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1 Introduction

Let A be the class of functions of the form

f (z) = z+
∞

∑
j=2

a jz
j
, (1)

which are analytic in the open unit discE = {z : |z|< 1}.
Let S∗(δ ) and C(δ ) denote the subclasses ofA

consisting of starlike and convex functions of order
δ (0 ≤ δ < 1) respectively, whereS∗(0) = S∗ and
C(0) = C are the well known classes of starlike and
convex functions. LetS⊂ A be the class of univalent
functions. Then the inclusion relationC ⊂ S∗ ⊂ S holds,
e.g. see [3].

Kanas and Wisniowska [5] studied the classes of
k-uniformly convex functions, denoted byk−UCV, and
the corresponding classk− ST related by the Alxander
type relation. See also [10].

Let f ,g ∈ A, g(z) = z+
∞
∑
j=2

b jzj and f (z) given by

(1.1). Then the convolution (Hadamard product) off and
g is defined by

( f ∗g)(z) = z+
∞

∑
j=2

a jb jz
j = (g∗ f )(z), z∈ E.

Also, if f and g are analytic inE, we say that f is
subordinate tog in E, written as f ≺ g or f (z) ≺ g(z), if

there exists a Schwarz functionw(z) such that
f (z) = g(w(z)) for z∈ E.

For k ∈ [0,∞), the conic domainΩk are defined as
follows, see [4].

Ωk = {u+ iv : u> k
√

(u−1)2+v2}. (2)

For fixed k,Ωk represents the conic regions bounded
successively, by the imaginary axis (k=0), the right
branch of a hyperbola(0< k< 1) and a parabolak= 1.

Whenk > 1, the domain becomes a bounded domain
being interior of the ellipse. We shall consider herek ∈
[0,1].

Related to the domainsΩk, the following functions
pk(z) play the role of extermal functions mappingE onto
Ωk. These functions are univalent inE and belong to the
classP of functions with positive real part and are given
as:

pk(z) =



























1+z
1−z , (k= 0),

1+ 2
π2

(

log 1+
√

z
1−√

z

)2
, (k= 1),

1+ 2
1−k2 sinh2

[

(

2
π arccosk

)

arctan
√

(z)
]

, (0< k< 1).

, (3)

Using subordination concept, we define the classP(pk) as
follows.

Let p(z) be analytic in E with p(0) = 1. Then
p ∈ P(pk) if p(z) ≺ pk(z), k ∈ [0,1] and pk(z) are given
by (1.3).
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It is known [5] that p ∈ P(pk) is in the classP(δ ) of
functions with positive real part greater thanδ = k

k+1. That

is P(pk)⊂ P
(

k
k+1

)

⊂ P.
We generalize the classP(pk) as follows.

Definition 1. Let p be analytic in E with p(0) = 1. Then
p ∈ Pm(pk,α), m≥ 2, 0 ≤ α < 1, k∈ [0,1], if and only if
we can write

p(z) =

(

m
4
+

1
2

)

{(1−α)p1(z)+α}

−
(

m
4
− 1

2

)

{(1−α)p2(z)+α} , (4)

where pi ∈ P(pk), i = 1,2.

Also, it is obvious thatp ∈ Pm(pk,α) can be written as
p(z) = (1−α)h(z)+α, h∈ Pm(pk,0) = Pm(pk) in E.

For m = 2, α = 0, we have the classP(pk). When
k = 0, the classPm(p0,α) reduces toPm(α), see [11], and
Pm(0) = Pm was introduced in [12].

The relation (4) can be expressed as:

p(z) =

(

m
4
+

1
2

)

(p1(z)∗φα(z))

−
(

m
4
− 1

2

)

(p2(z)∗φα(z)) , (5)

where

φα(z) =
1− (1−2α)z

1−z
,ℜφα(z)≥ α, z∈ E,

andpi ≺ pk(z), i = 1,2.

For n ∈ N◦ = {0,1,2,3. . .}, let Dn : A → A be the
operator defined by

Dn f (z) =
z

(1−z)n+1 ∗ f (z),

so that

Dn f (z) =
z(zn−1 f (z))n

n!

= z+
∞

∑
j=2

( j +n−1)!
n!( j −1)!

a jz
j
.

The following identity holds and can easily be verified.

z(Dn f (z))′ = (n+1)Dn+1 f (z)−nDn f (z). (6)

The operatorDn is called Ruscheweyh derivative of order
n, see [16].

We shall assume, unless otherwise stated, that
n∈ N◦, m≥ 2, k∈ [0,1], 0≤ α < 1 andz∈ E.

A function f ∈A is said to belong to the classRm(n,α)
if and only if

z(Dn f (z))′

Dn f (z)
∈ Pm(α), z∈ E.

Whenn = 0, α = 0, we get the classRm of functions
with bounded radius rotation, see [3].

We now define the following.

Definition 2. For n ∈ N◦, m≥ 2, 0 ≤ α < 1, k∈ [0,1], a
function f∈ A is said to belong to the class k−URm(n,α)
if and only if

z(Dn f (z))′

Dn f (z)
∈ Pm(pk,α),

for z∈ E.

As special cases, we have the following:

i. 0−URm(k,α) = Rm(k,α).
ii. 0−URm(0,0) = Rm.

iii. k−UR2(0,0) = k−ST.

By using Alexander type relation, the classk−UVm(n,α)
is defined as follows.

Let f ∈ A. Then

f ∈ k−UVm(n,α)

if and only if

z f′ ∈ k−URm(n,α) ∈ E

.
We note that

i. 0−UVm(n,α) =Vm(n,α).
ii. For k = 0,n = α = 0, we have the class
k−UV2(0,0) = k−UCV.

Vm of the functions with bounded boundary rotation, see
[3].
For a function f ∈ A, we define the integral operatorIc :
A→ A, by

Ic( f ) =
c+1

zc

z
∫

0

tc−1 f (t)dt, (ℜc>−1). (7)

When c ∈ N = {1,2,3, . . .}, the operator Ic was
introduced by Bernadi [2]. In particularI1, was studied
earlier by Libera [6] and Livingston [7].

2 Preliminaries

In order to derive our main results, we need the following
lemmas.

Lemma 1([14], p 217). Let β > 0, γ ≥ 0 and let h(z) be
analytic in E with h(0) = 1. Then
(

h(z)∗
φβ ,γ(z)

z

)

= h(z)+
zh′(z)

βh(z)+ γ
, (8)

where

φβ ,γ(z) =
∞

∑
j=1

(

β + γ
jβ + γ

)

zj
. (9)
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Lemma 2.Let k≥ 0 and letσ ,δ be any complex numbers
with σ 6= 0 and0≤ α < ℜ

( σk
k+1 +δ

)

. If h(z) is analytic in
E, h(0) = 1 and satisfies
(

h(z)+
zh′(z)

σh(z)+δ

)

≺ pk,α(z), (10)

and qk,α(z) is an analytic solution of

qk,α(z)+
zq′k,α(z)

σqk,α(z)+δ
= Pk,α(z),

then qk,α(z) is univalent, and

h(z)≺ qk,α(z)≺ pk,α(z).

The functionqk,α(z) is the best dominant of (10) and is
given as

qk,α(z) =





1
∫

0



exp

tz
∫

t

pk,α(u)−1
u

du



dt





−1

− δ
σ
.

This result can be found in [10] and is an easy
generalization of one due to Kanas [4].

Lemma 3([13]). Let f ∈ C and g∈ S∗. Then, for every
function F analytic in E with F(0) = 1, we have

(

f ∗Fg
f ∗g

)

(E)⊂ C̄o(F(E)),

whereC̄o(F(E)) denotes the closed convex hull of F(E).

Lemma 4([15]). Let p be an analytic function in E with
p(0) = 1 andℜp(z> 0),z∈E. Then, for s> 0 andν 6=−1
(Complex),

ℜ
{

p(z)+
szp′(z)
p(z)+ν

}

> 0,

for |z|< r0, where r0 is given by

r0 =
|ν +1|

√

A+(A2−|ν2−1|2) 1
2

,

A= 2(s+1)2+ |ν2|−1

and this radius is best possible.

3 Main Results

Theorem 1.k−URm(n+1,α)⊂ k−URm(n,α) for each
n∈ N0.

Proof.Let f ∈ k−URm(n+1,α). Then, forz∈ E,

z(Dn+1 f (z))′

Dn+1 f (z)
∈ Pm(pk,α).

Set

z(Dn f (z))′

Dn f (z)
= H(z). (11)

H(z) is analytic inE andH(0) = 1.
From (6) and (11), we obtain

z(Dn+1 f (z))′

Dn+1 f (z)
=

{

H(z)+
zH′(z)

H(z)+n

}

∈Pm(pk,α) in E.(12)

Let

H(z) =

(

m
4
+

1
2

)

h1(z)−
(

m
4
− 1

2

)

h2(z). (13)

Using (12), (13) and Lemma 1 withα = 1,c= n, it follows
that
(

hi(z)+
zh′i(z)

hi(z)+n

)

∈ P(pk,n), i = 1,2,z∈ E. (14)

Applying Lemma 2, we obtainhi ∈ P(pk,α) in E, for i =
1,2 and consequentlyH ∈ Pm(pk,α) in E. This proves that
f ∈ k−URm(n,α) in E. �

Corollary 1. Let k= 0. Then f∈Rm(n+1,α) implies that
f ∈ Rm(n,σ), whereσ is given by

σ =

[

n+1

2F1(2(1−α),1,n+2; 1
2)

−n

]

, (15)

and 2F1 represents Gauss hypergeometric function. This
result is sharp.

Proof. In fact, from (14), it follows that

(

hi(z)+
zh′i(z)

hi(z)+n

)

∈ P(α), i = 1,2.

This implies, by using a result due to Miller-Mocann [8, p
113, Theorem 3.3 e] thathi ∈ P(σ), whereσ is given by
(15).
For sharpness, the extremal function is given as

p0(z) =

(

1
g(z)

−n

)

,

with

g(z) =

1
∫

0

(

1−z
1− tz

)2(1−α)

tndt

=
2F1

(

2(1−α),1,n+2, z
z−1

)

n+1
.

ConsequentlyH ∈ Pm(σ),σ is given by (15). This
completes the proof thatf ∈ Rm(n,σ) in E. �
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As a special case, whenn = 0, we note thatRm(1,α) =
Vm(α), whereVm(α) is the class of functions of bounded
boundary rotation with orderα, see [3], andf ∈ Vm(α)
implies that f ∈ Rm(0,σ) = Rm(σ0), whereRm(σ0) is the
corresponding class of bounded radius rotation with order
σ0, orderσ0 is given by (15) withn= 0, as follows.

σ0 = σ0 = [2F1(2(1−α),1;2, 1
2)]

−1

=

{

1−2α
22(1−α)(1−22α−1)

,
(

α = 1
2

)

1
2ln2,

(

α = 1
2

) .

Whenα = 0, we have

σ0 =
1

22
(

1− 1
2

) =
1
2
.

This shows, iff ∈Vm, then f ∈ Rm
(

1
2

)

. Whenm= 2, this
leads to a well known result that a convex univalent
function is a starlike function of order12.

SinceP(pk,α)⊂P
(

k+α
k+1

)

, we have the following result
on the rate of growth of coefficients forf ∈ Rm(n,γ), γ =
k+α
k+1 .

Theorem 2. Let f ∈ Rm(n,γ), γ = k+α
k+1 and be given by

(1). Then, for j> 3, m≥ 2.

a j = O(1). j{(1−γ)(m
2 +1)−(n+1)}

,

where O(1) is a constant depending on m,k,α and n. The
exponent{(1− γ)

(

m
2 +1

)

− (n+1)} is best possible.

Proof.

Dn f (z) =
z

(1−z)n+1 ∗ f (z)

=

[

z+
∞

∑
j=2

( j +n−1)!
n!( j −1)!

zj

]

∗
[

z+
∞

∑
j=2

a jz
j

]

= z+
∞

∑
j=2

( j +n−1)!
n!( j −1)!

a jz
j
.

Now, sinceDn f ∈Vm(γ) if and only if (Dn f )′ ∈ Rm(γ), we
use a coefficient result for the classVm(γ) proved in [9] to
have, for j > 3,m≥ 2.

( j +n−1)!
n!( j −1)!

|a j |

< {m2(1− γ)2+m(1− γ)}21−2γ
(

2
3

j

)(1−γ)(m
2 +1)−1

,

and this gives us

an = O(1). j{(1−γ)(m
2 +1)−(n+1)}

, j > 3,m≥ 2.

The functionF0 ∈ Rm(n,γ) defined by

DnF0(z) =
z(1+δ1z)(

m
2 −1)(1−γ)

(1−δ2z)(
m
2 +1)(1−γ)

, |δ1|= |δ2|= 1,

shows that the exponent{(1− γ)
(

m
2 +1

)

− (n+1)} is the
best possible. �

Theorem 3.
∞
⋂

n=0
Rm(n,γ) = {id}, γ = k+α

k+1 ,

where id is the identity function.

Proof. Let f (z) = z. Then it follows trivially that
z ∈ Rm(n,γ) for n ∈ N0. On the contrary, assume that

f ∈
∞
⋂

n=0
Rm(n,γ) with f (z) given by (1). Then, from

Theorem 2, we deduce thatf (z) = z. �

We now show that the classk−URm(n,α) is preserved
under generalized Bernardi operator given by (7).

Theorem 4. Let f ∈ k − URm(n,α) and let
Ic( f ),ℜc > −1, be defined by (7). Then, for
z∈ E, Ic( f ) ∈ k−URm(n,α).

Proof.Let

z(DnIc( f (z)))′

DnIc( f (z))

= h(z) =

(

m
4
+

1
2

)

p1(z)−
(

m
4
− 1

2

)

p2(z), (16)

whereh(z) is analytic inE, h(0) = 1.

Simple computations and use of (7), (16), lead to the
following.

z(Dn f (z))′

Dn f (z)
=

(

h(z)+
zh′(z)

h(z)+c

)

∈ Pm(pk,α). (17)

With similar technique used in Theorem 1, and from (16),
(17), it follows that

(

pi(z)+
zp′i(z)

pi(z)+c

)

∈ P(pk,α), z∈ E, i = 1,2.

We now apply Lemma 2 to have

pi ∈ P(pk,α), i = 1,2,

and consequentlyh ∈ Pm(pk,α),z ∈ E. This proves
Ic( f (z)) ∈ k−URm(n,α). �

As special cases, we note that:

i. For m= 2 n = 0 = α,the classk−ST is preserved
under generalized Bernardi operator.

ii. With m= 2,n= 1, α = 0, it follows from Theorem 4,
that the classk−UCV of uniformly convex functions
is invariant under the operator given by (17).

Corollary 2. Let f ∈ k − URm(n,α) ⊂ Rm(n,α1),
α1 =

k+α
k+1 . Then Ic( f ) ∈ Rm(n,β ), where c>−1, and

β =

{

c+1

2F1(2(1−α1),1;c+2; 1
2)−c

}

. (18)
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Proof. Proceeding as in Theorem 4, it follows from (17)
that

(

pi(z)+
zp′i(z)

pi(z)+c
∈ P(α1)

)

,α =
k+α
k+1

.

Then, as in corollary 1,pi ∈ P(β ), i = 1,z∈ E, whereβ
is given by (18). Consequently, from (18),h∈ Pm(β ) and
henceIc( f ) ∈ Rm(n,β ),z∈ E. �

Corollary 3.

i. Letα = 0,k= 1 and c= 0. Then f∈ 1−URm(n,0)⊂
Rm

(

n, 1
2

)

. Then, from Theorem 4, I0( f ) ∈ Rm(n,β0),
whereβ0 =

1

2F1(1,1,2,
1
2 )

= 1
2ln2.

ii. For c = 1, k= 0= α, I1( f ) ∈ Rm(n,β1), where

β1 =

{

2

2F1(2,1;3, 1
2)

−1

}

=
1

2(2ln2−1)
.

iii. For c = 1, k = 1, α = 0,
f ∈ 1 − URm(n,0) ⊂ Rm(n, 1

2). This implies,
I1( f ) ∈ Rm(n,β2), where

β2 =

{

2

2F1(1,1;3, 1
2)−1

}

=

(

1
2(1− ln2)

−1

)

≈ 0.629.

Theorem 5. Let f ∈ k − URm(n,α). Then
In( f ) ∈ k−URm(n+ 1,α), where In( f ) is defined by (7)
with c= n ∈ N0. The proof is straightforward when we
note, from (6) and (7), that

Dn f (z) = Dn+1In f (z).

Next we consider the converse of the problem involving
the operator (7) for the case whenm= 2.

Theorem 6. Let Ic( f ), defined by (7), belong to
k−UR2(n,α). Then f∈ k−UR2(n,α) for |z|< rc, where

rc =

{

2−
√

3+c2

1−c , (c 6= 1),
1
2, (c= 1),

, (19)

and this radius is best possible.

Proof.We first prove the following.

Let f1 ∈ k − UR2(n,α) and let φ(z) be convex
univalent in E. Then we show that
(φ(z)∗ f1(z)) ∈ k−UR2(n,α) in E.

Now

z(Dn(φ ∗ f1))′

Dn(φ ∗ f1)
=

z((φ ∗Dn f1))′

(φ ∗Dn f1)
=

φ ∗ z((Dn f1))
′

(Dn f1)
.Dn f1

φ ∗Dn f1

=
φ ∗F(Dn f1)

φ ∗Dn f1
.

Since f1 ∈ k − UR2(n,α), Dn f1 ∈ S∗
(

k+α
k+1

)

⊂ S∗,
F ∈ P(pk,α) and φ ∈ C in E, we use Lemma 3 to
conclude thatφ ∗ f1 ∈ k−UR2(n,α).

We definehc(z) by

hc(z) =
∞

∑
j=1

j +c
1+c

zj =
z−

[

c
1+c

]

z2

(1−z)2 . (20)

Now, from (17), we can write

f1(z) = Ic( f ) =
c+1

zc

z
∫

0

tc−1 f (t)dt (c>−1).

Then

f (z) =
cIc( f )+z(Ic( f ))′

c+1
= Ic( f )∗hc(z),

wherehc(z) is given by (20).
It is known [1] thathc(z) is convex for|z|< rc whererc is
given by (19). SinceIc( f ) ∈ k−UR2(n,α) in E andhc is
convex for|z| < rc, it follows that for f ∈ k−UR2(n,α)
for |z|< rc. �

As special cases, we note that:

i. For c = 1, I1( f ) is Libere-Livingston operator and
I1( f ) ∈ k − UR2(n,α) in E implies that
f ∈ k−UR2(n,α) for |z|< 1

2.

ii. Alexander operatorI0( f ) ∈ k − UR2(n,α) in E
implies thatf ∈ k−UR2(n,α) for |z|< 2−

√
3.

Remark 1. Let fn(z) = z
(1−z)n+1 , n∈ N0. Then it can easily

be verified thatfn ∈C for |z|< rn, where

rn =
2

(3n+1)+
√

(3n+1)2−4n2
. (21)

We have:

Theorem 7.Let Dn( f ) ∈ k−UR2(α) = k−ST(α) in E.
Then f∈ k−ST(α) for |z|< rn, where rn is given by (21).

Proof.SinceDn( f ) ∈ k−UR2(α) = k−ST(α), it follows

that
(

z
(1−z)n+1 ∗ f (z)

)

∈ k−ST(α).

Now z
(1−z)n+1 is convex for|z| < rn andk−ST(α) is

closed under convex convolution, we obtain the required
result. �

Theorem 8.Let In( f ) be defined by (7) with c= n∈N0 and
let In f ∈ k−UR2(n,α). Then, forγ = k+α

k+1 , Dn f ∈ S∗(γ)
for |z|< rγ where the exact value of rγ will be given in the
proof.

Proof.Proceeding as in Theorem 4, withn= c, we have

z(Dn f (z))′

Dn f (z)
= h(z)+

zh′(z)
h(z)+n

, (22)

c© 2014 NSP
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whereh(z) = z(DnIn f (z))′

DnIn( f (z)) ∈P(pk,α)⊂P(γ) in E. From (22),

we have withh(z) = (1− γ)h0(z)+ γ.

1
1− γ

{

z(Dn f (z))′

Dn f (z)
− γ

}

= h0(z)+
1

1−γ .zh′0(z)

h0(z)+
n+γ
1−γ

,h0∈P.(23)

We use Lemma 4 withs= 1
1−γ , ν = n+γ

1−γ 6=−1, to have

ℜ
[

1
1− γ

{

z(Dn f (z))′

Dn f (z)
− γ

}]

≥ 0, f or |z|< rγ ,

where

rγ =
|ν +1|

√

A+(A2−|ν2−1|2) 1
2

,

A= 2(s+1)2+ |ν |2−1,

s=
1

1− γ
,

ν =
n+ γ
1− γ

.

This completes the proof. �

Remark 2. We can use well known distortion results for
the classP, see[3], to have

ℜ
[

1
1− γ

{

z(Dn f (z))′

Dn f (z)
− γ

}]

≥ ℜh0(z)

{

1− 2γ
1− r2

1

(1− γ)1−r
1+r +(n+ r)

}

That is,

ℜ
[

1
1− γ

{

z(Dn f (z))′

Dn f (z)
− γ

}]

≥ ℜh0(z)

{

(1−2γ −n)r2−2(2− γ)r +(n+1)
(1− γ)(1− r)2+(n+ γ)(1− r2)

}

,

and right hand side is positive forr < r∗, where

r∗ =
n+1

(2− γ)+
√

(2− γ)2− (n+1)(1−2γ)−n
. (24)

This shows that forDn f ∈S∗(γ) for |z|< r∗, andr∗ is given
by (24).
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