schemes are secure against chosen-plaintext attack (CPA)
lattice-based cryptosystems, including the PKE scheme&nd there sitill no an efficient lattice-based CCA-secure
[8,16], (H)IBE ((hierarchical) identity-based encryption) PKE scheme is proposed which can be used to encrypt

schemes1,2,5,7], CCA-secure encryption schemeks] the_ message direqtly. In fact, we can transform a
14] and others cryptosystemss,p,10,15,17). Peikert lattice-based HIBE into a CCA-secure PKE scheme by

constructed a naturale- based encryption scheme which [4]; while the message-to-ciphtertext expanse factor (M-C
acts as a KEM (key encapsulation machine) 18][to factor) in this case is very large. Hence, it is interestmg t
against the adaptive chosen-ciphtertext attac. [This build an IND-CCA2 secure PKE scheme with the small

construction can be seen as an alternative to the othél-C factor and the short public key size.
CCA-secure encryption scheme il4]. One of the In this paper we combine a lattice-based CPA-secure
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PKE scheme §] and the bonsai trees primitives]| to In our construction, more attentions should be pay to
design an efficient CCA-secure PKE scheme over lattice. two special integer lattices which defined by a matrix
Based on the hardness of the decision variant LWEA € Z}*™. More precisely, for a prime numberand a
problem and the strong unforgeability of a one-time vectory € Z7, those two lattices are defined as follows:
signature §cheme, th'is scheme is provably IND—CCAZAqL(A) = {x € Z"Ax = o0(mody)} and
secure. It is similar with13] and [14] in this paper that AV(A) = {x € Z, Ax = y(mody)}.
we also use some random matrices to achieve the
IND-CCA2 security. While it is differ from 13] that we
give a new choice rule to choose the public matrices use%
in the encryption process. This choice rule help us
successfully simulate the decryption oracle by dnly 1 _
random matrices in the security proof of the proposedPefinition 1.For parameters(n,m,q), s € Z; and an
scheme. As a result, the public key size of the proposed@'Tor distribution x over Z* , A,y is a distribution
scheme is efficiently reduced. Moreover, the M-C factorobtained by computing{A,A’s + x(mod;)} where
of this scheme is also controlled effectively. More A € Z;*™ is chosen uniformly and randomly and errors
precisely, the M-C factor is shorter than that in the vectorx is chosen according to the distributiop. The
CCA-secure KEM of 13] and it is only little larger than ~ Learning with Errors problem is defined as follows:
that of [?] which is CPA-secure. Given a sample from¥; ,, outputs with a noticeable
This paper is organized as follows, Section 2 probability. The decision variant LWE problem is to
introduces some basic tools and notations for ourdistinguishA; , from the uniform distribution.
construction; Section 3 proposes our lattice-based ) ] o
chosen-ciphtertext secure PKE scheme and Section 4 Regev [L6] shows that for certain noise distributions,
proves the security of the proposed scheme and analyzedenoted @7, the LWE problem is as hard as the

its efficiency. At last, we give an summarize in Section 5. Worst-case SIVP problem (shortest independent vectors
problem) under a quantum reduction. This standard error

distribution®™ is a Gaussian distribution ovef," with
deviationgae > /n. We can sample an errors vector

.3. Learning with Errors Problem

2. Primitives according to the distributio®™ as follows: Samplen
numbers ny,m2,---n,, according to a Gaussian

2.1. Notations distribution D,, over R , and compute; = |¢n;](mody)
where symbol|z| denotes the closest integer:to Then

Throughout the paper, we use bold lower-case letters tdet € = (e1,---,en) be an error vector in the LWE

denote vectors in column form, and bold upper-case lettergroblem.

to denote matrices. Lé} - || be the Euclidean norm. By We should note that a trapdoor basisof lattice

convention, we say a norm of a matrix is the norm of its 4; (A) can be used to solve a LWE instance
the longest column. 1D is a description of classify the y = A’s + e(mod;) as follows and more details are
growth of functions, then the functigmwly(n) denotes an  referred to P].

unspecified functiorf(n) = O(n) for some constant. 1. ComputeTy = Te(mody). Due to the fact that both
We see a functiog(n) is negligible ifg(n) = 1/poly(n). T ande with short norm, theMe(mody) = Te holds with
We see a functiory(n) is in w(f(n)) if it grows faster  an overwhelming probability.

thancf (n) for any constant. For any matrixT, T denotes 2. Computes = T~ 'Te(mody).

the Gram-Schmidt orthogonalized matrix,, denotes the 3. Find vectoisfrom A, e y.

Gaussian distribution oveR with parameterv.

2.4. Discrete Gaussian Distribution
2.2. Lattice

The Gaussian distribution over lattice has been widely
Let B = {by,by,---,b,} be a set ofn linearly Uused in the lattice-based cryptography. The Gaussian

independent vectors. Thedimensional lattice generated function onk™ with parametetr > 0 can be defined as:
by B is defined ast = {Bc = Y, cibi, i € Z}, po(x) = exp(n||z||/o?). For a matrixA € ZI'*™, the
whereB acts as a basis for this lattice. A trapdoor basis ofdiscrete Gaussian distribution on lattidg (A) is defined
a lattice is such a basis that vectors from this basis are thY

smallest vectors of this lattice. In fact, if the norms of D (z) = Po,c(T)

vectors from a basis are small enough, they can still be A7 (A0 Po,c(AL(A))

recognized as a trapdoor basis. In cryptographic o ' i
applications, any trapdoor basis is kept secret by itsin fact, the distributionD ;. o, ,(z) can be viewed as a
holder. “conditional” distribution, resulting from sampling
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x € R™ from a Gaussian with the parameterand under scheme is satisfied. Moreover it is clear that the M-C
the condition of the event € Aql(A). factor of this scheme is lag

For ann-dimension latticed and positive real number
e > 0, there is an important notion called the smoothing
parameterr (A) which is defined to be the smallest 2.6. One-time Signature Scheme
positive o such thatp,,,(A4*\{0}) < e [11]. The key o ) , ,
property of the smoothing parameter is that if> 7. (), Def|n_|t|on 2.A signature scheme is a tnple_ _of 'ghe PPT
then every coset of the latticé has roughly equal mass. algorlthms as foIIowsKeyGen.Outputs a verification key
Moreover, for aimost all matrixe& € Z7*™, there is a “kta”? signing I:e)sk.\?lg?.Gk\./enséand a me_sf'saq[g,

o n . outputs a signaturer. Verification. Given a verification
"0Me.rocall o, maih resuits i the atice based K& @ message and a signaturer,either acceptsthe
cryptography as the following Propositions which are signature or rejects the signature for message
important to our constructions. More details can be foundThe notion of the security we required in our construction
in[5,3]. is the strong existential unforgeability under one-time
- . chosen-message attack which defined as follows: generate
E;Z?sosol?ﬂgtﬁég] Agiir;s)allv;rgree);est Bé tﬁnfmtravsgggé vk and sk by the KeyGen algorithm and sends to the

a a . adversary. And then choose a messagad computes its
columns generate the entire grouff'. LetA’ ¢ Z;*™ signatures, sendss to the adversary. The adversary wins
be a arbitrary matrix ands > ||Bs|w(logn) be a  the game if he can output sonie*,o*) # (u, o) which
Gaussian parameter. Hence, there exists a probabilisticcan be accepted by the Verification algorithm. The

polynomial-time (PPT) algorithm signature scheme is a one-time strong existential
ExzBasis(Bg,A = (A’,As), s) that outputs a trapdoor unforgeable signature if the advantage of any adversary in
basisT of the latticed (A) satisfying||T|| < [|Bs]|. above game is negligible.

Proposition 1 as know as the bonsai trees primitive,

shows that a trapdoor basis of the latti¢g(As) canbe 2 7. IND-CCA2 Security of the Encryption
used to sample a trapdoor basis of relate Iatticescheme
AL((A As)).
Definition 3.A Cryptosystem is indistinguishable against
adaptive chosen-ciphtertext attack (IND-CCA2) if for any
efficient adversary, its advantage in the follows attack
ame is negligible.

Setup PhaseThe challenger runs the key generation
algorithm to generate the public key and the secret key of
the cryptosystem. The challenger sends the public key to
the adversary.

Proposition 2 shows how to sample an essentially _Decryptior_1 query The advgrsary makes a series_of
uniform matrixA € Z7*™ with a trapdoor basis of lattice ~arbitrary queries to the decryption oracle. The decryption
AL(A). oracle decrypts the queried ciphertext into corresponding

4 plaintext, sends the plaintext to the adversary.

Challenge The adversary prepares two messafigs
M, with the same length, and sends them to the encryption
oracle. The encryption oracle randomly chooses alit

e{0, 1}, encryptsM, into a target ciphtertext;,.

Decryption query The adversary continues to submit
a series of arbitrary queries to the decryption oracle
except = ¢.

Guess At lastly, the adversary should output a guess

Proposition 2[ 3] (The Trapdoor Sampling
Algorithm)There is a PPT algorithm that, on input,
outputs a matriA € Z;*™, and a full-rank se§, where
the distribution ofA is statistically close to the uniform 9
distribution over Z;'*™ and [|S|| < O(nlogg). In
particularly, the setS can be efficiently converted to be a
trapdoor basis of the latticel- (A).

2.5. Gentry’s Encryption Scheme

We introduce Gentry’s encryption scheme as follows. Th
details are referred t&@].

KeyGen Run the trapdoor sampling algorithm in
Proposition 2 to obtain a matrik € Z;*™ together with

a trapdoor basis of lattice A;-(A). Matrix A is the B If Y — b the adversary wins the attack game.

public key a_de the secret key. xm The advantage of the adversary in above game is
Encryptlc_)n To encrypt a messagM € Z , defined to bewdv = |p(b = b') — 1/2|.
choose a uniform random matre Z;*™ and an “error

matrix” X € Z;**™ according to the distributiog*"".
Output the ciphertext = A’S+ 2X + M (mody). 3. Lattice-based CCA-secure Encryption
Decryption ComputesE = T‘C(mody), and then  gScheme
outputM = T~ *E(mod®).
Gentry's encryption scheme is CPA-secure and itsParameters Let n be a secure parameter and
correctness is used to prove that the correctness of oun = [8nlogg| for ¢ = poly(n). An errors distribution
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parameterr = 1/poly(n). There is a Gaussian sample
parameters which is the same as the definition of the
Proposition 1. Letc be the length of the verification key
in a strong unforgeable one-time signature scheme.

Key Generation. Let Ssign be a strong unforgeable

one-time signature scheme whose verification key isprobability ).

vk € {0,1}*. We assume that the hamming weigaf
the verification key equals tpk/2] or |k/2]| 4+ 1. Runs

the trapdoor sampling algorithm in Proposition 2, outputs

a matrix A statistically close to the uniform distribution
and the trapdoor basi of the lattice/;(A). Randomly
chooses matrixe,; € Z;*™ fori = 1,2,--- k. Then,
the public keys are matrixé#é\, A;) and secret key i$.

Encryption To encrypt a message
M e Z{/TUmxUFDm the encryption algorithm operates
the foIIowmg steps:

Step 1 Chooses a signing keyk and a verification
key vk whose hamming weigh is . Set
vk = (vky,vke, -, vky) wherevk; € {0,1}.

Step 2 Chooses public matrixed; as follows, if
vk; = 1, matrix A; is chosen, otherwise, ifk; = 0, no

matrix is chosen. §upposing)k = 1 where
i=1,2,---,l, thenletA = (A,A;, A, -, Aj).
Step 3 Chooses a random mati$e Z”X(l+1 and

an errors matrixx ¢ @rHmx+m

C=A'S+2X + M (mody).

Step 4 Computes an one-time signaturen C using
signing keysk which is generated in Step 1.

Hence,(C, vk, o) is the ciphtertext oM.

Decryption In order to decrypt a ciphtertext
(C,vk, o), the decryption algorithm operates as follows:

Step 1 Inputs(C, vk, o) to the verification algorithm
of the Ssign scheme,
otherwise, aborts.

Step 2 Chooses public matrixes; as shown as Step
2 in the encryption algorithm. Then parse
A=(A, AJNAsz"'aAjzl'

Step 3 Inputs (A,A,T,s) to the algorithm in
Proposition 1 which outputs a trapdoor ba$is of the
lattice A (A).

Step 4 ComputesE
computeM = T 'E(mocR).

Then computes

and then

tC(mody),

4. Analysis on the Proposed scheme

4.1. Correctness

Let (C,vk,0) be the ciphtertext generated by the
encryption algorithm. Since is generated by the Ssign
scheme, then it can be accepted by the verificatio

algorithm of the Ssign signature scheme in Step 1. It is
clear that the decryption algorithm can finish the step 2 to

fix public matrixes and get matriA. The decryption
algorithm can sample a trapdoor basisA)j(A) from
Proposition 1. Then Step 3 is finished. Sinte is a

if output “1” goes to step 2,

trapdoor basis of latticel,- (A) and the errors matriX is
(I41)mx (1+1)m

sampled from the distributiog, , all entries
of Ty and X are sufficiently small Then
= TiC = Ti{(2X + M)(mod) will equal to

T{(2X + M) over integer with an overwhelming
Hence, T{'E 2X + M. So
M = T 'E(moa).

The correctness is proven.

4.2. Security

Theorem 1lf the LWE problem whose errors matrix is

sampled from the distibution! ™™+ Y™ is hard and

the one-time signature scheme used in our construction is
strong unforgeable, the proposed PKE scheme is
IND-CCA2 secure.

Proof. In order to prove Theorem 1, we give four
games and we show that Gamend Gamei + 1 are
indistinguishable for any PPT adversary. Hence we will
prove that Theorem 1 holds.

Game 1 It is the same as the standard IND-CCA2
game in Section 2.7.

Game 2 It is the same as Game 1, but, for any
decryption query (vk*,*,*), an errors symbolLl is
always returned as the answer.

Game 3 Game 3 is the same as Game 2, but, in the
setup phase, ifk; = 1 then choose a random matrix as
the j;th public matrix. Otherwise, the public matrixes are
all the outputs of the trapdoor sampling algorithm in
Proposition 2. Namely, the trapdoor basis of lattice
A (A;) are known to the challenger whei; = 0.

Game 4 It is the same as Game 3, except, in the
challenge ciphtertext(vk*,C*,0*), C* is generated
uniformly and randomly, moreover, it is independent on
vk* ando™.

We give four claims to show that Game~1Game 4
are indistinguishable.

Claim 1. If the one-time signature scheme used in our
construction is strong existential unforgeable, then Game
1 and Game 2 are indistinguishable for any PPT adversary.

The proof of Claim 1 can be found ii4] and we omit
it.

Claim 2. Game 2 and Game 3 are statistically
indistinguishable for any PPT adversary.

Proof. By proposition 2, we know that the distribution
of the output matrix in trapdoor sampling algorithm is
statistically close to the uniform distribution. Henceyi
replace some public matrixes with the outputs of the

frapdoor sampling algorithm, the adversary can not

distinguish it. Then Claim 2 holds.

Claim 3. Game 3 and Game 4 are computational
indistinguishable under the hardness hypothesis of the the
decision version LWE problem whose the errors

distribution is distributed according &, ™™,
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Proof. If there is a PPT adversapt can distinguish  Table 1 Efficiency Comparison
Game 3 and Game 4 with advantagethen we can
construct a challengef to solve the decision version
LWE problem.

Suppose the challengel wants to distinguish the [12] (2kmn +nDlogg  (km/1 +1)logq’ +vs/l CCA
uniform distribution overz*(+1m . Z(+Dmx(+1m - Ourscheme (k- 1jmnlogg logg +vs/(L+1)"m™  COA
q q

Schemes Public key length (bit) the M-C factor Security

Ay " mnlogq logg CPA
and the distributioq (B, C)|C = B*S+ X(mody) } where
B c zp*tm s ¢ zp*(HD™ and the errors matrix
X e g™ 6 interacts with A to simulate
either Game 3 or Game 4 as follows: Claim 4. The advantage for any adversary in Game 4
Setup Phase C generates a signing key and a js0.
verification key of the Ssign scheme, denoted and Proof. SinceC* is chosen uniformly and randomly,

sk respectively. Letk; = 1fori = 1,2,---,l and  then the adversary wins in game 4 always with probability
vkj = 0fori = 1,2,---,k — [. Running the trapdoor 1/2, so Claim 4 is proven.

sarﬁpling algorithmk — [ times to outputc — [ matrixes Put four Claims together, we know that any PPT
B, with the trapdoor basis of the corresponding lattice adversary wins the standard IND-CCA2 game with a
Aqi(E). LetB = (Bo,B2,---,B;) whereB; € Zp*™. negligible advantage.

Then setA;, = B, fori = 1,2,---,l andA;, = B, for Theorem 1 is proven.
i = 1,2,---,k — I. Hence,A = By and A; for
1=1,2,---, k are public key matrixes .

Decryption Oracle. The adversary can adaptively 4-3. Efficiency
query the decryption oracle, and the challenger simulates ) .
the decryption oracle in this phase. For a ciphtertext/Ve firstly note one fact is that the scheme 11§][is more
(vk,C,0), if vk = vk* outputs an error symbol, efficientat computation cost than our scheme, for, the first
otherwisepk # vk*, sincevk andvk* are with the same scheme is built by hybrid encryption techniques which

hamming weigh, then there exist some position satisfiedh® PKE algorithm only used to encrypt the symmetric
vk; = 1 andvk? = 0. As shown as the setup phask, key while our scheme is in the public key setting which is

, . _ used to encrypt the message. The advantage of our
Ir(Sr?Wt?utaheBth%gg?Otrr::sSISagolﬁmﬁ (iﬁ\j)li;rlggggﬁignca? to scheme is that both the public key size and the M-C factor

. . ~ —~ are short. Table 4.1 shows the comparison details in

generate a traftdoor basis  of IattWQIL(A) where A which vs denotes the length of the verification key and

satisfiesC = A'S + X(mody). Then he decrypts the the one-time signature. Namely, in contrast to Peikert's

ciphtertext into a message by the trapdoor basis ofconstruction, we efficiently reduce the public key size of

Ar(A). our scheme down t@k + 1)mnlogg bits. So our scheme
Challenge A randomly chooses two messadé, presents good efficiency at memory and transfers. At the

with the same length fab € {0,1} and sends them 16.  same time, a logical assumption is that< (I + 1)%m?,

The challengerC randomly chooses a bit € {0,1},  then the M-C factor of this scheme is only little larger

samples a matrixC’* from the uniform distribution or a than the M-C factor of§] log g .

LWE problem instance defined above and computes

C* = 2C”* + M,,. Generates the one-time signataieof

C* using the signing keyk*. Hence(c*,C*,vk*) asthe 5. Conclusions

challenge ciphtertext.C sends (¢*,C*,vk*) as the

challenge toA. We present an efficient IND-CCA2 secure PKE scheme
Decryption Oracle. The adversary4 continues to  using the Bonsai tree primitive and Gentry’'s encryption

query the decryption oracle which are answered asscheme in this paper. The public key size of the propose

described above. In this phase, any form(@f*, x, ) is scheme is reduced efficiently and the M-C factor of the

queried would return an error symhaol propose scheme is also controlled to be a logical number.
It is clear that, if C"* is an uniform matrix, Based on the hardness of the decision variant of the LWE

2C"* 4+ My(mody) is also an uniform matrix and &' is problem and the strong unforgeability of the one-time

a LWE problem instance theaC™* + Mj(mody) is signature scheme used in this paper, we prove that the

identical to the distribution of the encryption algorithm i  propose scheme is IND-CCA2 secure.

the proposed scheme. Hence, if the adversary can

distinguish the Game 3 and Game 4 with some advantage

e, thenC can distinguish the uniform distribution and the 6. Acknowledgement
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