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Abstract: In this paper, a systematic design approach based on event driven method is investigated for a class of switching systems,
and the switching control system is able to generate chaos at will from linearsystems under the designed switching rules. To gain this
target, structures of a class of linear switching systems are analyzed properly, as a consequence of analysis, the corresponding criteria is
obtained to judge the existence for this class of switching systems to generatechaos. Then, based on the analysis of structure, feedback
controllers designing procedure of some non-autonomous switching systems is deduced step by step. Two numerical examples are given
to illustrate the generated chaotic dynamic behavior of the systems, and the validity of main results is also verified by the simulations.
Finally, a circuit is provided to show the potential applications of the approach in engineering.
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1 Introduction

During the last decade, chaos has been extensively
studied not only in scientific field, but also in engineering.
Generally speaking, there are two main streams on chaos
researching. On the one hand, people explored methods to
avoid chaotic conditions when it is harmful. On the other
hand, many researchers and engineers endeavored to find
the ways to generate chaos. It comes from the fact, more
and more studies show that chaos is helpful and
beneficial, especially in some engineering fields such as
liquid mixing, industrial electronics, secure
communications, resonance prevention in mechanical
systems, so chaos constructing attracts much attention in
these years. Some new chaotic systems have been
developed [1,2,3,4].

In this paper, we present a new approach to construct
chaos by using switching rule designing methods for a
class of 2-dimension linear switching systems. As is well
known, switching systems, one of the most important
branch of hybrid system, are characterized by ”1+1 6= 2”
[5], and variety of dynamic behavior emerges by different
switching rules. But researchers prefer to pay more
attention to focus on stability analysis [6,7,8]. In this
paper, we do some work to illustrate the diversity of its
dynamic activities in another perspective. A new

chaotification method is proposed, it will be analyzed by
theoretical inference and circuit experiment. Two
numerical examples and corresponding portraits are given
to show the validity of the approach we got.

The paper is structured as follows. In the Section 2,
switching rules based on event-dirven method will be
designed, and corresponding feedback controllers will be
provided together to generate chaos. In Section 3, 2
numerical examples are given to illustrate the
chaotification, and the realization of a chaotic system by
means of circuit is built in Section 4. Finally, a conclusion
is given in Section 5.

2 The Switching Control Chaotification

We consider a class of linear switching control systems
described by equations of the form:

ẋ(t) = Aσ x(t)+u(x),x(t0) = x0 (1)

wherex(t) ∈ R
2 is the state vector,t0 ≥ 0 is the initial

time andx0 is the initial state.σ ∈ m̄= {1,2, ...,N}, and
N > 1, is a piecewise constant function of time, named
switching signal. It is dependent on continuous system
state, i.e. the switching activity from one subsystem to
another subsystem might happen once the statex(t)
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reaches predefined boundaries.Ai ∈ R
2×2 are a set of

constant matrices describing the subsystems. And
u(x) ∈ R

2 is control input vector.

2.1 Dynamical Analysis of the Autonomous
systems

In this section, we focus on a class of linear switching
systems with specific structure. And a switching rule is
designed to generate chaos or chaos-like behaviors.
Firstly, considering the corresponding autonomous system

ẋ(t) = Aσ x(t),x(t0) = x0 (2)

Let

Ai =

[

ai bi
ci di

]

and Ai 6= kAj , k ∈ R/{0}, bici < 0, bib j > 0, ∆ = (ai −
di)

2+4bici < 0, i, j ∈ m̄.
Remark 1. Under the structure above, we can check that
states orbits of subsystems spin in the same direction.
It is easy to obtain that each of the subsystems in (2) is
non chaotic due to the property of linear system. To make
system (2) chaotic, we have the following result.
Proposition 2.1. If there exists a Hurwitz linear convex

combination ofAi , i.e.

Ā=
m

∑
i=1

αiAi ,α1, · · · ,αm ∈ (0,1),
m

∑
i=1

αi = 1

and a symmetric matrixP > 0, such that the following
linear matrix inequality(LMI) holds

ĀTP+PĀ< 0 (3)

Then there exists at least one switching rule that can make
the switching system generating chaos or chaos-like
behavior.

Proof. We will illustrate the result above by steps
followed.

Step 1.We separate the region of the plane as:

Ωi = {x|xT(t)(AT
i P+PAi)x(t)< 0} (4)

We will clarify that

m
⋃

i=1

Ωi = R2/{0} (5)

respect to the separation above.
If it doesn’t hold. there must exist a regionD ∈ R2

satisfying

D = R2/((
m
⋃

i=1

Ωi)
⋃

{0})

for anyx(t) ∈ D, the inequalities

xT(t)(AT
i P+PAi)x(t)≥ 0 (6)

holds for alli ∈ m̄. But αi ∈ (0,1),
m
∑

i=1
αi = 1, that

m

∑
i=1

αix
T(t)(AT

i P+PAi)x(t)≥ 0 (7)

Then
xT(t)(ĀTP+PĀ)x(t)≥ 0 (8)

It conflicts with (3), so (5) holds.
To avoid overlap, we reconstruct the separation as follow.

Ω̂i j = Ωi

⋂

Ω j , i < j, i, j ∈ m̄ (9)

Ω̂i = Ωi − ∑
i 6= j,i, j∈m̄

Ω̂i j (10)

Then

(
m
⋃

i=1

Ω̂i)
⋃

(
⋃

i< j,i, j∈m̄

Ω̂i j ) = R2/{0}

Ω̂i

⋂

Ω̂ j =∅, i 6= j, i, j ∈ m̄

Step 2.After separating the plan into several regions, we

can design such switching rule as below:
Case 1: If x(t) ∈ Ω̂i , and g(x) < L(t), then the jth
subsystem is activated( j 6= i);
Case 2: Ifx(t) ∈ Ω̂i

⋃

Ω̂i j , andg(x) ≥ L(t), then the ith
subsystem is activated;
Case 3: Ifx(t) ∈ Ω̂i j , andg(x)< L(t), then, if there exists
other subsystems likel(l 6= j 6= i), the lth subsystem is
activated; otherwise, the ith subsystem is activated.
Among them,g(x)> 0 is a distance function,L(t) is a class
of trigger functions, sawtooth function and sine function
are possible choices. AndL(t)≤ M, M is a finite constant.

Remak 2. The choice of jth subsystem in case 1 can be
designed asj = min{ j ′| j ′ ∈ m̄,and j′ 6= i}, and the choice
of lth in case 3 can be designed as
l = min{l ′|l ′ ∈ m̄,andl′ 6= i, j}, but the choice is not the
one and only.

Step 3.The procedure of the dynamic behaviors can be
explained as:
Given the initial statex(0), we can judge which region
that x(0) locates in. Without loss of generality, we can
assume thatx(0) is contained in regionΩ̂i . Also the
distance between the initial state and the equilibrium of
the system(0,0) can be defined asg(x) =

√
x′Px, where

P is the positive definite matrix, which can be solved from
LMI ( 3), and satisfiedg(x0) ≥ L(t). Based on the
switching rules above, we can check the further dynamic
behavior of the system by following two issues:

(1) If g(x)≥ L(t) holds, the ith subsystem is activated.
Due to the separation ofΩ̂i , we can see thatg(x)
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decreases in̂Ωi by using the analysis method as[6], so we
have g(x)max =

√

x′(0)Px(0). If g(x) decreases small
enough and makesg(x) < L(t) hold in the same region,
then turn to (2). Else, if the conditiong(x) ≥ L(t) is
consistently fulfilled in Ω̂i , when the orbit cross the
boundary ofΩ̂i and Ω̂i j , the switching does not occur,
and g(x) decreases as mentioned above. While
g(x) < L(t) in a certain moment holds in the region̂Ωi j ,
then turn to (2). Otherwise, the orbit goes through the
boundary ofΩ̂i j andΩ̂i , another cycle begins.

(2) If g(x) < L(t) holds andx(t) locates in regionΩ̂i ,
then switching rule guides the system switching to jth
subsystem, andg(x) would increase within one or several
regions untilg(x)≥ L(t) happens, and the procedure turns
to (1), hereg(x) < g(x)max. If x(t) locates in regionΩ̂i j ,
the system would switch from the ith subsystem to lth
subsystem if there are more than two subsystems, then
g(x) would increase within one or several regions until
g(x) ≥ L(t) happens, and the procedure turns to (1), we
also haveg(x) < g(x)max. But for those dual subsystems,
the switching does not occur, andg(x) decreases until the
orbit goes into regionΩ̂ j , still g(x) < g(x)max, another
cycle begins.
Additional, if the initial statex(0) satisfiesg(x0) < L(t),
it turn to (2), and similar course occurs. Only difference
between them rests withg(x)max=M, which is predefined.
Remark 3. Both theoretical analysis and simulation show
that g(x) =

√
x′Px is not the sole definition, others

definition can also work, such asg(x) = ‖x‖2, it will be
showed in the example 2 below.
Step 4. By the analysis above, we can conclude: For
every linear subsystem mentioned in (2), the orbit of state
is simple, it could be stable or unstable. When the
designed rules are infused into the switching system, the
diversity of the dynamic system specifically presents in
another way. Based on the switching rules, the state orbits
goes through different regions along with a fixed direction
of rotation, and the distance from orbits to equilibrium
iterates, the boundary of orbits is determined by the initial
state and extreme value ofL(t). Hence, the state orbits are
folded and stretched repeatedly in a given area,so it is
able to generate chaos or chaos-like behaviors from non
chaotic subsystems.�.

2.2 Chaotification Controller Design

We will extend the Proposition 2.1 to the forced system by
designing state feedback controllers in this section. The
controllers can be:

u(t) = Kσ x(t) (11)

We have the following result:
Proposition 2.2.If there exists a serial of matricesQi , and

α1, · · · ,αm ∈ (0,1),
m
∑

i=1
αi = 1, a symmetric matrixP> 0,

such that the following LMI holds

ĀTP+PĀ+ Q̄T + Q̄< 0 (12)

where, Ā =
m
∑

i=1
αiAi , Q̄ =

m
∑

i=1
αiQi , and satisfying the

structure requirement as mentioned in 2.1. Then, there
exists switching rules and state feedback controllers

Ki = P−1Qi (13)

making system(1) generate chaos or chaos-like behavior
under the switching rules.

Remark 4. It’s easy to see that the set of controllers is
not unique. So it provides us with many choices. We can
design suitable controllers according to concrete demands
and applications. A reasonable design procedure could be
concluded as follow.

Step 1. Choose working area based on the specific
requirement;

Step 2.Figure out LMIs and solve them;

Step 3.Gain state feedback controllers;

Step 4.Separate switching regions;

Step 5.Design switching rules;

Step 6.Check and adjust.

3 Numerical Simulation

In this section, two examples are provided to illustrate the
effective of the theoretical analysis and design. A class of
2-dimension switching control systems are considered.
Example 3.1. Consider the autonomous switching

systems(2) with

A1 =

[

−1 10
−1 −0.8

]

A2 =

[

−0.4 1
−6 1

]

A3 =

[

0.8 1
−10−0.6

]

Given the initial statex(0) = (0.01,0.02), the dynamic
behaviors of subsystems show in Fig.1, Fig.2, Fig3.
Whenα1 = 0.3, α2 = 0.3, α3 = 0.4, we get

Ā= 0.3A1+0.3A2+0.4A3 =

[

−0.10 3.70
−6.10−0.18

]

It is a Hurwitz convex combination. By solving the
LMI, we obtain

P=

[

1.9442 0.0251
0.0251 1.1868

]
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Fig. 1: Behavior of the subsystem 1 with initial point(0.01,0.02).

Fig. 2: Behavior of the subsystem 2 with initial point(0.01,0.02).

According to Proposition 2.1., we can separate the plane
as:

Ω̂1 = {(x1,x2)|(x1+0.07x2)(x1+5.79x2)< 0};

Ω̂2 = {(x1,x2)|(x1−9.21x2)(x1−7.66x2)< 0};

Ω̂3 = {(x1,x2)|(x1−0.23x2)(x1−0.04x2)< 0};

Ω̂12 = {(x1,x2)|(x1−9.21x2)(x1+5.79x2)≥ 0};

Ω̂23 = {(x1,x2)|(x1−0.23x2)(x1−7.66x2)≤ 0};

Ω̂31 = {(x1,x2)|(x1+0.07x2)(x1−0.04x2)≤ 0}.

with g(x) =
√

x′Px, L(t) = 5|sin(wt)|, w= 0.1π.

Fig. 3: Behavior of the subsystem 3 with initial point(0.01,0.02).

Fig. 4: Phase portrait x1 of switching system with initial
point(0.01,0.02).

The phase portraits and state orbit of the system(2) with
parameters above are showed in Fig.4, Fig.5, Fig.6.,
respectively.

Example 3.2.Consider the switching systems(1) with

A1 =

[

3 2
6 4

]

A2 =

[

5 1
−2 3

]

By solving LMI, we get a set of feasible solution:

P=

[

0.2258 −0.0271
−0.0271 1.2684

]
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Fig. 5: Phase portrait x2 of switching system with initial
point(0.01,0.02).

Fig. 6: State orbit of switching system with initial
point(0.01,0.02).

Q1 =

[

−0.7135 1.9365
0.1058 −0.2186

]

Q2 =

[

−1.0206 0.2963
0.1196 −0.0281

]

Then, we obtain

K1 =

[

−4.0 8.0
−7.0 −4.8

]

K2 =

[

−4.4 1.0
1.0 −2.6

]

Fig. 7: State orbit of switching system with initial point(1,1).

Fig. 8: Circuit realization of switching system.

And switching regions can be divided as

Ω̂1 = {(x1,x2)|(x1−4.58x2)(x1−0.61x2)> 0};

Ω̂2 = {(x1,x2)|(x1−2.02x2)(x1−3.21x2)< 0};

Ω̂12 = {(x1,x2)|(x1−4.58x2)(x1−3.21x2)≤ 0
⋃

(x1−0.61x2)(x1−2.02x2)≤ 0}.

with g(x) = ‖x‖2, L(t) = 5|sin(wt)|, w= 0.1π.

Then the state orbit of switching systems with feedback
controllers is showed in Fig.7.
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Fig. 9: Circuit realization of a subsystem.

4 Circuitry Realization

In this section, we contrive a circuit to illustrate the
chaotification of switching system for Example 1 to
further confirm the reality and validity of designed
method. The circuit of the system is partly showed in
Fig.8 and Fig.9. It demonstrates that generation of chaos
or chaos-like behavior by switching method is reasonable
to be realized especially in electrical circuit.

5 Conclusions

A novel approach to generate chaos by designing
switching rules in 2-dimension switching systems has
been proposed in this paper, and corresponding state
feedback controllers also have been obtained. Two
examples were provided to illustrate the effectivity of the
method. And a possible circuit was also provided, and the
potential application of the method could be realized
easily by this means. Additionally, further work is how to
extend the method to higher dimension and how to deal
with subsystems with delays.
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