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Abstract: Concept lattices are indeed lattices. In this paper, we present a new relationship between lattices and graphs: given a binary
relationI, we define an underlying graphDI , and find out the constitution in the set of cover elements of the minimum element of the
concept lattice ofI using the properties ofDI . The following is to provide a way to establish a one-to-one correspondence between the
set of covers of an element in the concept lattice and the set of covers of the minimum in a sublattice of the concept lattice. We apply
the one-to-one correspondence to define a new underlying graph, and generate the elements of the lattice.
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1 Introduction and Preliminaries

We know that many problems of data analysis are naturally
formulated in terms of formal concept lattice. As A.Berry
and A.Sigayret said in [4], one of the important challenges
in data handling is generating or navigating the concept
lattice of a binary relation.

In this paper, we provide a graph-theoretic approach
by determining the concept lattice of a binary relation
with the underlying graph. An important step in
connecting this graph-theoretic approach with lattices is
to associate each binary relation with an underlying
undirected bipartite graph. When the bipartite graph is
obtained, for the minimum element in the concept lattice
of the binary relation, all its cover elements are searched
out by the graph-theoretic method. Additionally, a key
aspect of this approach is that it equates the concepts of
the lattice with the minimum element in a new binary
relation.

In summary, our method presented in this paper is an
initial structural results, which we expect will provide
support for further advance in this direction.

The outline of the paper is as follows. After
introducing some notions from concept lattice, graph
theory and lattice theory, we define the underlying graph
DI which we use to represent a binary relationI, and
describe some of its properties. Then, we present the main
results regarding the method of obtaining the concept

lattice of I in this paper. This is followed by a description
of the manner in which the concept lattice can be
computed and visualized in steps, at the same time, the
diagram of the concept lattice is born. The final section
gives an example for illustrating the graph-theoretic
method presented in this paper.

Although some of the definitions appearing in this
section do not require that the sets involved be finite, we
make a standing assumption that all the discussions under
consideration are finite. Originally, the terminologies of
concept lattices are given below. After that, some known
properties about concept lattices are shown.

Definition 1 [1,3] A triple (G,M, I) is called aformal
context, if G and M are sets andI ⊆ G×M is a binary
relation betweenG and M. We call the elements ofG
objects, those of M attributes, and I the incidence of
(G,M, I). ForA ⊆ G, we define

A′ = {m ∈ M | (g,m) ∈ I, for all g ∈ A}, and dually, for
B ⊆ M,

B′ = {g ∈ G | (g,m) ∈ I, for all m ∈ B}.
(A,B) is a formal concept of (G,M, I) if and only if

A ⊆ G,B ⊆ M,A′ = B andA = B′.
The concepts of a given context are naturally ordered

by the relation defined by
(A1,B1)≤ (A2,B2)⇔ A1 ⊆ A2(⇔ B2 ⊆ B1).
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The ordered set of all formal concepts of(G,M, I) is
denoted byB(G,M, I) and it is called theconcept lattice
of (G,M, I).

In this paper, a formal context and a formal concept
will be simply said a context and a concept respectively;
(g,m) ∈ I is often written asgIm.

Lemma 1 [1,3] (1) For A1,A2,A ⊆ G andB1,B2,B ⊆
M, there are the following statements:
(i) A1 ⊆ A2 ⇒ A′

2 ⊆ A′
1. (i)’ B1 ⊆ B2 ⇒ B′

2 ⊆ B′
1.

(ii) A ⊆ A′′ andA′ = A′′′. (ii)’ B ⊆ B′′ andB′ = B′′′.
(iii) A ⊆ B′ ⇔ B ⊆ A′.

(2) The concept latticeB(G,M, I) is complete.

The graphs used here are finite and undirected. About
graph theory’s knowledge, we just show some of them
next and the others are referred to [2]. Agraph
D = (V (D),E(D)) means thatV (D) is thevertex set and
E(D)⊆V (D)2 = {xy|x,y ∈V (D)} is theedge set.

Definition 2 [2] A bipartite graph is one whose vertex
set can be partitioned into two subsetsX andY , so that
each edge has one end inX and one end inY .

Thedegree dD(u) of u ∈ V (D) is the number of edges
of D incident withu.

Two verticesu andv of D are said to beconnected if
there is a(u,v)-path in D. Connection is an equivalence
relation on the vertex setV . Thus, there is a partition ofV
into nonempty subsetsV1,V2, . . . ,Vw such that two vertices
u andv are connected if and only if bothu andv belong to
the same setVi.

The subgraphsD[V1],D[V2], . . . ,D[Vw] are called the
components of D. If D has exactly one component,G is
connected; otherwise,D is disconnected.

For any setS of vertices inD, we define theneighbor
set of S in D to be the set of all vertices adjacent to
vertices inS; this set is denoted byND(S).

We will used(u) andN(S) instead ofdD(u) andND(S)
respectively if it does not cause confusion throughout the
rest of the paper.

By Lemma 1, we see thatB(G,M, I) is indeed a
lattice. We know that the main goal of data analysis is just
to find the lattice construction for a given context. Hence,
we also need lattice theory to finish this duty. We just
write out some known literature about lattice theory, the
others of lattice theory are seen [3].

Definition 3 [3] The diagram of a poset (P,≤)
represents the elements with small circles; the circle
representing two elementsx,y are connected by a straight
line if and only if one covers the other; ifx coversy, then
the circle representingx is higher than the circle
representingy.

Let L be a lattice. Fora,b ∈ L anda ≤ b, the interval
[a,b] = {x ∈ L | a ≤ x ≤ b}.

In view of the results in [3], we know that[a,b] is a
sublattice ofL.

2 The bipartite graph underlying a binary
relation

In the previous works, [4] introduces to represent a given
context by a graph constructed on the complement of the
relation; the breath first search graph partitions method is
shown in [5]. To benefit by the ideas in [4,5], we just
construct a graph on a given context to obtain the concept
lattice and the diagram of the concept lattice. Of course,
our graph is quite different from that in [4,5] and the
other materials such as the references in [4,5]. Thus the
method here is a new approach.

We should point out that the relations we work on are
considered as non-empty.

Definition 4 Let (G,M, I) be a context; we will define
an associated underlying graph, denotedDI , as follows:

· The vertex set ofDI is G∪M.
· For x,y ∈ G, there is not any edge to incident withx

andy.
· For x,y ∈ M, there is not any edge to incident withx

andy.
· For a vertexx of G and a vertexy of M, there is an

edge inDI if and only if (x,y) is in I.

Note that only the vertices between a vertex ofG and
a vertex ofM are possible to be incident with an edge; the
vertices betweenG or betweenM are not possible to be
incident with an edge. Thus,DI is a bipartite graph and
undirected graph andV (DI) = G∪M andE(DI) = {xy |
x ∈ G,y ∈ M,(x,y) ∈ I} = {yx | y ∈ M,x ∈ G,(x,y) ∈ I}.
The graphs of this class have several remarkable
properties, such as hereditary: any subgraph of bipartite
graph which has more than one vertex is again bipartite
graph. Moreover, since the relations we work on are
considered as non-empty,DI is always hereditary.

We present several nice properties onDI , which
makes our constructionB(G,M, I) easier to handle than
on more general graphs.

Lemma 2 Let D1,D2, . . . ,Dγ be all the components
of DI associated withB(G,M, I) and(A,B) ∈
B(G,M, I) \ {M/0 = min{C | C ∈ B(G,M, I)},G /0 =
max{C | C ∈ B(G,M, I)}}. Then there is one and only
oneDγ0 satisfyingA∩V (Dγ0) 6= /0. Similarly, there is one
and only oneDγ1 satisfyingB∩V (Dγ1) 6= /0. Further, there
is one and only oneDγ01 such thatA,B belong toV (Dγ01).

Proof The existence ofDγ0 for A is carried out by
Definition 2 and Definition 4.

Suppose there are two componentsD1 andD2 of DI
satisfyingA∩V (Dt) 6= /0,(t = 1,2).

Let at ∈ A ∩V (Dt) = At ,(t = 1,2). SinceA′ = B =
{b ∈ M | ∀x ∈ A,xIb} = {b ∈ M | ∀x ∈ A,xb ∈ E(DI)} by
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Definition 1 and Definition 4. Especially, for
at ∈ A,(t = 1,2), there is atb ∈ E(DI) for any
b ∈ B,(t = 1,2). However, by the given,B 6= /0. We could
put b0 ∈ B. There are a1b0,a2b0 ∈ E(DI). Further,
a1(a1b0)b0(b0a2)a2 is an(a1,a2)-path.

Since Dt = D[V (Dt)] is connected, i.e, for all
xt ∈ V (Dt) \ at , there is an(xt ,at)-path to connectxt and
at , (t = 1,2). Thus, (x1,a1)-path, (a1,a2)-path,
(a2,x2)-path taken together is an(x1,x2)-path to connect
x1 andx2.

By the above, we have the connectivity ofD1∪D2, a
contradiction to the assumption.

Similarly, there is one and only one componentDγ1
satisfyingB∩V (Dγ1) 6= /0.

By the construction ofDI , (A,B) ∈ B(G,M, I) and
Definition 1, we have, there is one and only oneDγ01
satisfyingA,B ∈V (Dγ01).

Suppose (A,B),(X ,Y ) ∈ B(G,M, I) \ {M/0,G /0}
satisfy(A,B) < (X ,Y ). Then by Definition 1,A ⊂ X and
Y ⊂ B. Y ⊂ B tells usY ⊆ V (DB), whereB ⊆ V (DB) and
DB is a component ofDI . In virtue of Lemma 2, one gets
X ⊆ V (DB) and A ⊆ V (DB). That is to say, if
(A,B),(X ,Y ) ∈ B(G,M, I) and (A,B),(X ,Y ) are
comparable inB(G,M, I), it must have thatA,B,X andY
belong to the same component inDI .

About DI , we have the following extreme statuses to
explain.
Status 1.y ∈ M andN(y) = /0.

By Definition 1, for(A,B) ∈ B(G,M, I) andB 6= M, it
hasy /∈ B. Namely, for(A,B) ∈ B(G,M, I), y ∈ B if and
only if B = M.
Status 2.x ∈ G andN(x) = /0.

In virtue of Definition 1, for(A,B) ∈ B(G,M, I) and
A 6= G, it has x /∈ A. Namely, for (A,B) ∈ B(G,M, I),
x ∈ A if and only if A = G.
Status 3. {gm1,gm2, . . . ,gms} ⊆ G satisfying
N(gm1) = N(gm2) = . . .= N(gms) = M.

In light of Definition 1, for(A,B) ∈ B(G,M, I), it has
gmi ∈ A,(i = 1,2, . . . ,s). That is,

({gm1,gm2, . . . ,gms},M) ∈ B(G,M, I).
Status 4. {mn1,mn2, . . . ,mnt} ⊆ M satisfying
N(mn1) = N(mn2) = . . .= N(mnt ) = G.

Owing to Definition 1, for(A,B) ∈ B(G,M, I), it has
mni ∈ A,(i = 1,2, . . . , t).

Say,(G,{mn1,mn2, . . . ,mnt}) ∈ B(G,M, I).

According to the Statuses, we assure:
(1) Under the supposition of Status 3,

(A,B) ∈ B(G,M, I) if and only if
(A \ {gm1,gm2, . . . ,gms},B) ∈
B(G\{gm1,gm2, . . . ,gms},M, I1),
where(X ,Y ) ∈ I1 ⇔ (X ∪{gm1,gm2, . . . ,gms},Y ) ∈ I.

(2) Under the supposition of Status 4,
(A,B) ∈ B(G,M, I) if and only if
(A,B \ {mn1,mn2, . . . ,mnt}) ∈
B(G,M \{mn1,mn2, . . . ,mnt}, I2),

where(X ,Y ) ∈ I2 ⇔ (X ,Y ∪{mn1,mn2, . . . ,mnt}) ∈ I.

Therefore, in Section 3 and the part of 5.1 in Section
5, we only consider(G,M, I) with the property: for∀g ∈
G, there ism ∈ M satisfying(g,m) /∈ I, and at the same
time, for∀m0 ∈ M, there isg0 ∈ G satisfying(g0,m0) /∈ I.
Under such supposition, inB(G,M, I), ( /0,M) and(G, /0)
are known existed as the minimumM/0 and the maximum
G /0 respectively.

In B(G,M, I), we callM/0 andG /0 trivial elements the
othersnontrivial elements.

3 The cover elements of the minimum in
B(G,M, I)

The main aim of studying onB(G,M, I) is to search
nontrivial elements and the relationships among the
members inB(G,M, I).

In this section, we only consider thatDI is connected.
We will present a way to find all the cover elements of
( /0,M) in the concept latticeB(G,M, I).

Let G = {g1,g2, . . . ,gk}. In DI , the degree sequence
(d(g1),d(g2), . . . ,d(gk)) satisfiesd(g11) = d(g12) = . . .=
d(g1t1

) = min{d(g1),d(g2), . . . ,d(gk)} < d(g21) =

d(g22) = . . . = d(g2t2
) < .. . < d(gi1) = d(gi2) = . . . =

d(giti
) < d(g(i+1)1) = d(g(i+1)2) = . . . = d(g(i+1)ti+1

) <

.. . < d(gs1) = d(gs2) = . . .= d(gsts
) =

max{d(g1),d(g2), . . . ,d(gk)},
where for anyg j ∈ G,d(gi1) < d(g j) < d(g(i+1)1) is not
true.

This sequence andDI have some remarkable
properties shown as follows.

Lemma 3 (1) 0≤ d(g j),( j = 1,2, . . . ,k).
(2) d(g j) = |N(g j)|,( j = 1,2, . . . ,k).
(3) For anyg j ∈ G, if G ∋ g ∈ N(g j)

′, thenN(g j) ⊆
N(g),( j = 1,2, . . . ,k).

(4) (X ,Y ) ∈ B(G,M, I) inducesY =
⋂

x∈X
N(x).

Proof (1) and (2) are got by Definition 2 and
Definition 4.

Let g ∈ N(g j)
′. Since N(g j)

′ = {x ∈ G |
∀y ∈ N(g j),xIy} by Definition 1, we havegIy for
y ∈ N(g j), and in view of Definition 4,gy ∈ E(DI) for
every y ∈ N(g j). Hence, owing to Definition 2,
N(g j)⊆ N(g). Say, (3) is true.

By Definition 1 and Definition 2, it is easy to haveY ⊆
N(x), and soY ⊆

⋂

x∈X
N(x).

If Y ⊂
⋂

x∈X
N(x), that is, there isb ∈

⋂

x∈X
N(x)\Y . This

implies b ∈ N(x) for x ∈ X , say, xb ∈ E(DI) for every
x ∈ X . Thus,b ∈ X ′. However,X ′ = Y holds according to
(X ,Y ) ∈ B(G,M, I) and Definition 1. This followsb ∈ Y ,
a contradiction withb /∈ Y . Hence,Y =

⋂

x∈X
N(x), i.e. (4)
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is correct.

We are now ready to prove our main results.

Theorem 1 Let g j ∈ G. Then
(N(g j)

′,N(g j)) ∈ B(G,M, I), ( j = 1,2, . . . ,k).
Proof By Lemma 1,N(g j)⊆N(g j)

′′ holds. According
to Definition 1, it only needs to proveN(g j)

′′ ⊆ N(g j).
In light of Definition 1 and Definition 4, one gets

N(g j)
′′ = {y ∈ M | ∀x ∈ N(g j)

′,xy ∈ E(DI)} and
N(g j)

′ = {a ∈ G | ∀b ∈ N(g j),ab ∈ E(DI)}.
By Definition 2 and Definition 4,g jb ∈ E(DI) holds

for ∀b∈N(g j). It follows g j ∈N(g j)
′. Hence,g jy∈E(DI)

for ∀y ∈ N(g j)
′′. Soy ∈ N(g j). Namely,

N(g j)
′′ ⊆ N(g j).

That is to say,(N(g j)
′,N(g j)) ∈ B(G,M, I).

Theorem 2 Let g ∈ G, p ∈ {1, . . . , ts} andd(gsp) =
max{d(g1), . . . ,d(gk)}. Then

(1) N(g)∩N(gsp) = N(gsp)⇐⇒ g ∈ N(gsp)
′.

(2) (N(gsp)
′,N(gsp)) covers( /0,M) in B(G,M, I).

Proof (1) (⇒) N(g)∩N(gsp) = N(gsp) hints
N(gsp)⊆ N(g). In light of Lemma 3, this impliesd(gsp) =
|N(gsp)| ≤ |N(g)|= d(g). However,d(gsp) =
max{d(g1),d(g2), . . . ,d(gk)}. Thusd(g) = d(gsp) is true,
further,N(gsp) =N(g) holds. Herein,g∈N(g)′ =N(gsp)

′.
(⇐) g ∈ N(gsp)

′ and Lemma 3 together hintsN(gsp)⊆
N(g), i.e N(gsp) = N(gsp)∩N(g).

(2) In view of Theorem 1,(N(gsp)
′,N(gsp)) ∈

B(G,M, I).
Suppose there is(X ,Y ) ∈ B(G,M, I) satisfying

( /0,M) < (X ,Y ) < (N(gsp)
′,N(gsp)). It has

/0 6= X ⊂ N(gsp)
′ and N(gsp) ⊂ Y ⊂ M. Let

y0 ∈ Y \N(gsp) 6= /0.
BecauseX =Y ′ = {x∈G | ∀y∈Y,xIy}= {x∈G | ∀y∈

Y,xy ∈ E(DI)}. Then, fory0 ∈ Y and∀x ∈ Y ′ = X , there is
xy0 ∈ E(DI). This followsy0 ∈ N(x) for ∀x ∈ X . However,
x ∈ X ⊂ N(gsp)

′ and the above closed (1) together shows
us N(x) = N(gsp). Thus y0 ∈ N(gsp), a contradiction to
y0 ∈ Y \N(gsp).

That is to say,(N(gsp)
′,N(gsp)) covers( /0,M).

Theorem 2 endows the cover elements of( /0,M)
yielded from the members inTs = {gs1,gs2, . . . ,gsts

}. We
will now discuss how to find the other cover elements of
( /0,M).

Suppose we have got the cover elements of( /0,M)
yielded from

Ti+1 = {g(i+1)1,g(i+1)2, . . . ,g(i+1)ti+1
}\

{

g j ∈ G | d(g j) =

d(g(i+1)1), additionally, there is g ∈ G satisfying

N(g j)⊂ N(g)
}

. Put

Ti = {gi1,gi2, . . . ,giti
}\

{

g j ∈ G | d(g j) = d(gi1), there is

g ∈ G satisfyingN(g j)⊂ N(g)
}

= {giα1
,giα2

, . . . ,giαβi
}.

Then we get a sequenceT1,T2, . . . ,Ts. Considering
with Theorem 1, we will prove that the following
Theorem 3 is true.

Theorem 3 (N(giαh
)′,N(giαh

)) covers ( /0,M),
(h = 1,2, . . . ,βi).

Proof Otherwise, there is(X ,Y ) ∈ B(G,M, I)
satisfying( /0,M)< (X ,Y )< (N(giαh

)′,N(giαh
)).

In view of Definition 1, N(giαh
) ⊂ Y and

/0 6= X ⊂ N(giαh
)′ are correct.

Put a ∈ N(giαh
)′. It has {a}′ ⊇ N(giαh

)′′ = N(giαh
).

According to Definition 1 and Section 2,
{a}′ = {y ∈ M | ∀x ∈ {a},xIy} = {y ∈ M | aIy} = {y ∈
M | ay ∈ E(DI)}= N(a). Thus,N(giαh

)⊆ N(a).

If N(giαh
)⊂ N(a) for somea0 ∈ N(giαh

)′. This causes
a contradiction to the choice ofgiαh

. That is to say,N(a) =
N(giαh

) for anya∈N(giαh
)′. Particularly,x ∈ X ⊂N(giαh

)′

leads toN(x) = N(giαh
).

Thus by(X ,Y ) ∈ B(G,M, I) and Lemma 3, it follows
Y =

⋂

x∈X
N(x) =

⋂

x∈X
N(giαh

) = N(giαh
), a contradiction to

N(giαh
)⊂ Y .

Therefore,(N(giαh
)′,N(giαh

))covers( /0,M),(h = 1,2, . . . ,βi).
ObservingT1, . . . ,Ts, Theorem 2 and Theorem 3, by the
induction ons≤ |G|<∞, we obtain that the style members
(N(g)′,N(g)) covers( /0,M), whereg ∈ G, additionally, for
anyx ∈ G, N(g)⊂ N(x) is wrong.

We will now discuss the converse part of the above
closed result as follows.

Theorem 4 Let (X ,Y ) cover ( /0,M) in B(G,M, I).
Then there isgY ∈ G such that(X ,Y ) = (N(gY )

′,N(gY ))
and for anyg ∈ G,N(gY )⊂ N(g) is wrong.

Proof That(X ,Y ) covers( /0,M) hints /0 6= X ⊆ G and
Y ⊂ M.

Let a ∈ X . BecauseX ′ = Y = {y ∈ M | ∀x ∈ X ,xIy}=
{y ∈ M | ∀x ∈ X ,xy ∈ E(DI)}, in particular,ay ∈ E(DI) for
anyy ∈Y . This impliesy ∈ N(a) for ∀y ∈Y , i.e.Y ⊆ N(a).

SupposeY ⊂ N(a) for anya ∈ X .
Since (N(a)′,N(a)) ∈ B(G,M, I) is correct by

Theorem 1. Further,(N(a)′, N(a)) < (X ,Y ) holds by the
supposition and Definition 1. These and(X ,Y ) covers
( /0,M) taken together will bring about
(N(a)′,N(a)) = ( /0,M). That isN(a) = M.

But Y =
⋂

x∈X
N(x) holds according to Lemma 3.

Considering the arbitrary ofa ∈ X and the above
discussion, we haveY = M, a contradiction toY ⊂ M.

That is to say,Y = N(gY ) for somegY ∈ G. Herein,
(X ,Y ) = (N(gY )

′,N(gY )).
On the other hand, suppose there isg0 ∈ G satisfying

N(gY ) ⊂ N(g0). By Theorem 1,
(N(g0)

′,N(g0)) ∈ B(G,M, I). In view of Definition 1, it
has(X ,Y ) = (N(gY )

′,N(gY ))> (N(g0)
′,N(g0)).
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However, that (X ,Y ) covers ( /0,M) compels
( /0,M) = (N(g0)

′,N(g0)), and so /0= N(g0)
′.

Here, we should notice thatg0 ∈ N(g0)
′ is right owing

to Definition 1. Namely,N(g0)
′ 6= /0 is correct. This follows

a contradiction to /0= N(g0)
′.

In one word, there does not exist anyg ∈ G satisfying
N(gY )⊂ N(g).

The following approach is the sketch of an algorithm
to obtain the cover elements of( /0,M) yielded fromTs =
{gs1,gs2, . . . ,gsts

}.
Step 1. LetH = /0,Cs = /0 andT = {1,2, . . . , ts}.
Step 2. IfT 6= /0, thenH = T , go to Step 3.

Otherwise, go to Step 7.
Step 3.ξ = minH ,N(gsξ )

′ = /0 andN′
sξ
= /0.

Step 4. IfH 6= /0, thenα = minH , go to Step 5.
Otherwise, go to step 6.

Step 5. IfN(gsξ )∩N(gsα ) = N(gsξ ), then
N′

sξ
= N′

sξ
∪gsα andH = H \α, go to Step 4.

Otherwise,H = H \α andT = (T \ξ )∪α,
go to Step 4.

Step 6.N(gsξ )
′ = N′

sξ
,Cs = Cs ∪{(N(gsξ )

′,N(gsξ ))},
go to Step 2.

Step 7. Stop.

By the above algorithm, we get thatCs is the need
cover elements.

Suppose we have got the setCi+1 of the cover
elements of( /0,M) yielded from

Ti+1 = {g(i+1)1,g(i+1)2, . . . ,g(i+1)ti+1
}\

{

g j ∈ G | d(g j) =

d(g(i+1)1), besides, there is g ∈ G satisfying

N(g j)⊂ N(g)
}

.

Put Ti = {gi1,gi2, . . . ,giti
} \

{

g j ∈ G | d(g j) = d(gi1),

besides, there is g ∈ G satisfying

N(g j)⊂ N(g)
}

= {giα1
,giα2

, . . . ,giαβi
}.

If Ti 6= /0, then positT = {α1,α2, . . . ,αβi
} and repeat

the algorithm above forT , we obtainCi, the set of the
cover elements of( /0,M) yielded fromTi.

If Ti = /0, then Ci = /0. We just considerTη
successively, η = i − 1, i − 2, . . . ,1, where
i−1> i−2> .. . > 1.

According to |Ti| ≤ |G| < ∞,(i = 1,2, . . . ,s ≤ |G|)
and the Theorems from Theorem 1 to Theorem 4, it
brings about that the setC of the cover elements of( /0,M)
is C = C1∪C2∪ . . .∪Cs.

4 The covers of an element of the lattice

We will use the classical properties of lattice theory and
graph theory to construct a one-to-one correspondence
between an interval of the lattice and the minimum
element in the concept lattice of a new binary relation.

At first, we examine what happens to
(A,B) ∈ B(G,M, I) when a new underlying graph is
established. In Definition 5, we will not suppose thatDI is
always connected and Status 3 or Status 4 in Section 2
could not happen.

Definition 5 Let (A,B) ∈B(G,M, I); we will define a
new binary relationIAB ⊆ (G\A)×B, as follows:

(XA,YA) ∈ IAB ⇔ (XA ∪A,YA) = (X ,Y ) ∈ I
whereXA = X \A andYA = Y .

For the sake of convenience, before Theorem 5, we just
suppose that none of Status 3 and Status 4 in Section 2 will
happen here.

Note that(X ,Y ) ∈ [(A,B),(G, /0)] ⊆ B(G,M, I) tells
us A ⊆ X ⊆ G,Y ⊆ B and (X ,Y ) ∈ I. Simultaneously, it
also tells usX \A ⊆ G\A,Y ⊆ B and(X \A,Y ) ∈ IAB. By
Definition 5, it follows that (XA,YA) ∈ IAB induces
(X ,Y ) = (XA ∪A,Y ) ∈ [(A,B),(G, /0)].

Analogously to the construction ofDI in Section 2,
the associated underlying graphDIAB with (G \A,B, IAB)
is provided.

We firstly remark that by virtue of Definition 1,(G \
A,B, IAB) is a new context and( /0,B) is the minimum in
B(G\A,B, IAB).

Posit (X1,Y1) be a cover element of( /0,B) in B(G \
A,B, IAB). Then one gets /06= X1,Y1 ⊂ B and(X1,Y1) ∈ IAB,
and further,(X2,Y2) ∈ [(A,B),(G, /0)]⊆ B(G,M, I) where
X2 = X1∪A andY2 = Y1.

Suppose(X2,Y2) does not cover(A,B) in B(G,M, I).
We will get that there is(X3,Y3) ∈ B(G,M, I) satisfying
(A,B) < (X3,Y3) < (X2,Y2). In view of Definition 5 and
the above discussion,( /0,B)< (X3\A,Y3)< (X2\A,Y2) =
(X1,Y1) is correct inB(G \A,B, IAB). This brings about a
contradiction to the position of(X1,Y1) in B(G\A,B, IAB).
Thus,(X2,Y2) covers(A,B) in B(G,M, I).

Likewise, if (X ,Y ) covers(A,B) in B(G,M, I), then it
must have(X \A,Y ) covers( /0,B) in B(G\A,B, IAB).

Summary, one will get a result as follows:
(X ,Y ) ∈ B(G,M, I) covers(A,B) in B(G,M, I) if and
only if (X \ A,Y ) ∈ B(G \ A,B, IAB) covers ( /0,B) in
B(G\A,B, IAB).

The below in this Section, we will not suppose that
both Status 3 and Status 4 will not happen; thatDI is
connected will not assumed. Considering the above
closed result and the study on the Statuses in Section 2,
we pledge that the following Theorem 5 is valid.

Theorem 5 (X ,Y ) ∈ B(G,M, I) covers (A,B) in
B(G,M, I) if and only if (X \ A,Y ) ∈ B(G \ A,B, IAB)
covers B /0 in B(G \ A,B, IAB), where B /0 is
min{C|C ∈ B(G\A,B, IAB)}.
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5 Generating the lattice

Computing the cover elements of an element in
B(G,M, I) is an important problem for finding out all the
concepts of a given context and the diagram of
B(G,M, I). One may generate all the concepts defined by
a binary relation, and at the same time, its diagram.

5.1 The first process
In the latticeB(G,M, I), if the height function ish, by

[3], we will know h(a) = h(b)+ 1 whena ∈ B(G,M, I)
coversb ∈ B(G,M, I). Because the relations we work on
are considered as non-empty, one getsh(G, /0)≥ 1.

Whenh(G, /0) = 1. B(G,M, I) has only the two trivial
elements.

Whenh(G, /0)> 1. We have 0= h( /0,M)< h(X ,Y )<
h(G, /0) < ∞ for any nontrivial element
(X ,Y ) ∈ B(G,M, I).

Applying the method in Section 3, we will have all the
cover elements F( /0,M) of ( /0,M). In addition,
h(X ,Y ) = 1⇔ (X ,Y ) covers( /0,M).

Suppose there are at least two componentsD[V1] and
D[V2] of DI . Let |V2| > 1 andV1∩G = V1 with |V1| = 1.
1 < |V2| and D[V2] is connected taken together hints
|E(V2)| ≥ 1. We will prove the following Lemma 4.

Lemma 4 Any concept yielded fromD[V1] will not
cover( /0,M) if there is another componentD[V2] satisfying
|V2|> 1.

Proof For any (A,B) ∈ B(G,M, I), Lemma 2 says
that A,B belong to the same component. LetV1 = {v1}
and V2 = {v2,v3, . . . ,vη2} ∪ {w2,w3, . . . ,wϕ2}, where
{v2,v3, . . . ,vη2} ⊆ G and{w2,w3, . . . ,wϕ2} ⊆ M.

It is easy to see that inDI ,N(v1) = /0 is valid. Recalled
on Status 2 in Section 2, this leads that there is only one
concept(G, /0) yielded fromD[V1].

On the other hand, by the results in Section 3,
(N(vπ)

′,N(vπ)) ∈ B(G,M, I) covers( /0,M), where
d(vπ) = max{d(v2),d(v3), . . . ,d(vη2)}.
By virtue of |E(V2)| ≥ 1, one gets thatd(vπ) ≥ 1 is
effective, and so|N(vπ)| ≥ 1. Herein,N(vπ) 6= /0 is right.
Thus,(N(vπ)

′,N(vπ))< (G, /0) = (N(v1)
′,N(v1)).

By the knowledge of lattice theory, here,(G, /0) will
not cover( /0,M).

Based on Lemma 4, we get that if all the components
D1,D2, . . . ,Dγ o f DI satis f y |V (D1) ∩ G| =
|V (D2)∩G| = . . . = |V (Dγ)∩G| = 1, then there is only
(G, /0) belonging to the set of cover elements of( /0,M). In
another word to say, for(A,B) ∈ B(G,M, I) andA 6= /0,
the underlying graphDIAB associated to(A,B) satisfies

E(DIAB) = /0 if and only if (A,B) is (G, /0).

Considering with Lemma 4, for each componentDt of
DI , we can use the results for Statuses in Section 2 and
the manner in Section 3 to obtain the coversCt of ( /0,M),
(t = 1,2, . . . ,γ). Calling the results in Section 2 back, we

haveF( /0,M) =
γ
⋃

t=1
Ct .

5.2 The second process
Beyond now in this Section, we just consider(G,M, I)

with the property that for anyg ∈ G, there ism ∈ M
satisfying (g,m) /∈ I, and at the same time, for any
m0 ∈ M, there is g0 ∈ G satisfying (g0,m0) /∈ I. But,
below, no such supposition exists.

Using the discussions in Section 2 and 5.1, we have
(X ,Y ) ∈ F0

( /0,M) ⇔ (X ∪{gm1,gm2, . . . ,gms},

Y ∪{mn1,mn2, . . . ,mnt}) ∈ FM/0, whereF0
( /0,M) is the set of

covers of ( /0,M) in
B(G \ {gm1,gm2, . . . ,gms},M \ {mn1,mn2, . . . ,mnt}, I1);
FM/0 is the set of covers ofM/0 in B(G,M, I);
(U,V ) ∈ I1 ⇔
(U ∪{gm1,gm2, . . . ,gms},Y ∪{mn1,mn2, . . . ,mnt}) ∈ I;
{gm1,gm2, . . . ,gms} ⊆ G,NDI (gm1) = NDI (gm2) = . . . =
NDI (gms) = M;
{mn1,mn2, . . . ,mnt} ⊆ M,NDI (mn1) = NDI (mn2) = . . . =
NDI (mnt ) = G.

As the talk in 5.1, we can getF0
( /0,M). Considering the

above talk, we will obtainFM/0.

Though by Section 2 especially Lemma 2, for(A,B) ∈
B(G,M, I)\{M/0,G /0}, if (Xt ,Yt) ∈ B(G,M, I)\{M/0,G /0}
covers(A,B), it causes that all ofA,B,Xt ,Yt belong to the
same component ofDI , (t = 1,2), we could not say that
both the pair ofX1 \A andY1 and the pair ofX2 \A andY2
belong to the same component ofDIAB . The reason is that
DIAB is perhaps disconnected.

When we examine the cover elements of
(U,W ) ∈ B(G,M, I). If DIUW is disconnected, in virtue of
Section 2, we just separately consider the different
components ofDIUW . For each component inDIUW , we
use the outcomes from Section 2 and that beyond this
Section. The main idea is as the following.

Put (X0,Y0) be a cover element ofM/0 and
{Dq|q = 1,2, . . . ,n} be the set of components ofDIX0Y0

.
Now we just want to search out the familyF(X0,Y0) of all
the cover elements of(X0,Y0) in B(G,M, I). For
(G\X0,Y0, IX0Y0), we hope to use the methods appeared in
Section 3, Section 4 and that at the above. Unfortunately,
we could not pledge that the previous conditions are built
on. So we need to consider it under the following two
cases to search out the setF(X0,Y0) of covers of(X0,Y0) in
B(G,M, I).

Case 1.|V (Dq)|= 1 for everyq ∈ {1,2, . . . ,n}.
By the Statuses in Section 2, we will get all the cover

elements of(X0,Y0) in B(G \ X0,Y0, IX0Y0). Afterwards,
under the instruction of Theorem 5, we obtain the covers
of (X0,Y0) in B(G,M, I).

Case 2. If there isDθ satisfying|V (Dθ )|> 1 for some
θ ∈ {1,2, . . . ,n}.

By Lemma 4, we need not to consider the component
Dδ where|V (Dδ )| = 1,δ ∈ {1,2, . . . ,n}. Review Status 1
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in Section 2, if|V (Dψ)| = 1 andV (Dψ)∩ M 6= /0,(ψ ∈
{1, . . . ,n}), then when we search the covers of(X0,Y0),
it needs not to considerDψ . Therefore, we only put our
attention to the components asDθ where|V (Dθ )|> 1.

Firstly, becauseDθ is connected, the Status 1 and
Status 2 must not happen forDθ . If the Status 3 or Status
4 happens, we just use the discussion for the two statuses
in Section 2 and Theorem 5 to get the covers of(X0,Y0) in
B(G,M, I).

For example, the Status 3 happens, i.e. there are
{x1,x2, . . . ,xζ} ∈ V (Dθ ) ∩ G satis f ying NDθ (Xt) =
V (Dθ )∩M. Then by the result in Section 2,
({x1,x2, . . . ,xζ},V (Dθ ) ∩ M) is the minimum in
B(G\X0,Y0, IX0Y0). Further, in light of Theorem 5,
(X0∪{x1,x2, . . . ,xζ},V (Dθ )∩M) is the only one cover of
(X0,Y0) in B(G,M, I).

Secondly, if both Status 3 and Status 4 do not happen
for Dθ .

According to |V (Dθ )| > 1, Lemma 2 and Section 4,
we could use the method in Section 3 to find all the cover
elementsCθ (X0,Y0) of ( /0,Y0) in B(G \X0,Y0, IX0Y0) born
in Dθ .

Under the guide of Theorem 5, we will get the set
Hθ (X0,Y0) of the cover elements of(X0,Y0) in B(G,M, I)
associated withDθ .

Finally, considering Lemma 2 and Section 2, it will
have the familyF(X0,Y0). In virtue of Section 2, we have
F(X0,Y0) =

⋃

θ∈Q

Hθ (X0,Y0) where Q ⊆ {1,2, . . . ,n} and

|V (Dθ )|> 1 for θ ∈ Q.

Let FM/0 be the family of covers ofM/0 in B(G,M, I).
Considering Lemma 2 and Section 2, for(a,b) ∈ F(X0,Y0)

and(X1,Y1) ∈ FM/0 \ (X0,Y0), (a,b) will not compare with
(X1,Y1). Therefore, we could say that whenF(X0,Y0) is
carried out, simultaneously, the relation between(a,b)
and (c,d) are represented, besides,h(a,b) = 2, where
(c,d) ∈ FM/0 andh is the height function ofB(G,M, I).

Since |FM/0| < ∞, repeated application of this above
process successively for other members inFM/0, as the
consequence, we will obtain all the membersF2 in
B(G,M, I) with height 2 and the relationships among
(u,v) ∈ F2 and(e, f ) ∈ FM/0.

Finally, by the principle of induction and recursively
compute the covers of each element in a breath-first
fashion, we will get all the concepts for a given context
(G,M, I) and the diagramB(G,M, I).

By the definition ofDIAB , for x ∈ G \A, it must have
dDIAB

(x) ≤ dDI (x) ≤ |M| < ∞. Thus, after finite steps, the
above process must be stopped and getG /0 as the last
obtained element inB(G,M, I). Namely, it is a
practicable approach provided above to get the members
in B(G,M, I) and the diagram ofB(G,M, I).

6 Example

We give an example to show how to use the manners
presented from Section 2 to Section 5 to find out the
concept latticeB(G,M, I) and its diagram for a given
context(G,M, I).

Example Let M = {1,2,3,4,5,6} and
G = {a,b,c,d,e, f}. The table below describes binary
relationI.

Table 1 The binary relationI for the given context

1 2 3 4 5 6
a × × ×
b × × ×
c × × ×
d × × ×
e × ×
f ×

By the following steps to find outB(G,M, I).
The underlying graphDI associated to(G,M, I) is

shown as Figure 1.

Figure 1 Underlying graphDI
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Since
f ( f 3)3(3b)b(b1)1(1e)e(e4)4(4d)d(d1)1(1c)c(c2)2
(2a)a(a6)6(6a)a(a2)2(2b)b(b1)1(1c)c(c5)5 is a
( f ,5)-path throughout all the vertices inDI , where(xy) is
the edgexy, for x,y ∈ V (DI), it follows that DI is
connected.

By DI , it is easier to getd(a) = d(b) = d(c) = d(d) =
3,N(a) = {2,3,6},N(b) = {1,2,3},N(c) =
{1,2,5},N(d) = {1,4,5};d(e) = 2,N(e) = {1,4};
d( f ) = 1,N( f ) = {3}. Thus, we have d( f ) = 1
= min{d(a), . . . ,d( f )} < d(e) < d(a) = d(b) = d(c) =
d(d) = max{d(a), . . . ,d( f )}.

BecauseN(a)∩N(g) 6= N(a) whereg = b,c,d. This
hints N(a)′ = {a}. By the consequence in Section 3,
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(N(a)′,N(a)) = ({a},{2,3,6}) ∈ B(G,M, I) is sound,
and simultaneously, it covers( /0,M).

Similarly, (N(b)′,N(b)) = ({b},{1,2,3}),
(N(c)′,N(c)) = ({c},{1,2,5}) and
(N(d)′,N(d)) = ({d},{1,4,5}), besides, all of the three
cover( /0,M).

Because{x ∈ G | d(x) = 2} = {e}, and additionally,
N(e) ⊂ N(d) hints {x ∈ G | d(x) = 2, there isg ∈ G
satisfying N(x) ⊂ N(g)} = {e}. Hence, T2 = /0.
According to{x ∈ G | d(x) = 1}= { f} andN( f )⊂ N(d)
hints {x ∈ G | d(x) = 2, there is g ∈ G satisfying
N(x)⊂ N(g)}= { f}. ThusT1 = /0.

Therefore, all the cover elements of( /0,M) is
F( /0,M) = {(N(a)′,N(a)),(N(b)′,N(b)),(N(c)′,N(c)),
(N(d)′,N(d))}= {({a},{2,3,6}),({b},{1,2,3}),
({c},{1,2,5}),({d},{1,4,5})}.

We seeh(N(a)′,N(a)) = 1. A new context associated
with (N(a)′,N(a)) is (G \ N(a)′,N(a), IN(a)′N(a)) =
({b,c,d,e, f},{2,3,6}, I{a}{2,3,6}). In
B({b,c,d,e, f},{2,3,6}, I{a}{2,3,6}), the minimum is
( /0,{2,3,6}).

The underlying graphDI{a}{2,3,6}
is as Figure 2.

Figure 2 Underlying graphDI{a}{2,3,6}
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We find that DI{a}{2,3,6}
has four components

D[V1] = D({b,c, f} ∪ {2,3}),D[d],D[e] and D[6].
According to Lemma 4 and the other results in Section 5,
it only needs to considerD[V1] to search out the covers of
({a},{2,3,6}).

Because ND[V1](b) = {2,3} = V (D[V1]) ∩ M,
considering Status 3 in Section 2 with the discussion in
Section 5, we obtain that({b},{2,3}) is the minimum in
B({b,c, f},{2,3}, I1), where
(X ,Y ) ∈ I1 ⇐⇒ (X ,Y ) ∈ I{a}{2,3,6} for any
(X ,Y )⊆ {b,c, f}×{2,3}.

Moreover, by Theorem 5,({b}∪{a},{2,3}) =
({a,b},{2,3}) is a cover of({a},{2,3,6}) in B(G,M, I).
Therefore, by the minimum property of({b},{2,3}) in
B({b,c, f},{2,3}, I1), one gets that inB(G,M, I), the
set of cover elements of({a},{2,3,6}) is consisted by
only ({b}∪{a},{2,3}) = ({a,b},{2,3}).

For any of the other cover elements of a member in
F( /0,M) \ ({a},{2,3,6}), by the similar way as the above,
we will get their covers. That is to say, we getF2, all the
members in(G,M, I) with height 2, and the relationships
betweenF2 andF( /0,M). The diagram ofF2∪F( /0,M)∪( /0,M)
in B(G,M, I) is shown as Figure 3.

Figure 3 Diagram ofF2∪F( /0,M)∪ ( /0,M)

in the concept lattice

r
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@
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r(3) r

({b,c},{1,2})

r

({c,d},{1,5})

r (4)

where (1)=({b},{1,2,3}), (2)=({a},{2,3,6}),
(3)=({a,b},{2,3}), (4)=({d,e},{1,4})
(5)=({d},{1,4,5}), (6)=({c},{1,2,5})

Analogously, we will obtain all the members in
B(G,M, I) and at the last, the diagram ofB(G,M, I) is
produced at the same time. The diagram ofB(G,M, I) is
shown as Figure 4.

Figure 4 Diagram of the concept lattice

( /0,{1,2,3,4,5,6})

({a,b,c,d,e, f}, /0)

r

r r r r

r r r r

r r r

r

(1)(2)

(3) (4)

(5) (6) (7)

(8) (9)

(10)(11)

where (1)=({b},{1,2,3}), (2)=({a},{2,3,6}),
(3)=({a,b},{2,3}), (4)=({b,c},{1,2}),
(5)=({a,b, f},{3}),(6)=({a,b,c},{2}),
(7)=({b,c,d,e},{1}),(8)=({c,d},{1,5}),
(9)=({d,e},{1,4}),(10)=({d},{1,4,5}),
(11)=({c},{1,2,5}).

At the final part, we say that this Example above is
just the running example in [4]. [4] solves this example by
its way which is quite different from ours born in this
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paper. Here, using the approach provided in this paper, we
obtain the same result about the running example as that
in [4]. This also illustrates that the approach here is an
efficient computing method and would be a better
generating algorithm for concepts.
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