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Abstract: In this paper, some new concepts of geometrically relative convex sets and relative convex functions are defined. These new
classes of geometrically relative convex functions unify several known and new classes of relative convex functions such as exponential
convex functions. New Hermite-Hadamard type integral inequalities are derived for these new classes of geometrically relative convex
functions and their variant forms. Some special cases, which can be obtained from our results, are discussed. Results proved in this
paper represent significant improvements of the previously known results. We would like to emphasize that the results obtained and
discussed in this paper may stimulate novel, innovative and potential applications of the geometrically relative convex functions in other
fields.
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1 Introduction

Recently convexity has seen a dramatic increase in its
applications for solving a large number of problems
which arise in various branches of pure and applied
sciences. As a result of these activities, the concept of
convexity has been extended and generalized in various
directions using novel and innovative ideas see [1,6,7,9,
10,11,12,13,14,15,16,18,19,22,23]. An important and
significant generalization of the convex functions is the
introduction of relative convex functions by Youness [6].
These relative convex functions plays an interesting role
in optimization theory, since they provide a broader
setting to study the optimization and programming
problems. It is well known [5,6] that the relative convex
sets and relative convex functions are nonconvex sets and
nonconvex functions respectively. However it has been
shown that the relative convex functions preserve some
nice properties that the convex functions have. It has been
shown by Noor [11] that the minimum of a differentiable
relative convex functions on the relative convex set can be
characterized by a class of variational inequalities, which
are known as general variational inequalities. This shows
that the concept of relative convexity plays the same role
for general variational inequalities as classical convexity
plays for variational inequalities. For the applications and

other aspects of the relative convexity, see [10,11,12] and
the references therein.
Let f : I ⊆ R → R be a convex function witha < b and
a,b ∈ I. Then the following double inequality is known as
Hermite-Hadamard inequality in the literature.

f

(

a+b
2

)

≤ 1
b−a

b
∫

a

f (x)dx ≤ f (a)+ f (b)
2

.

In recent years, much attention has been given to derive
the Hermite-Hadamard type inequalities for various types
of convex functions, see [1,2,4,17,19,20,21,22,23,24].
Motivated and inspired by the recent research going on in
this field, we introduce and study a new class of relative
convex functions, which is called the geometrically
relative convex functions. We derive several
Hermite-Hadamard type integral inequalities for these
new geometrically relative convex functions. Several
special cases are also discussed. The ideas and techniques
of this paper may stimulate further research in this
interesting field.

2 Preliminaries

In this section, we recall some known concepts and define
the class of geometrically (GG) relative convex functions
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andGA relative convex functions. First of all letRn be the
finite dimensional space, whose inner product and norm
are denoted by〈., .〉 and||.||, respectively.

Definition 1. Let G ⊆ (0,∞). Then G is said to be
geometrically relative convex set, if there exists an
arbitrary function g : Rn → R

n such that

(g(x))t(g(y))1−t ∈ G , ∀g(x),g(y) ∈ G , t ∈ [0,1].

UsingAM−GM inequality, we have

g(x),g(y) ∈ G , t ∈ [0,1] ⇒ (g(x))t(g(y))1−t

≤ tg(x)+(1− t)g(y).

Definition 2([6,19]). A set Mg ⊆R
n is said to be a relative

convex (g-convex) set, if there exists a function g :Rn →R
n

such that,

tg(x)+(1− t)g(y) ∈ Mg,

∀x,y ∈ R
n : g(x),g(y) ∈ Mg, t ∈ [0,1]. (1)

Recently it has been shown in [5], that if Mg is a relative
convex set then it is possible that it may not be a classical
convex set.

Definition 3. A function f : G → R (on subintervals of
(0,∞)) is said to be geometrically relative convex function
(GG-relative convex function) if there exists an arbitrary
function g : Rn → R

n such that,

f ((g(x))t(g(y))1−t)≤ ( f (g(x)))t( f (g(y)))1−t
,

∀g(x),g(y) ∈ G , t ∈ [0,1]. (2)

From (2), it follows that

log f ((g(x))t(g(y))1−t)

≤ t log f (g(x))+(1− t) log f (g(y)),

∀g(x),g(y) ∈ G , t ∈ [0,1].

UsingAM−GM inequality, we have

f ((g(x))t(g(y))1−t) ≤ ( f (g(x)))t( f (g(y)))1−t

≤ t f (g(x))+(1− t) f (g(y)).

This implies that every geometrically relative convex
function (that is GG-relative convex function) is also
GA-relative convex function, but the converse is not true.

Definition 4. A function f : G → R (on subintervals of
(0,∞)) is said to be GA-relative convex function) if there
exists an arbitrary function g : Rn → R

n such that,

f ((g(x))t(g(y))1−t)≤ t f (g(x))+(1− t) f (g(y)),

∀g(x),g(y) ∈ G , t ∈ [0,1]. (3)

We note that forf (x) = ex Definition 4 reduces to one in
[8]. That is

f (etx+(1−t)y)≤ t f (ex)+(1− t) f (ey),

∀g(x),g(y) ∈ G , t ∈ [0,1]. (4)

From Definition 3 and Definition 4, it follows that
GG =⇒ GA, but the converse is not true.

Again using theAM −GM inequality from Definition 3,
we have the following known concept of relative convex
functions.

Definition 5([6,19]). A function f is said to be a relative
convex (g-convex) function (that is AA relative convex
function) on a relative convex (g-convex) set Mg, if and
only if, there exists a function g : Rn → R

n such that,

f ((1− t)g(x)+ tg(y))≤ (1− t) f (g(x))+ t f (g(y)),

∀x,y ∈ R
n : g(x),g(y) ∈ Mg, t ∈ [0,1]. (5)

It is known [6] that every convex functionf on a convex
set is a relative convex function, but the converse is not
true. There are functions which are relative convex
function but may not be a convex function in the classical
sense.
Noor [11] proved the optimality condition for the
differentiable relative convex functions on relative convex
set can be characterized by a class of variational
inequality which is called as general variational
inequality, for the applications and other aspects of
general variational inequalities, see [9,10,11,12].
Now we define the concept of relative log convex
functions.

Definition 6. A function f : Mg → R (on subintervals of
(0,∞)) is said to be relative log convex function (that is
AG-relative convex function) if there exists an arbitrary
function g : Rn → R

n such that,

f (tg(x)+(1− t)g(y))≤ ( f (g(x)))t( f (g(y)))1−t
,

∀g(x),g(y) ∈ Mg, t ∈ [0,1]. (6)

From (6) it follows that

log f (tg(x)+(1− t)g(y))

≤ t log f (g(x))+(1− t) log f (g(y)),

∀g(x),g(y) ∈ Mg, t ∈ [0,1].

Definition 7. A function f : Mg → R (on subintervals of
(0,∞)) is said to be relative geometrically quasi-convex
function if there exists an arbitrary function g : Rn → R

n

such that,

f ((g(x))t(g(y))1−t)≤ max{ f (g(x)), f (g(y))},
∀g(x),g(y) ∈ Mg, t ∈ [0,1]. (7)

Next we define the concept of geometrically relative
convex functions on an interval.
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Definition 8. Let I be a subinterval of (0,∞). Then f is
geometrically relative convex function, if and only if,
∣

∣

∣

∣

∣

∣

1 1 1
logg(a) logg(x) logg(b)

log f (g(a)) log f (g(x)) log f (g(b))

∣

∣

∣

∣

∣

∣

≥ 0,

where g(a)≤ g(x)≤ g(a).

One can easily show that the following are equivalent:

1. f is geometrically relative semi-convex function on
relative convex set.

2. f (g(a))log(g(b)) f (g(x))log(g(a)) f (g(b))log(g(x))

≥ f (g(a))log(g(x)) f (g(x))log(g(b)) f (g(b))log(g(a)).

whereg(x) = g(a)tg(b)1−t andt ∈ [0,1].

For g(x) = x the Definition 8 reduces to the definition
for geometrically convex functions see [3].

3 Main Results

In this section we discuss our main results. For this
purpose we need following lemmas which play a key part
in proving our main results.
Essentially using the technique of [21] one can prove the
following result.

Lemma 1. Let f : I ⊆ R→ R be a differentiable function
on I◦ (the interior of I) and g : R → R be arbitrary
function. If f ′ ∈ L [g(a),g(b)] for g(a),g(b) ∈ I with
g(a)< g(b). Then

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

=
g(b)−g(a)

2

1
∫

0

(1−2t) f ′(tg(a)+(1− t)g(b))dt.

Lemma 2([17,24]). Let f : I ⊆R→R be a differentiable
function on I◦ (the interior of I) and g : R → R be
arbitrary function. If f ′′ ∈ L [g(a),g(b)] for
g(a),g(b) ∈ I with g(a)< g(b). Then

1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)− f

(

g(a)+g(b)
2

)

= (g(b)−g(a))





1
∫

0

µ(t) f ′(tg(a)+(1− t)g(b))dt



 ,

where

µ(t) =
{

t, [0, 1
2),

t −1, [ 1
2 ,1].

Using the technique of [20], one cane prove the following
lemma.

Lemma 3. Let f : I ⊆ R → R be twice differentiable
function on I◦ (the interior of I) and g : R → R be
arbitrary function. If f ′ ∈ L [g(a),g(b)] for g(a),g(b) ∈ I
with g(a)< g(b). Then

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

=
[g(b)−g(a)]2

2

1
∫

0

t(1− t) f ′′(tg(a)+(1− t)g(b))dt.

Using the technique of [23] one can prove the following
lemma.

Lemma 4. Let f be a differentiable function on
(g(a),g(b)) with g(a) < g(b) where g : Rn → R

n is any
arbitrary function. If f ∈ L [g(a),g(b)]. Then the
following identity holds:

[g(b) f (g(b))−g(a) f (g(a))]−
g(b)
∫

g(a)

f (g(x))dg(x)

= (lng(b)− lng(a))

1
∫

0

(g(a))2t(g(b))2(1−t)

× f ′((g(a))t(g(b))1−t)dt.

Now we are in a position to derive our main results. First
of all, we prove the results for the class of geometrically
relative convex functions (GG).

Theorem 1. Let f : I ⊆ R → R be a differentiable
function on I◦ (the interior of I) and g : R → R be
arbitrary function. Also f ′ ∈ L [g(a),g(b)] for
g(a),g(b) ∈ I with g(a) < g(b). If | f ′| is decreasing and
geometrically relative convex function. Then
∣

∣

∣

∣

∣

∣

∣

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ g(b)−g(a)
2

| f ′(g(b))|Ψ(w),

where w = | f ′(g(a))|
| f ′(g(b))| and Ψ(w) = w ln(w)+4

√
w−2w−ln(w)−2

ln(w)2
.

Proof. Using Lemma 1 and the fact that| f ′| is
geometrically relative convex function, we have
∣

∣

∣

∣

∣

∣

∣

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ g(b)−g(a)
2

1
∫

0

|1−2t|| f ′(tg(a)+(1− t)g(b))|dt

≤ g(b)−g(a)
2

1
∫

0

|1−2t|
∣

∣

∣
f ′
(

g(a)tg(b)1−t
)∣

∣

∣
dt
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≤ g(b)−g(a)
2

| f ′(g(b))|
1
∫

0

|1−2t|
( | f ′(g(a))|
| f ′(g(b))|

)t

dt

=
g(b)−g(a)

2
| f ′(g(b))|

1
∫

0

|1−2t|wtdt

=
g(b)−g(a)

2
| f ′(g(b))|w ln(w)+4

√
w−2w− ln(w)−2
ln(w)2

.

This completes the proof. �

Theorem 2. Let f : I ⊆ R → R be a differentiable
function on I◦ (the interior of I) and g : R → R be
arbitrary function. Also f ′ ∈ L [g(a),g(b)] for
g(a),g(b) ∈ I with g(a) < g(b). If | f ′|q is decreasing and
geometrically relative convex function for
p,q > 1, 1

p +
1
q = 1. Then

∣

∣

∣

∣

∣

∣

∣

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ g(b)−g(a)
2

| f ′(g(b))|
(

1
p+1

) 1
p
(

wq −1
q ln(w)

) 1
q

,

where w = | f ′(g(a))|
| f ′(g(b))| .

Proof. Using Lemma 1, well known Holder’s inequality
and the fact that| f ′|q is geometrically relative convex
function, we have
∣

∣

∣

∣

∣

∣

∣

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ g(b)−g(a)
2

1
∫

0

|1−2t|| f ′(tg(a)+(1− t)g(b))|dt

≤ g(b)−g(a)
2





1
∫

0

|1−2t|pdt





1
p

×





1
∫

0

∣

∣

∣
f ′
(

g(a)tg(b)1−t
)∣

∣

∣

q
dt





1
q

≤ g(b)−g(a)
2

| f ′(g(b))|
(

1
p+1

) 1
p





1
∫

0

( | f ′(g(a))|
| f ′(g(b))|

)qt

dt





1
q

=
g(b)−g(a)

2
| f ′(g(b))|

(

1
p+1

) 1
p





1
∫

0

wqtdt





1
q

=
g(b)−g(a)

2
| f ′(g(b))|

(

1
p+1

) 1
p
(

wq −1
q ln(w)

) 1
q

.

This completes the proof. �

Theorem 3. Let f : I ⊆ R → R be a differentiable
function on I◦ (the interior of I) and g : R → R be
arbitrary function. Also f ′ ∈ L [g(a),g(b)] for

g(a),g(b) ∈ I with g(a) < g(b). If | f ′|q is decreasing and
geometrically relative convex function for q > 1. Then
∣

∣

∣

∣

∣

∣

∣

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ g(b)−g(a)
2

| f ′(g(b))|
(

1
2

) 1
p

(Ψ(w))
1
q ,

where w =
| f ′(g(a))|
| f ′(g(b))| and

Ψ(w) = wq ln(w)q−2wq+4w
1
2 q−ln(w)q−2

ln(w)2q2 .

Proof. Using Lemma 1, well known Power mean
inequality and the fact that| f ′|q is geometrically relative
convex function, we have
∣

∣

∣

∣

∣

∣

∣

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ g(b)−g(a)
2

1
∫

0

|1−2t|| f ′(tg(a)+(1− t)g(b))|dt

≤ g(b)−g(a)
2





1
∫

0

|1−2t|dt





1− 1
q

×





1
∫

0

|1−2t|
∣

∣

∣
f ′
(

g(a)tg(b)1−t
)∣

∣

∣

q
dt





1
q

≤ g(b)−g(a)
2

| f ′(g(b))|
(

1
2

) 1
p

×





1
∫

0

|1−2t|
( | f ′(g(a))|
| f ′(g(b))|

)qt

dt





1
q

=
g(b)−g(a)

2
| f ′(g(b))|

(

1
2

) 1
p





1
∫

0

|1−2t|wqtdt





1
q

=
g(b)−g(a)

2
| f ′(g(b))|

(

1
2

) 1
p

×
(

wq ln(w)q−2wq +4w
1
2 q − ln(w)q−2

ln(w)2q2

) 1
q

.

This completes the proof. �

Remark. For q = 1 Theorem 3 reduces to Theorem 1.

Theorem 4. Let f : I ⊆ R → R be a differentiable
function on I◦ (the interior of I) and g : R → R be
arbitrary function. Also f ′ ∈ L [g(a),g(b)] for
g(a),g(b) ∈ I with g(a) < g(b). If | f ′| is decreasing and
geometrically relative convex function. Then
∣

∣

∣

∣

∣

∣

∣

1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)− f

(

g(a)+g(b)
2

)

∣

∣

∣

∣

∣

∣

∣

≤ (g(b)−g(a))| f ′(b)| [Ψ1(w)+Ψ2(w)] ,
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where w = | f ′(g(a))|
| f ′(g(b))| , Ψ1(w) =

−w
1
2 + 1

2w
1
2 ln(w)+1

ln(w)2
and

Ψ3(w) =
w− 1

2w
1
2 ln(w)−w

1
2

ln(w)2
.

Proof. Using Lemma 2 and the fact that| f ′| is
geometrically relative convex function, we have
∣

∣

∣

∣

∣

∣

∣

1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)− f

(

g(a)+g(b)
2

)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(g(b)−g(a))





1
∫

0

µ(t) f ′(tg(a)+(1− t)g(b))dt





∣

∣

∣

∣

∣

∣

≤ (g(b)−g(a))







1
2
∫

0

|t|| f ′((g(a))t(g(b))1−t)|dt

+

1
∫

1
2

|(t −1)|| f ′((g(a))t(g(b))1−t)|dt







≤ (g(b)−g(a))| f ′(b)|

×







1
2
∫

0

{

t

( | f ′(a)|
| f ′(b)|

)t
}

dt +

1
∫

1
2

{

(1− t)

( | f ′(a)|
| f ′(b)|

)t
}

dt







≤ (g(b)−g(a))| f ′(b)|







1
2
∫

0

twtdt +

1
∫

1
2

(1− t)wtdt







= (g(b)−g(a))| f ′(b)|

×
[

−w
1
2 + 1

2w
1
2 ln(w)+1

ln(w)2
+

w− 1
2w

1
2 ln(w)−w

1
2

ln(w)2

]

.

This completes the proof. �

Theorem 5. Let f : I ⊆ R → R be a differentiable
function on I◦ (the interior of I) and g : R → R be
arbitrary function. Also f ′ ∈ L [g(a),g(b)] for
g(a),g(b) ∈ I with g(a) < g(b). If | f ′|q is decreasing and
geometrically relative convex function for
p,q > 1, 1

p +
1
q = 1. Then

∣

∣

∣

∣

∣

∣

∣

1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)− f

(

g(a)+g(b)
2

)

∣

∣

∣

∣

∣

∣

∣

≤ (g(b)−g(a))| f ′(b)|
(

1
(p+1)2p+1

) 1
p

×[(Ψ1(w))
1
q +(Ψ2(w))

1
q ],

where w = | f ′(g(a))|
| f ′(g(b))| , Ψ1 =

w
1
2 q−1

q ln(w) and Ψ2(w) = wq−w
1
2 q

q ln(w) .

Proof. Using Lemma 2, well known Holder’s inequality
and the fact that| f ′|q is geometrically relative convex
function, we have
∣

∣

∣

∣

∣

∣

∣

1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)− f

(

g(a)+g(b)
2

)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(g(b)−g(a))





1
∫

0

µ(t) f ′(tg(a)+(1− t)g(b))dt





∣

∣

∣

∣

∣

∣

≤ (g(b)−g(a))







1
2
∫

0

|t|| f ′((g(a))t(g(b))1−t)|dt

+

1
∫

1
2

|(t −1)|| f ′((g(a))t(g(b))1−t)|dt







≤ (g(b)−g(a))















1
2
∫

0

t pdt







1
p

×







1
2
∫

0

| f ′((g(a))t(g(b))1−t)|qdt







1
q

+







1
∫

1
2

|t −1|pdt







1
p






1
∫

1
2

| f ′((g(a))t(g(b))1−t)|qdt







1
q









≤ (g(b)−g(a))| f ′(b)|
(

1
(p+1)2p+1

) 1
p

×















1
2
∫

0

wqtdt







1
q

+







1
∫

1
2

wqtdt







1
q









= (g(b)−g(a))| f ′(b)|
(

1
(p+1)2p+1

) 1
p

×





(

w
1
2 q −1

q ln(w)

) 1
q

+

(

wq −w
1
2 q

q ln(w)

) 1
q



 .

This completes the proof. �

Theorem 6. Let f : I ⊆ R → R be a differentiable
function on I◦ (the interior of I) and g : R → R be
arbitrary function. Also f ′ ∈ L [g(a),g(b)] for
g(a),g(b) ∈ I with g(a) < g(b). If | f ′|q is decreasing and
geometrically relative convex function for q > 1. Then
∣

∣

∣

∣

∣

∣

∣

1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)− f

(

g(a)+g(b)
2

)

∣

∣

∣

∣

∣

∣

∣

≤ (g(b)−g(a))| f ′(b)|
(

1
8

)1− 1
q

×





(

−w
1
2 q + 1

2w
1
2 qq ln(w)+1

q2 ln(w)2

)
1
q

+

(

wq − 1
2w

1
2 qq ln(w)−w

1
2 q

q2 ln(w)2

)
1
q



 ,

where w = | f ′(g(a))|
| f ′(g(b))| .
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Proof. Using Lemma 2, well known Power mean
inequality and the fact that| f ′|q is geometrically relative
convex function, we have
∣

∣

∣

∣

∣

∣

∣

1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)− f

(

g(a)+g(b)
2

)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(g(b)−g(a))





1
∫

0

µ(t) f ′(tg(a)+(1− t)g(b))dt





∣

∣

∣

∣

∣

∣

≤ (g(b)−g(a))







1
2
∫

0

|t|| f ′((g(a))t(g(b))1−t)|dt

+

1
∫

1
2

|(t −1)|| f ′((g(a))t(g(b))1−t)|dt







≤ (g(b)−g(a))

×















1
2
∫

0

tdt







1− 1
q






1
2
∫

0

|t|| f ′((g(a))t(g(b))1−t)|qdt







1
q

+







1
∫

1
2

(1− t)dt







1− 1
q






1
∫

1
2

|t −1|| f ′((g(a))t(g(b))1−t)|qdt







1
q









≤ (g(b)−g(a))| f ′(b)|
(

1
8

)1− 1
q

×















1
2
∫

0

twqtdt







1
q

+







1
∫

1
2

(1− t)wqtdt







1
q









= (g(b)−g(a))| f ′(b)|
(

1
8

)1− 1
q

×





(

−w
1
2 q + 1

2w
1
2 qq ln(w)+1

q2 ln(w)2

)
1
q

+

(

wq − 1
2w

1
2 qq ln(w)−w

1
2 q

q2 ln(w)2

)
1
q



 .

This completes the proof. �

Remark. For q = 1 Theorem 6 reduces to Theorem 4.

Theorem 7. Let f : I ⊆ R → R be twice differentiable
function on I◦ (the interior of I) and g : R → R be
arbitrary function. Also f ′′ ∈ L [g(a),g(b)] for
g(a),g(b) ∈ I with g(a) < g(b). If | f ′| is decreasing and
geometrically relative convex function. Then
∣

∣

∣

∣

∣

∣

∣

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ g(b)−g(a)
2

| f ′′(g(b))|Ψ(k),

where k = | f ′′(g(a))|
| f ′′(g(b))| and Ψ(k) = k ln(k)−2k+ln(k)+2

ln(k)3
.

Proof. Using Lemma 3 and the fact that| f ′′| is
geometrically relative convex function, we have
∣

∣

∣

∣

∣

∣

∣

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ g(b)−g(a)
2

1
∫

0

t(1− t)| f ′′(tg(a)+(1− t)g(b))|dt

≤ g(b)−g(a)
2

1
∫

0

t(1− t)
∣

∣

∣
f ′′
(

g(a)tg(b)1−t
)∣

∣

∣
dt

≤ g(b)−g(a)
2

| f ′(g(b))|
1
∫

0

t(1− t)

( | f ′′(g(a))|
| f ′′(g(b))|

)t

dt

=
g(b)−g(a)

2
| f ′(g(b))|

1
∫

0

t(1− t)ktdt

=
g(b)−g(a)

2
| f ′′(g(b))| k ln(k)−2k+ ln(k)+2

ln(k)3
.

This completes the proof. �

Theorem 8. Let f : I ⊆ R → R be twice differentiable
function on I◦ (the interior of I) and g : R → R be
arbitrary function. Also f ′′ ∈ L [g(a),g(b)] for
g(a),g(b) ∈ I with g(a)< g(b). If | f ′′|q is decreasing and
geometrically relative convex function for
p,q > 1, 1

p +
1
q = 1. Then

∣

∣

∣

∣

∣

∣

∣

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ g(b)−g(a)
2

| f ′(g(b))|
(

2(−1−2p)√πΓ (p+1)

Γ
(

p+ 3
2

)

) 1
p

×
(

kq −1
q ln(k)

) 1
q

,

where k = | f ′′(g(a))|
| f ′′(g(b))| .

Proof. Using Lemma 3, well known Holder’s inequality
and the fact that| f ′′|q is geometrically relative convex
function, we have
∣

∣

∣

∣

∣

∣

∣

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ g(b)−g(a)
2

1
∫

0

t(1− t)| f ′′(tg(a)+(1− t)g(b))|dt

≤ g(b)−g(a)
2





1
∫

0

(t(1− t))pdt





1
p
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×





1
∫

0

∣

∣

∣
f ′′
(

g(a)tg(b)1−t
)∣

∣

∣

q
dt





1
q

≤ g(b)−g(a)
2

| f ′(g(b))|
(

2(−1−2p)√πΓ (p+1)

Γ
(

p+ 3
2

)

) 1
p

×





1
∫

0

( | f ′′(g(a))|
| f ′′(g(b))|

)qt

dt





1
q

=
g(b)−g(a)

2
| f ′(g(b))|

(

2(−1−2p)√πΓ (p+1)

Γ
(

p+ 3
2

)

) 1
p

×





1
∫

0

kqtdt





1
q

=
g(b)−g(a)

2
| f ′(g(b))|

(

2(−1−2p)√πΓ (p+1)

Γ
(

p+ 3
2

)

) 1
p

×
(

kq −1
q ln(k)

) 1
q

.

This completes the proof. �

Theorem 9. Let f : G ⊆ R → R be a differentiable
function on I◦ (the interior of I) and g : R → R be
arbitrary function. Also f ′′ ∈ L [g(a),g(b)] for
g(a),g(b) ∈ I with g(a)< g(b). If | f ′′|q is decreasing and
geometrically relative convex function for q > 1. Then
∣

∣

∣

∣

∣

∣

∣

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ g(b)−g(a)
2

| f ′(g(b))|
(

1
6

) 1
p

Ψ(k),

where k = | f ′′(g(a))|
| f ′′(g(b))| and

Ψ(k) =
(

kqq ln(k)−2kq+q ln(k)+2
q3 ln(k)3

) 1
q
.

Proof. Using Lemma 3, well known Power mean
inequality and the fact that| f ′′|q is geometrically relative
convex function, we have
∣

∣

∣

∣

∣

∣

∣

f (g(a))+ f (g(b))
2

− 1
g(b)−g(a)

g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ g(b)−g(a)
2

1
∫

0

t(1− t)| f ′(tg(a)+(1− t)g(b))|dt

≤ g(b)−g(a)
2





1
∫

0

t(1− t)dt





1− 1
q

×





1
∫

0

t(1− t)
∣

∣

∣
f ′
(

g(a)tg(b)1−t
)∣

∣

∣

q
dt





1
q

≤ g(b)−g(a)
2

| f ′(g(b))|
(

1
6

) 1
p

×





1
∫

0

t(1− t)

( | f ′(g(a))|
| f ′(g(b))|

)qt

dt





1
q

=
g(b)−g(a)

2
| f ′(g(b))|

(

1
6

) 1
p





1
∫

0

t(1− t)kqtdt





1
q

=
g(b)−g(a)

2
| f ′(g(b))|

(

1
6

) 1
p

×
(

kqq ln(k)−2kq +q ln(k)+2
q3 ln(k)3

) 1
q

.

This completes the proof. �

Next we prove the results for the class ofGA-relative
convex functions.

Theorem 10. Let f : G → R be GA-relative convex
function such that g(a),g(b) ∈ G with g(a) < g(b). Then
the following inequality holds:

f
√

g(a)g(b) ≤ 1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))
g(x)

dg(x)

≤ f (g(a))+ f (g(b))
2

. (8)

Proof. Since f is GA-relative convex function. Thus

f (
√

g(x)g(y))≤ f (g(x))+ f (g(y))
2

.

Let g(x) = (g(a))1−t(g(b))t andg(y) = (g(a))t(g(b))1−t . Then
this implies

f (
√

g(a)g(b))

=

t
∫

o

f (
√

g(a)g(b))dt

≤
t
∫

o

f ((g(a))1−t(g(b))t)+ f ((g(a))t(g(b))1−t)

2
dt

=
1

lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))
g(x)

dg(x)

=

1
∫

0

f ((g(a))t(g(b))1−t)dt

≤ f (g(a))+ f (g(b))
2

.

This completes the proof. �

Theorem 11.Let f : G → R be differentiable function on
(g(a),g(b)) with g(a) < g(b) and f ′ ∈ L [g(a),g(b)]. If
| f ′|q is GA-relative convex function for q ≥ 1, then
following inequality holds:
∣

∣

∣

∣

∣

∣

∣

[g(b) f (g(b))−g(a) f (g(a))]−
g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣
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≤ (g(b))2(lng(b)− lng(a))

(

1
2

)1+ 1
q
[

h2−1
ln(h)

]1− 1
q

×
[

2h2 ln(h)−h2+1
ln(h)2

| f ′(a)|q + h2−2ln(h)−1
ln(h)2

| f ′(b)|q
]

1
q

.

Proof. Since | f ′|q is GA-relative convex function. Then
from lemma 4 and well known power mean inequality, we
have
∣

∣

∣

∣

∣

∣

∣

[g(b) f (g(b))−g(a) f (g(a))]−
g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ (g(b))2(lng(b)− lng(a))

1
∫

0

(

g(a)
g(b)

)2t

×| f ′((g(a))t(g(b))1−t)|dt

≤ (g(b))2(lng(b)− lng(a))





1
∫

0

(

g(a)
g(b)

)2t

dt





1− 1
q

×





1
∫

0

(

g(a)
g(b)

)2t

{t| f ′(a)|q +(1− t)| f ′(b)|q}dt





1
q

= (g(b))2(lng(b)− lng(a))





1
∫

0

h2tdt





1− 1
q

×





1
∫

0

h2t{t| f ′(a)|q +(1− t)| f ′(b)|q}dt





1
q

= (g(b))2(lng(b)− lng(a))

[

1
2

h2−1
ln(h)

]1− 1
q

×
[

1
4

2h2 ln(h)−h2+1
ln(h)2

| f ′(a)|q + 1
4

h2−2ln(h)−1
ln(h)2

| f ′(b)|q
]

1
q

= (g(b))2(lng(b)− lng(a))

(

1
2

)1+ 1
q
[

h2−1
ln(h)

]1− 1
q

×
[

2h2 ln(h)−h2+1
ln(h)2

| f ′(a)|q + h2−2ln(h)−1
ln(h)2

| f ′(b)|q
]

1
q

.

This completes the proof. �

Corollary 1. Under the assumptions of Theorem 11, if q =
1, we have
∣

∣

∣

∣

∣

∣

∣

[g(b) f (g(b))−g(a) f (g(a))]−
g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ (g(b))2(lng(b)− lng(a))

×1
4

[

2h2 ln(h)−h2+1
ln(h)2

| f ′(a)|+ h2−2ln(h)−1
ln(h)2

| f ′(b)|
]

.

Theorem 12.Let f : G → R be differentiable function on
(g(a),g(b)) with g(a) < g(b) and f ′ ∈ L [g(a),g(b)]. If
| f ′|q is GA-relative convex function for q > 1, then

following inequality holds:
∣

∣

∣

∣

∣

∣

∣

[g(b) f (g(b))−g(a) f (g(a))]−
g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ (lng(b)− lng(a))
[

L((g(a))
2q

q−1 ,(g(b))
2q

q−1 )
]1− 1

q

×
[

A(| f ′(a)|q, | f ′(b)|q)
] 1

q .

Proof. Since | f ′|q is GA-relative convex function. Then
from lemma 4 and well known Holder’s inequality, we
have
∣

∣

∣

∣

∣

∣

∣

[g(b) f (g(b))−g(a) f (g(a))]−
g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ (g(b))2(lng(b)− lng(a))

1
∫

0

(

g(a)
g(b)

)2t

×| f ′((g(a))t(g(b))1−t)|dt

≤ (g(b))2(lng(b)− lng(a))





1
∫

0

(

g(a)
g(b)

)
2tq
q−1

dt





1− 1
q

×





1
∫

0

{t| f ′(a)|q +(1− t)| f ′(b)|q}dt





1
q

= (lng(b)− lng(a))







(q−1)
(

(g(b))
2q

q−1 − (g(a))
2q

q−1

)

2q(lng(b)− lng(a))







1− 1
q

×
[ | f ′(a)|q + | f ′(b)|q

2

]
1
q

= (lng(b)− lng(a))
[

L((g(a))
2q

q−1 ,(g(b))
2q

q−1 )
]1− 1

q

×
[

A(| f ′(a)|q, | f ′(b)|q)
] 1

q .

This completes the proof. �

Theorem 13.Let f : G → R be differentiable function on
(g(a),g(b)) with g(a) < g(b) and f ′ ∈ L [g(a),g(b)]. If
| f ′|q is GA-relative convex function for q ≥ 1, then
following inequality holds:
∣

∣

∣

∣

∣

∣

∣

[g(b) f (g(b))−g(a) f (g(a))]−
g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ (lng(b)− lng(a))1−
1
q

(2q)
1
q

×
{

[

(g(b))2q −L((g(a))2q
,(g(b))2q)| f ′(g(a))|q

]

+
[

L((g(a))2q
,(g(b))2q)− (g(a))2q

]

| f ′(b)|q
} 1

q

.
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Proof. Since | f ′|q is GA-relative convex function. Then
from lemma 4 and well known Holder’s inequality, we
have
∣

∣

∣

∣

∣

∣

∣

[g(b) f (g(b))−g(a) f (g(a))]−
g(b)
∫

g(a)

f (g(x))dg(x)

∣

∣

∣

∣

∣

∣

∣

≤ (g(b))2(lng(b)− lng(a))

1
∫

0

(

g(a)
g(b)

)2t

×| f ′((g(a))t(g(b))1−t)|dt

≤ (g(b))2(lng(b)− lng(a))





1
∫

0

1dt





1− 1
q

×





1
∫

0

(

g(a)
g(b)

)2qt

{t| f ′(a)|q +(1− t)| f ′(b)|q}dt





1
q

= (lng(b)− lng(a))

×
[

(g(b))2q(ln(g(b))2q − ln(g(a))2q)− (g(b))2q +(g(a))2q

(ln(g(b))2q − ln(g(a))2q)2

×| f ′(g(a))|q

+
(g(b))2q − (g(a))2q(ln(g(b))2q − ln(g(a))2q)− (g(a))2q

(ln(g(b))2q − ln(g(a))2q)2

×| f ′(g(b))|q
] 1

q

≤ (lng(b)− lng(a))1−
1
q

(2q)
1
q

×
{

[

(g(b))2q −L((g(a))2q
,(g(b))2q)| f ′(g(a))|q

]

+
[

L((g(a))2q
,(g(b))2q)− (g(a))2q

]

| f ′(b)|q
} 1

q

.

This completes the proof. �
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