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Abstract: We use Ruscheweyh derivative to define certain new classes of arfahgitons with bounded radius rotation and related
to conic domains. Some interesting and significant results such as inctesidts, growth rate of coefficients and radius problems for
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research activities in this field.
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1 Introduction there exists a Schwarz functiow(z) such that
f(z2) =9g(w(z)) forze E.
Let A be the class of functions of the form For k € [0,), the conic domainQ are defined as

follows, see .

=z+ ;aj (1)
= Qu={u+iv:u>ky/(u—1)2+V2}. )
whligtargk? g)alfr',%"&gﬁ 05;?0?2 Ittﬂfc\?u&ia@;sl}éf For fixed k, Qx represents the conic regions bounded
consisting of starlike and convex functions of order successively, by the imaginary axis (k=0), the right

: — branch of a hyperbolé0 < k < 1) and a parabola = 1.
0(0 < & < 1) respectively, whereS'(0) = S* and ; :
C(0) = C are the well known classes of starlike and , . Whenk> 1, the domain becomes a bounded domain

convex functions. LeS c A be the class of univalent being interior of the ellipse. We shall consider h&re

functions. Then the inclusion relati hol [0,1]. . . .
eu_g_cggg‘;]. en the inclusion relatisd C S* C S holds, Related to the domaingy, the following functions

Kanas and Wisniowska5] studied the classes of P(2) play the role of extermal functions mappigonto

k-uniforml f ; d d UCV. and Q. These functions are univalent Ehand belong to the
-uniformly convex functions, denoted Hy— » an classP of functions with positive real part and are given
the corresponding clads— ST related by the Alxander as:

1+z (k

type relation. See alsd (). 1o
LetfgeAg()ferzsz and f(z) given by 11;%( )
) (©))
(1.1). Then the convolution (Hadamard product)fadind (2 arcco¥) arctan\[z} (0<k<1).

gis defined by

5z sin

Using subordination concept, we define the cR§%) as
(f+g)(2) =2+ zzajb,zj (9% 1)(2), 2€ E. oot P )
Let p(z) be analytic inE with p(0) = 1. Then
Also, if f and g are analytic inE, we say thatf is p € P(pk) if p(z) < pk(2), k € [0,1] and pk(z) are given
subordinate t@ in E, written asf < g or f(z) < g(2), if by (1.3).
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It is known [B] that p € P(py) is in the classP(d) of
functions with positive real part greater than- Wkl That

isP(p) C P (&) CP.
We generalize the cla$¥ py) as follows.

Definition 1. Let p be analytic in E with (®) = 1. Then
PEPn(pka) M>20<a <1 kel0,1],if and only if

we can write
(F+3) (@-am@+a)
m 1

_ (4_2> {(1-a)p(2) +a},

where pe P(px), i=1,2.

(4)

Also, it is obvious thatp € Pn(pkq) can be written as
p(2) = (1—-a)h(z) +a, h € Pn(pko) = Pm(px) in E.

Form= 2 a = 0, we have the clasB(px). When
k=0, the clas®n(po,«) reduces tdPn(a), see [L1], and
Pm(0) = Py was introduced in12).

The relation 4) can be expressed as:

@ = (G +3) (P2 w(@)

®)

() = -2

andpi < pk(2),i=1,2.

7D(pa(z) Z a,ze E7

Forne N, = {0,1,2,3...}, let D" : A — A be the
operator defined by

D”f(z):m*f(z),

so that

D (z) — Z2- 1f<>>
j+n—1)!

_Z+;n'1— jj'

The following identity holds and can easily be verified.
z2(D"f(2))' = (n+1)D""1f(2) —nD"f(2). (6)

The operatoD" is called Ruscheweyh derivative of order
n, see [16].

We shall assume, unless otherwise stated,
neN,,m>2ke[0,1],0<a<landzeE.

Afunction f € Ais said to belong to the cla&(n, o)
if and only if

Z(D"f(2)’

T(Z) € Pn(a),

zeE.

Whenn = 0, a = 0, we get the clasBy of functions
with bounded radius rotation, see [3].
We now define the following.

Definition2. Forne N,, m>2,0<a <1, ke [0,1], a
function fe A is said to belong to the classHURn(n, a)
if and only if
zD"f(2))
W € Pm(px, 0),

forze E.
As special cases, we have the following:
i. 0—URm(k,a) =Rm(k,a).

ii. 0 —URm(0,0) = Rn.
iii. k—UR(0,0) = k—ST.

By using Alexander type relation, the cldss UVin(n, a)
is defined as follows.

Letf € A. Then
f € K—=UVn(n,a)
if and only if

zf e k—URn(n,a) € E

We note that

i. 0—UVm(n,a) =Vm(n,a).
i. For k = 0n = a = 0, we have the class

)

k—UV,(0,0) =k—-UCV
Vm of the functions with bounded boundary rotation, see

[3].
For a functionf € A, we define the integral operatty:
A— A by

lo(f) = %/tc‘lf(t)dt, (Oe> —1). )

When ¢ € N = {1,2,3,...}, the operatorl; was
introduced by Bernadi [2]. In particuldg, was studied
earlier by Libera [6] and Livingston [7].

2 Preliminaries

In order to derive our main results, we need the following
lemmas.

Lemma 1([14], p 217). Let3 >0, y > 0 and let Hz) be

tha?nalytic in E with H0) = 1. Then

zH(z)
Bh(2)+v’

(h(z) . "’ﬁ;(Z)

where

>h(z)+

JB+V> ' ©

(8)

a2
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Lemma 2.Let k> 0 and leto, d be any complex numbers
with o #0and0< a < 0 ({2 + 5). Ifh(2) is analyticin  Set
E, h(0) = 1 and satisfies
" A1) g 1)
2+ D) < (@) (10 S
oh(z) + 6 D

and ¢ 4 (2) is an analytic solution of

2cq(2)

W =R« (2),

Oka(2) +

then q o (2) is univalent, and

h(z) < Qk,a(z) < pkﬂ(z).

The functiongy ¢ (2) is the best dominant of (10) and is

given as

1 tz -1
wata= | [ (o0 20 =2u) o] -2
0 t

This result can be found in1p] and is an easy
generalization of one due to Kana§.|

Lemma 3([13]). Let f € C and ge S*. Then, for every
function F analytic in E with FO) = 1, we have

(‘F32) ® ccoren.

whereCo(F (E)) denotes the closed convex hull ofe.

Lemma 4([15)). Let p be an analytic function in E with

p(0)=1andOp(z>0),z€ E. Then, fors> 0andv # —1
szp(2)

(Complex),
O {p(z)+ p(z)+v} >0,

for |z| < ro, where p is given by

[v+1]
o= -
VA+ (2 - v2—12)3

)

A=2(s+1)%+|v? -1

and this radius is best possible.

3 Main Results

Theorem 1.k—URy(n+1,a0) C k—URy(n, a) for each
n e Np.

Proof.Let f e k—URy(n+1,a). Then, forze E,

H(z) is analytic inE andH (0) = 1.
From (6) and (11), we obtain

Dn+lf i
CLl I T

zH'(2)

H(Z)H]} € Pn(pxa) iN E.(12)

Let

(3 (3w

Using (12), (13) and Lemma 1 withh = 1,c=n, it follows
that

(13)

(hi (20 + hiz(g)(i) n) eP(pkn), 1=1,2z€cE. (14)

Applying Lemma 2, we obtaifh; € P(pyq) in E, fori =
1,2 and consequentlyl € Pn(pkq) in E. This proves that
f e k—URn(n,a)inE. O

Corollary 1. Letk= 0. Then fe Rn(n+1, a) implies that
f € Rn(n,0), whereo is given by

n+1
o= —n|,
2F1(2(1-a),1,n+2;3)

and ,F; represents Gauss hypergeometric function. This
result is sharp.

(15)

Proof. In fact, from (14), it follows that
(hi (2)+ (@

hi(z) +n
This implies, by using a result due to Miller-Mocann [8, p
113, Theorem 3.3 €] thds; € P(o), whereo is given by
(15).
For sharpness, the extremal function is given as

1 2(1-a)
B 1-z n
9(2) _0/(1—tz> t"dt

_ 2k (2(1_ a)a17n+272T21)

> eP(a), i=1.2

with

n+1
z(D™f(z)) ConsequentlyH € Pn(0),0 is given by (15). This
D if(z) © Pin(Pa)- completes the proof thdte Ry(n, o) in E. O
© 2014 NSP
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As a special case, whem= 0, we note thaRn(1,a) =  shows that the exponefitl—y) (3 + 1) — (n+1)} is the
Vm(a), whereVip(a) is the class of functions of bounded best possible. O
boundary rotation with ordea, see [3], andf € Vin(a)

implies thatf € Ry(0,0) = Rn(0p), whereRy(0p) isthe  Theorem 3. ﬂ Rn(n,y) = {id}, y= kk%r
corresponding class of bounded radius rotation with order

0o, orderay is given by (15) withn = 0, as follows. where id is the identity function.
0o =00 = [pF1(2(1-a),1;2 3)]* Proof. Let f(z) = z Then it follows trivially that
ze Rm(n y) for n € No. On the contrary, assume that
1-2a (a—l) fe ﬂ Rm(n,y) with f(z) given by (1). Then, from
_ { 22{1701)(17220'71>’1 2/
sty (0 =3) Theorem 2, we deduce théfz) =z O
Whena = 0, we have We now show that the clads— URn(n,a) is preserved
1 under generalized Bernardi operator given by (7).

=

0'0:7:—
2(1-3) 2 Theorem4. Let f € k — URp(n,a) and let

; ; _ ; lc(f),0c > —1, be defined by (7). Then, for
This shows, iff € Vi, thenf € Ry (3). Whenm = 2, this c\t)s
leads to a well known result that a convex univalent?< E, le(f) € k=URm(n,a).

function is a starlike function of ordelr. Proof. Let
SinceP(pxq) C P('f(j‘r‘i’) we have the following result ~ z(D"lc(f(2)))’
on the rate of growth of coefficients fdre Ryn(n,y), y = D"lc(f(2)
k+a
. m 1 m
o | = (F+3)m- (5-3)p@  as
Theorem 2. Let f € Rn(n,y), y= 'l‘(ﬂ’ and be given by
(1). Then, for j> 3, m=> 2. whereh(2) is analytic inE, h(0) = 1.
aj = O(1).j{EV(F+1)-(D}, Simple computations and use of (7), (16), lead to the
where 1) is a constant depending on,kya and n. The following.
exponen{(1—y) (5 +1) — (n+1)} is best possible. z(D"f(2)) zH(z
(5+1 OO (s 2D cmper
Proof. (2) (2)+c
n _ z With similar technique used in Theorem 1, and from (16),
D) = =i @ (17), it follows that
(j+n- 1 7 S a7 zd(2) -
=2+ ) ajz 14 eP ,zeEji=12
J; TN R (R@+ 0 25) < Pipa)
7+ ; + n- 1 . 7 We now apply Lemma 2 to have
pi Gp(pk.a)a i:1727

Now, sinceD"f € Vin(y) if and only if (D"f)’ € Rn(y), we
use a coefficient result for the clagg(y) proved in [9]to  and consequentlyh € Pn(pka),z € E. This proves

have, forj >3,m> 2. lc(f(2)) e kK=URmn(n,a). O
(+n-1)! ay| As special cases, we note that:
|
" ( Lt (1) (B+1)-1 i. Form=2n=0=a,the clask — ST is preserved
2 \ YT under generalized Bernardi operator.
2 1-2
<{m(1-y)*+m(1-y)}2 y<31> 7 ii. With m=2,n=1, a =0, it follows from Theorem 4,

that the clas& — UCV of uniformly convex functions

and this gives us is invariant under the operator given by (17).

an=0(1).j{EN(F)-0} - jugm>2 Corollary 2. Let f € k — URn(n,a) C Rn(n,a1),
k
The functionFy € Ry(n, y) defined by a1 =357 Then k() € Rm(n, B), where ¢> —1, and
m_1)(1- 1
D" = =1, . 1
o (1- &2) (3 )@y’ 1] =10] = 2F1(2(1—-a1),1ic+2;5) —c
@© 2014 NSP
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Proof. Proceeding as in Theorem 4, it follows from (17) Since f; € k — URy(n,a),

that

K+a
k+1°

_ zf(2)
(p.(z)+ pi(2) +c

Then, as in corollary 1p; € P(),i = 1,z € E, where3
is given by (18). Consequently, from (18)< Pn(B) and
hencelc(f) € Rn(n,B),z€ E. O

Corollary 3.

i.Leta =0,k=1and c=0. Then fe 1-URy(n,0) C
Rmn (N, ) Then, from Theorem 4o(f) € Rn(n, Bo),

||Forc_1k 0= al()

2 1
A= {2F1(2,1;3,;) _1} T 2(2In2—1)

iii. For c =1
f € 1 - URy(NO)
11(f) € Rm(n,B2), wh

€ P(a1)> o=

Rm(n, B1), where

, k = 1, a = 0,
C Rn(n,3). This implies,
ere

)

2
Fe= {2F1(17123, 3) -

1

Theorem5. Let f € k — URn(n,a). Then
In(f) € k—URn(n+1,a), where h(f) is defined by (7)
with ¢ = n € Np. The proof is straightforward when we
note, from (6) and (7), that

D"f(z) = D", f(2).

Next we consider the converse of the problem involvingrn

the operator (7) for the case when= 2.

Theorem 6. Let I(f), defined by (7), belong to
k—URy(n,a). Then fe k—URx(n, o) for |z < r¢, where

fc= = 173;027 (C# 1)7 ,
3 (c=1),

and this radius is best possible.

(19)

Proof. We first prove the following.

Let f; € k—URy(n,a) and let ¢(z) be convex
univalent in  E. Then we  show that
(p(2) * f1(2)) e k—URz(n,a) in E.

Now
2(D"( / ne Y/ 2D ) D"f;
@xf1)) _ z(¢xD"f)) _ P* oy
D"(q@x f1) (p«D"fy) @xD"fy
o Q= F(anl)
- (P*anl '

D'y € S (9) ¢ S,
F € P(pka) and @ € C in E, we use Lemma 3 to

conclude thatpx f; € k—URx(n, a).
We defineh:(z) by

Coz— %] 7
h‘:(z):jzllJcm]: (1i+z)2 '

(20)

Now, from (17), we can write

z

_erd /tcflf(t)dt

0

fi(2) = (c>-1).

Then

cle(f)+2z(1c(f))"
— or1 le(f)*he(2),

f(2) =
wherehc(z) is given by (20).
It is known [1] thath.(z) is convex for|z| < rc wherer. is
given by (19). Sincé.(f) € k—URx(n,a) in E andh is
convex for|z| < re, it follows that for f € k—URy(n,a)
for |zl < re. O

As special cases, we note that:
i. Forc =1, I1(f) is Libere-Livingston operator and
I1(f) € K — URx(n,a) in E implies that
f ek—URy(n,a) for |7 < 3.
ii. Alexander operatorlg(f) € k—URx(n,a) in E
implies thatf € k—URy(n,a) for |z] < 2—+/3.
Remark 1. Let fh(z) = W n € No. Then it can easily
be verified thatf, € C for |z| < rp, where
2

(3n+1)2—

(21)

E 4

We have:

Theorem 7.Let D"(f) e k—URyx(ar) = k—ST(a) in E.

Then fe k—ST(a) for |z| < ry, where i is given by (21).
Proof.SinceD"(f) e k—URx(a) =
that(W  f ( )) € k—ST(a).

k—ST(a), it follows

Now —=%.; is convex for|z < r, andk— ST(a) is

=)

closed under convex convolution, we obtain the required

result. O

Theorem 8.Let Iy(f) be defined by (7) with€ n € Ny and
let Inf € k—URy(n,a). Then, fory = ¢, Df € S'(y)
for [z| < ry, where the exact value of will be given in the

proof.

Proof. Proceeding as in Theorem 4, with= ¢, we have

z(D"f(2)) zH(2)
D"'f(z) h(z)+ h(z) +n

: (22)

© 2014 NSP
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whereh(z) = ZI(DE; ))’ €P(pka) CP(y)InE.From (22), References
we have withh( ) (1 Y)ho(2) + . . :
[1]R. W. Barnard, C. Kellogg, Applications of Convolution
, 1 operators to problems in Univalent Function Theory,
1 {Z(an(z)) _ y} _ hO(Z)JFL%(Z) ho € P.(23) Michigan Math. J.27, 81-94 (1980).
1-y | D"f(2 ho(2) + nﬂ” [2] S. Bernardi, Convex and starlike univalent functions, Trans.
Amer. Math. Soc.135 429-446 (1969).
We use Lemma 4 wits= -+ v ="Y £ _1 to have [3] A. W. Goodman, Univalent Functions, Polygonal Publishing
V -y House, Washington, New Jerséy , (1983).
1 2(D"f(2))’ [4] S. Kanas, Techniques of differential sunordination for
O { { . - VH >0, for|z<ry, domains bounded by conic sections, Internat. J. Math. Math.
1-yl D'(2) Sci., 38, 2389-2400 (2003).
where [5] S. Kanas, A. Wisniowska, Conic regions and k-uniform
|v 41 convexity, J. Comput. Appl. Math1,05 327-336 (1999).
, [6] R. J. Libera, Some classes of regular univalent functions,
\/ At (A2—|v2—12)} Proc. Amer. Math. Soc16, 735-758 (1965).

A=2(s+1)%+|v>~

-

S=

[N

< <

n—+

vV =

<.

This completes the proof.

Remark 2. We can use well known distortion results for
the clas$, see[3], to have

o[ {2 )]

ZDhO(Z){ 13yrz(1 V)T ’1 (n+f)}
That is,

o[, o)

> oo { S

and right hand side is positive for< r,, where
B n+1
2-y)+V/2-y2-(n+1)(1-2y)—n

This shows that fob"f € S*(y) for |z| <r.., andr.. is given
by (24).

(24)
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