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Abstract: A computationally efficient method for nominal 2-D (azimuth and elevation)direction-of-arrival (DOA) estimation of
coherently distributed source impinging on the far field is presented. Sincethe coherently distributed source is characterized by
four parameters, the nominal azimuth DOA, angular spread of the nominal azimuth DOA, the nominal elevation DOA, and angular
spread of the nominal elevation DOA, the computational complexity of the parameter estimation is normally high demanding. So a
low complexity estimation algorithm is proposed in this paper, the key idea of which is to apply a subspace-based method without
eigendecomposition in beamspace and a proposed second-order statistics for estimating the nominal elevation and azimuth DOAs. The
proposed decoupled estimation algorithm does not involve any searching. It has a lower computational complexity particularly when
the radio of array size to the number of source is large, at the expense of negligible performance loss. Simulation results are included
to demonstrate the performance of the proposed technique.
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1 Introduction

DOA estimation by array antenna is important in various
applications including location information [1,2]. 2-D
DOA also has played an important role in areas such as
radar, sonar, radio astronomy, and mobile communication
systems. So estimation of it has received a significant
amount of attention over the last several decades [3,4,5].
Now the most popular techniques for 2-D DOA
estimation have focused on sources that are modeled as
points in space. However, in several applications, such a
point source assumption can be irrelevant because signal
scattering phenomena may result in angular spreading of
source energy. In such cases, a distributed source model is
more realistic than the point source one [6,7,8].

In recent years, a number of investigators have
proposed distributed source modeling, and parameter
estimation techniques. For example, depending on the
relationship between the channel coherently time and the
observation period, the sources can be viewed either as
coherently distributed or incoherently distributed [9,10,
11].

Some typical estimators have been proposed for
azimuth-only estimation of the nominal DOA and angular
spread of coherently or incoherently distributed source [9,

10,12,13,14]. All these methods are involved joint 2-D
searching and computationally intensive. Some
low-complexity estimators have also been given in [15,
16,17,18,19,20]. In the low-complexity algorithms, some
of them are sequential 1-D algorithms instead of joint 2-D
searching [16,17]. Others are simpler but suboptimal
solutions can be achieved by the subspace-based
approach, which relies on signal subspace and noise
subspace [18,19,20].

However, for the problem of estimating the 2-D DOA,
the distributed source is characterized by four parameters,
the nominal azimuth DOA, angular spread of the nominal
azimuth DOA, the nominal elevation DOA, and angular
spread of the nominal elevation DOA, the computational
complexity of parameter estimation is normally highly
demanding. Simpler but suboptimal solutions can be
achieved by SOS algorithm [16], which relies on
eigendecomposition and 1-D searching for estimating the
nominal azimuth DOA and elevation DOA. In this paper,
we consider the coherently distributed source model and
propose a low-complexity 2-D DOA estimation method
using three uniform linear arrays. Based on the special
array geometry and the relations between the signal
subspaces, the nominal elevation DOA estimation can be
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obtained without eigenvalue decomposition. And then a
second-order statistics is proposed for estimating the
nominal azimuth DOA. In addition, we use beamspace
transformation to reduce the computation, particularly in
the situation where the radio of array size to the number
of sources is large.

2 Distributed Source Model

Consider an array configuration which consists of three
uniform linear subarrays with interspacing equal to a half
wavelength of incident signals as Fig.1. Let X, Z andW
denotes the three subarrays and each linear array consists
of M elements.

y
Subarray X

subarray Z

subarray W
x

z

(0,0,0)

(0,0,d)
(0,(M-1)d,d)

(0,(M-1)d,0)

(d,(M-1)d,0)

(d,0,0)

Fig. 1: The array configuration for 2-D DOA

Suppose that there areq narrow-band sources
impinging on the array. The received vector of subarrayX
can be written as

XXX (t) =
q

∑
i=1

SSSi (t)+nnnX (t) (1)

whereXXX (t) is the array snapshot vector,SSSi (t) is the vector
that describes the contribution of theith signal source to
the array output, andnnnX (t) is additive zero-mean noise for
subarrayX uncorrelated from the signals.

In point source modeling, the baseband signals of the
ith source is modeled as

SSSi (t) = si (t)aaa(θi ,φi) (2)

wheresi (t) is the complex envelope of theith source,
and

aaa(θi ,φi) =
[

1 exp(− j2π (d/λ )sinθ1sinφ1) · · ·
exp(− j2π (M−1)(d/λ )sinθi sinφi)]

T

is the corresponding steering vector,θi and φi are the
elevation DOA and azimuth DOA, respectively,λ is the
wavelength of the impinging signal.

In distributed source modeling, the source energy is
considered to be spread over some angular volume. Hence,
SSSi (t) is written as

SSSi (t) =
∫∫

aaa(ϑ ,ϕ)ςi (ϑ ,ϕ, t)dϑdϕ (3)

whereςi (ϑ ,ϕ, t) is the angular signal density of theith
source and can be expressed as

ςi (ϑ ,ϕ, t) = si (t)ℓi (ϑ ,ϕ; µµµ i) (4)

under the coherently distributed source assumptions. In
(4), ℓ(ϑ ,ϕ; µµµ) is a deterministic angular signal intensity
function, and parametrized by the vector
µµµ =

(

θ ,σθ ,φ ,σφ
)

denoting the nominal elevation DOA
θ , angular spreadσθ of the nominal elevation DOA, the
nominal azimuth DOAφ , and angular spreadσφ .

The steering vector of subarrayX can be written as

bbbX (µµµ) =
∫∫

aaa(ϑ ,ϕ)ℓ(ϑ ,ϕ; µµµ)dϑdϕ (5)

As a common example of the coherently distributed
source, assume that the deterministic angular signal
intensity functionℓ(ϑ ,ϕ; µµµ) has the Gaussian shape as
follows,

ℓ(ϑ ,ϕ; µµµ) =
(

1/
(

2πσθ σφ
))

×

exp
(

−1/2
(

(ϑ −θ)2/σ2
θ +(ϕ −φ)2/σ2

φ

)) (6)

The received signal vector in other subarraysZ andW can
also be expressed as

ZZZ(t) =
q

∑
i=1

∫∫

aaa(ϑ ,ϕ)ℓ(ϑ ,ϕ; µµµ)×

exp(− j2π (d/λ )cosϑ)si (t)dϑdϕ +nnnZ (t)

(7)

WWW (t) =
q

∑
i=1

∫∫

aaa(ϑ ,ϕ)ℓ(ϑ ,ϕ; µµµ)×

exp(− j2π (d/λ )sinϑ cosϕ)si (t)dϑdϕ +nnnW (t)

(8)

and the steering vectors are defined asbbbZ (µµµ) andbbbW (µµµ),
respectively.

bbbZ (µµµ) =
∫∫

aaa(ϑ ,ϕ)×

exp(− j2π (d/λ )cosϑ)ℓ(ϑ ,ϕ; µµµ)dϑdϕ
(9)

bbbW (µµµ) =
∫∫

aaa(ϑ ,ϕ)×

exp(− j2π (d/λ )sinϑ cosϕ)ℓ(ϑ ,ϕ; µµµ)dϑdϕ
(10)

3 Nominal 2-D DOA Estimation

In general, an optimum estimation method for distributed
sources can provide an excellent performance at the cost
of intensive computation. Since the computational
complexity increases dramatically with high dimensional
parameters. It is noteworthy that a considerable
simplification is possible by exploiting and utilizing the
decoupling the nominal DOAs from that of angular
spreads.
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The closed form of the steering vector can be written
as

[bbbX (µµµ)]m

=
∫∫

exp(− j2π (m−1)(d/λ )sinϑ sinϕ)×
(

1/
(

2πσθ σφ
))

×

exp
(

−1/2
(

(ϑ −θ)2/σ2
θ +(ϕ −φ)2/σ2

φ

))

dϑdϕ

(11)

where [·]m indicates themth element of a vector. In
distributed source,ϑ and ϕ are all aroundθ and φ . So
with the change of variablesϑ −θ = θ̃ andϕ −φ = φ̃ , θ̃
andφ̃ are small values. We can rewritten

[bbbX (µµµ)]m

≈
∫∫

exp
(

− j2π (m−1)(d/λ )
(

sinθ+θ̃ cosθ
)

×
(

sinφ + φ̃ cosφ
)) 1

2πσθ σφ

exp
(

−1/2
(

θ̃ 2/σ2
θ + φ̃2/σ2

φ
))

dθ̃dφ̃

=
1

2πσθ σφ
exp(− j2π (m−1)(d/λ )sinθ sinφ)×

∫

exp
(

− j2π (m−1)(d/λ ) φ̃ sinθ cosφ
)

exp
(

−(1/2)
(

φ̃2/σ2
φ
))

dφ̃
∫

exp
(

− j2π (m−1)(d/λ ) θ̃ cosθ sinφ
)

exp
(

−(1/2)
(

θ̃ 2/σ2
θ
))

dθ̃

(12)

Let us consider the approximate closed form ofbbbX (µµµ).
Using the integral formula [21]

∫ ∞

−∞
exp

(

− f 2x2)exp[ jp(x+α)]dx

=
√

π exp
(

−p2/
(

4 f 2))exp( jpα)/ f
(13)

(12) can be expressed as

[bbbX (µµµ)]m ≈exp(− j2π (m−1)(d/λ )sinθ sinφ)
× [ggg1]m× [ggg2]m

(14)

where

[ggg1]m = exp
(

−2π2 (m−1)2 (d/λ )2sin2 θ cos2 φσ2
φ

)

,

[ggg2]m = exp
(

−2π2 (m−1)2 (d/λ )2cos2 θ sin2 φσ2
θ

)

.

In the matrix form it can be extended to

bbbX (µµµ) = aaa(θ ,φ)⊙ggg1⊙ggg2 (15)

where⊙ is the Schur-Hadamard or element product.ggg1
and ggg2 are real-valued because of the symmetry
assumption on angular signal intensity.

For the steering vectorbbbZ (µµµ), there is

[bbbZ (µµµ)]m

≈
∫∫

exp
(

− j2π (m−1)(d/λ )sin
(

θ + θ̃
)

sin
(

φ + φ̃
))

×

exp
(

− j2π (d/λ )
(

cosθ − θ̃ sinθ
))

×
1

2πσθ σφ
×

exp
(

−1/2
(

(ϑ −θ)2/σ2
θ +(ϕ −φ)2/σ2

φ

))

dϑdϕ (16)

Using 2π (d/λ ) θ̃ ≈ 0, bbbZ (µµµ) can be rewritten as

[bbbZ (µµµ)]m

≈
∫∫

exp
(

− j2π (m−1)(d/λ )sin
(

θ + θ̃
)

sin
(

φ + φ̃
))

×

exp(− j2π (d/λ )cosθ)
1

2πσθ σφ
×

exp
(

−1/2
(

(ϑ −θ)2/σ2
θ +(ϕ −φ)2/σ2

φ

))

dϑdϕ (17)

According to (14) and (17), we can write the following
equations,

bbbZ (µµµ)≈ exp(− j2π (d/λ )cosθ)bbbX (µµµ) (18)

For the steering vectorbbbW (µµµ), we also have

bbbW (µµµ)≈ exp(− j2π (d/λ )sinθ cosφ)bbbX (µµµ) (19)

From (18) and (19), the array response vector has the
following expression,

[

bbbX bbbZ bbbW
]T

=
[

bbbX bbbXΦΦΦ1 bbbXΦΦΦ2
]T

(20)

where

ΦΦΦ1 = diag[exp(− j2π (d/λ )cosθ1)

exp(− j2π (d/λ )cosθ2) · · ·
exp(− j2π (d/λ )cosθq)]

and

ΦΦΦ2 = diag[exp(− j2π (d/λ )sinθ1cosφ1)

exp(− j2π (d/λ )sinθ2cosφ2) · · ·
exp(− j2π (d/λ )sinθqcosφq)]

The array response vector can be partitioned into

[

bbbX bbbZ bbbW
]T

=
[

bbbT
X1

bbbT
X2

(bbbX1ΦΦΦ1)
T

(bbbX2ΦΦΦ1)
T (bbbX1ΦΦΦ2)

T (bbbX2ΦΦΦ2)
T ]T

(21)

wherebbbX1 andbbbX2 are sub-matices of dimensionq×q and
(M−q)×q, respectively.
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Assume that we have a criterion function, which has
the nominal azimuth and elevation DOAs as unknown
parameters. When we estimate the two DOAs, we have to
generally find low cost algorithms. Beamspace
transformation is one way of reducing computation and
sometimes improving the estimation accuracy. Here we
use beamspace preprocessing, which offers reduction of
computational cost, particularly when the ratio of array
size to the number of sources is large.

Let TTT l be aM × L matrix with orthogonal columns,
i.e.,TTTH

l TTT l = III , L is the dimensional of beamspace data and
L < M. Then, the beamspace transformation is defined by
applying TTT l to the snapshotsXXX (t), WWW (t) and ZZZ(t). The
corresponding transformed received data matrix will have
the form,

XXXB (t) = TTTH
l XXX (t)

WWWB (t) = TTTH
l WWW (t)

ZZZB (t) = TTTH
l ZZZ(t)

(22)

and
TTT l =

[

TTT(l)
l , · · · , TTT(l)

L

]

(23)

where

TTT
(l)
l =

[

1, exp(− j2πk(l)l /M), · · · , exp(− j2πk(l)l (M−1)/M)

]T

and
{

k(l)m

}L

m=1
are integers.

For coherently distributed source, the beamspace
transformation of the steering vector is defined as follows,

bbbBX = TTTH
l bbbX

bbbBZ = TTTH
l bbbZ

bbbBW = TTTH
l bbbW

(24)

According (20) and (24), we have

bbbBZ = bbbBXΦΦΦ1

bbbBW = bbbBXΦΦΦ2
(25)

From (24) and (25), we can write

[

bbbBX bbbBZ bbbBW
]T

=
[

bbbT
BX1

bbbT
BX2

(bbbBX1ΦΦΦ1)
T

(bbbBX2ΦΦΦ1)
T (bbbBX1ΦΦΦ2)

T (bbbBX2ΦΦΦ2)
T ]T

(26)

where the rank ofbbbBX1 andbbbBX2 areq×q and(L−q)×q.
we have

PPPHbbbBX1

=
[

bbbT
BX2

(bbbBX1ΦΦΦ1)
T

(bbbBX2ΦΦΦ1)
T (bbbBX1ΦΦΦ2)

T (bbbBX2ΦΦΦ2)
T ]T

(27)

wherePPP denotes propagator.
We can partitionPPP as follows

PPPH =
[

PPPT
1 PPP2

T PPP3
T PPP4

T PPP5
T
]T (28)

where the dimensions ofPPP1, PPP2, PPP3, PPP4 and PPP5 are
identical with the dimensions ofbbbBX2, bbbBX1ΦΦΦ1, bbbBX2ΦΦΦ1,
bbbBX1ΦΦΦ2 andbbbBX2ΦΦΦ2.

From (27) and (28), we can write the following,

PPP1bbbBX1 = bbbBX2

PPP2bbbBX1 = bbbBX1ΦΦΦ1

PPP3bbbBX1 = bbbBX2ΦΦΦ1

PPP4bbbBX1 = bbbBX1ΦΦΦ2

PPP5bbbBX1 = bbbBX2ΦΦΦ2

(29)

Using (29), we can write

PPP3bbbBX1 = PPP1bbbBX1ΦΦΦ1

PPP5bbbBX1 = PPP1bbbBX1ΦΦΦ2
(30)

So we have

PPP†
1PPP3bbbBX1 = bbbBX1ΦΦΦ1

PPP†
1PPP5bbbBX1 = bbbBX1ΦΦΦ2

(31)

where † denotes the pseudoinverse. This means that the
estimation of the diagonal elements of matricesΦΦΦ1 and
ΦΦΦ2 can be obtained by finding the eigenvalues ofPPP†

1PPP3

andPPP†
1PPP5.

Now, let YYYB(t) =
[

XXXT
B(t) WWWT

B(t) ZZZT
B(t)

]T
, and

R̂RRYY = E
{

YYYB (t)YYYH
B (t)

}

. An estimation of propagatorPPP
can be obtained by minimizing the cost functions,

R̂RRYY =
[

ĜGG ĤHH
]

(32)

whereĜGG and ĤHH are sub-matrices with dimension 3L× q
and 3L× (3L−q), respectively, and

P̂PP= ‖HHH −GGGP̂PP‖2

P̂PP=
(

GGGHGGG
)−1

GGGHHHH
(33)

Equation (20) shows that diagonal elements ofΦΦΦ1 and
ΦΦΦ2 are related to the estimation of nominal elevation DOA
and azimuth DOA aŝθ andφ̂ , where

θ̂ = arccos

(

arg(ΦΦΦ1)

−2π (d/λ )

)

φ̂ = arccos

(

arg(ΦΦΦ2)

−2π (d/λ )sinθ̂

) (34)

The domain of arc-cosine function is(−1,1).
However, the absolute values of the above function
arguments are often greater than 1 in mobile
communication environments. Now assuming a single
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distributed source, we propose the following second-order
statisticsr1 (k) to estimate the nominal azimuth DOA,

r1 (k) = E (XXXk+1 (t)XXX∗
k)

= E (s(t)s∗ (t)exp(− j2π (d/λ )sinθ sinφ)
× [ggg1]k+1× [ggg2]k+1× [ggg1]k× [ggg2]k

(35)

wherek ∈ [1,M−1], and the estimation of the nominal
elevation DOA and azimuth DOA can be obtained as

φ̂ = arctan





arg(r1)

arg
(

Φ̂ΦΦ2

)





θ̂ = arctan









(

arg(Φ̂ΦΦ2)
arg(Φ̂ΦΦ1)

)

cosφ̂









(36)

Regarding the computational complexity, from (36), it
is clear that the proposed method need not any
peak-finding searching compared with SOS algorithm
which has two successive 1-D searching. Furthermore,
real-time implementation of signal subspace-based
algorithms is impeded by the requirement for anO

(

M3
)

eigendecomposition. Recently, the beamspace approaches
have decomposed the original data vector into several
lower-dimensional beamspaces via a transformation, and
then the parameter estimation is carried out based on the
beamspace data. If the dimensional of beamspace data is
L < M, the computational time involved by the estimation
of the propagator from the data is inO

(

q×3L2
)

. So
when the radio of array size to the number of sources is
large, beamspace transformation can further reduce the
computational effort.

4 Simulation Results

Computer simulations have been conducted to evaluate
nominal 2-D nominal DOA estimation performance of the
proposed method. The spacing between the two adjacent
elements in any uniform linear array is set to a half
wavelength of incoming signals.

In the first example, we compare the proposed
algorithm with SOS method for a Gaussian-shaped
distributed source atµµµ = (70◦,4◦,30◦,6◦) with three
subarrays of 8 sensors. Further, 500 snapshots per trial
and 500 independent trials in total are tested. We use root
mean square error (RMSE), which is defined as
√

E{(
⌢

θ −θ)2+(
⌢

φ −φ)2}, as the performance measures.
The RMSEs of the nominal elevation DOA and azimuth
DOA estimated by the proposed method are illustrated at
different SNR in Fig.2. As it can be seen, the proposed
algorithm has a substantially better estimation
performance at low SNR. The explanation of this fact is
that the second-order statistics has weaken the inflection

of noise. Indeed, our technique gives biased estimates
even at high values of SNR.

In the second example, we examine the estimation
performance of the proposed algorithm with the influence
of angular spread. Fig.3 shows the RMSEs of the nominal
2-D DOA when SNR= 15dB, and angular spread varies.
It is observed that the variation of the RMSEs in the
proposed algorithm are rather small even when the
angular spread increases. This is partly because of the
proposed closed form solution of the nominal elevation
and azimuth having little relationship with angular
spread. The proposed method has better performance in
the cases of small and large angular spreads.
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Fig. 2: RMSE for the nominal elevation DOA and azimuth DOA
estimates versus SNR
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Fig. 3: RMSE for the nominal elevation DOA and azimuth DOA
estimates versus angular spread

The influence of the number of snapshots is
investigated in Fig.4 for SNR= 15dB. It can be observed
that the proposed algorithm presents effective
performance even for a small number of snapshots.

5 Conclusion

In this paper, we have considered the modeling of
coherently distributed source and the estimation of
nominal 2-D DOA of distributed source. A
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Fig. 4: RMSE for the nominal elevation DOA and azimuth DOA
estimates versus the number of snapshots

low-complexity decoupled algorithm is proposed without
any peak-finding searching. A subspace-based algorithm
and a second-order statistics are proposed for the nominal
elevation and azimuth DOAs. The proposed decoupled
method has been shown to be useful in situations where
the radio of array size to the number of source is large
with a lower computational complexity.
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