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Abstract: In this paper, we discuss a half inverse problem for the Sturm-Liouville operator with Coulomb potential and show that if
q(x) is prescribed on[ π

2 ,π] then only one spectrum is sufficient to determine potential function q(x) onthe whole interval (0,π].
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1 Introduction

The theory of inverse problems for differential operators
occupies an important position in the current development
of the spectral theory of linear operators. Inverse
problems of spectral analysis consist in the recovery of
operators from their spectral data[1− 6]. Half inverse
problem for a Sturm-Liouville operator consists in
reconstruction of this operator from its spectrum and half
of the potential.

The first result on the half inverse problem is due to
Hochstadt and Lieberman [7], who proved that if

{λn} =
{

λ̃n

}
, q = q̃, H = H̃ , on

(
1
2,1

)
then q = q̃ on

(0,1). Later Hald [8] showed that if the potential is known
over half the interval and if one boundary condition is
given then the potential and the other boundary condition
are uniquely determined by the eigenvalues. The position
of the discontinuity and the jump in the eigenfunction is
also uniquely determined. This is a generalized theorem
by Hochstadt and Lieberman [7]. In [9,10], Gesztesy,
Simon and Malamud gave some new uniqueness results
in inverse spectral analysis with partial information on the
potential for scalar and matrix Sturm-Liouville equations,
respectively. Gesztesy and Simon [9] showed that more
information on the potential can compensate for less
information on the spectrum. In 2001, Sakhnovich [11]
studied the existence of solution to the half inverse
problem. Recently half inverse problems for Sturm
Liouville operators have been studied extensively[12,13].

Some versions of eigenvalue problems for the
Sturm-Liouville equation with specified singularities

were studied in [14 − 23], etc. However, for the
Sturm-Liouville operator with Coulomb potential, half
inverse problems have not been studied yet. The aim of
this work is to solve half inverse problem for this
operator. This will give the extension of the well-known
result in [7].

Before giving the main results, we mention some
physical properties of the Sturm-Liouville operator with
Coulomb potential. Learning about the motion of
electrons moving under Coulomb potential is of
significance in quantum theory. Solving these types of
problems provides us to find energy levels not only
hydrogen atom but also single valance electron atoms
such as sodium. For hydrogen atom, Coulomb potential is
given byU = −e2

r , wherer is the radius of the nucleus,e
is electronic charge. According to this, we use time
dependent Schrödinger equation;

ih̄
∂C
∂ t

=− h̄2

2m
∂ 2C
∂x2 +U(x,y,z)C,

∫

R3
|C|2 dxdydz = 1,

whereC is the wave function,̄h is Planck’s constant and
m is the mass of electron. In this equation, if it is applied
Fourier transform

C̃ =
1√
2π

∫ ∞

−∞
e−iλ tCdt,

it will convert to energy equation dependent to situation as
following;

h̄2

2m
▽2C̃+ŨC̃ = EC̃.
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Therefore, energy equation in the field with Coulomb
potential become as following;

− h̄2

2m
▽2C̃+

(
E +

e2

r

)
C̃ = 0.

If this hydrogen atom is substituted to other potential area,
then energy equation become as following;

− h̄2

2m
▽2C̃+

(
E +

e2

r
+q(x,y,z)

)
C̃ = 0.

If we make the necessary transformation, then we can get
a Sturm-Liouville equation with Coulomb potential

−y′′+

[
A
x
+q(x)

]
y = λy

whereλ is a parameter which corresponds to the energy
andA is real constant[24,25].

We consider the singular Sturm-Liouville problem

Ly ≡−y′′+

[
A
x
+q(x)

]
y = λy, (0< x ≤ π), λ = s2

,

(1)
with the boundary conditions

y(0) = 0, (2)

y′(π)−Hy(π) = 0, (3)

in which the functionq(x) ∈ L1[0,π], H is real constant

and y(x)
x ∈ C[0,π] . The operatorL is self adjoint on

L2(0,π) and with (2), (3) boundary conditions has a
discrete spectrum{λn} .

2 Main Results

Let us denote by

ϕ(x,s) = sinsx+
∫ x

0

sins(x− t)
s

[
A
t
+q(t)

]
ϕ(t,s)dt

(4)
the solution of the equation (1) satisfying the initial

conditions

ϕ(0,s) = 0 andϕ ′
x(0,s) = s, (5)

whereϕ(t,s)
s ∈C [0,π] .

Eigenvalues of the problem (1)-(3) are roots of the
(3). In [20] it is shown that these spectral characteristics
and and eigenfunctions satisfy the following asymptotic
expression, respectively:

sn =
√

λn = n+
1
2
+

A
2π

ln(n+ 1
2)

(n+ 1
2)

+
c0

(n+ 1
2)

+O

(
lnn
n2

)
),

(6)

ϕ(x,λn) = sin(n+
1
2
)x+

A
2π

ln(n+ 1
2)x

(n+ 1
2)

cos(n+
1
2
)x (7)

+
Aπ
4

sin(n+ 1
2)x

(n+ 1
2)

− cos(n+ 1
2)x

(n+ 1
2)

β (x)

−A
2

cos(n+ 1
2)x

(n+ 1
2)

ln(n+
1
2
)x

+O

(
lnn
n2

)
),

ϕ ′
n(x) = (n+

1
2
)cos(n+

1
2
)x− A

2π
sin(n+

1
2
)x ln(n+

1
2
)x (8)

+
Aπ
4

cos(n+
1
2
)x+sin(n+

1
2
)xβ (x)

+
A
2

sin(n+
1
2
)x ln(n+

1
2
)x

+O

(
lnn
n2

)
),

where c0 = 1
π
(
AM1−H + A lnπ

2 + 1
2

∫ π
0 q(t)dt

)
,

β (x) = AM1 + 1
2

∫ x
0 q(t)dt, M1 = M + sin2

2 and

M =
∫ 1

0
sin2 ξ

ξ dξ .
Theorem 2.1. We consider the equation (1) with the

boundary conditions (2), (3). Let {λn} be the spectrum of
theL with conditions (2), (3).

Considering a second operator

L̃y ≡−y′′+

[
A
x
+ q̃(x)

]
y = λy (9)

where is q̃(x) ∈ L1[0,π] and q(x) = q̃(x) on
[π

2 ,π
]
.

Suppose that the spectrum ofL̃ with the conditions (2),
(3) is also{λn} . Thenq(x) = q̃(x) almost everywhere on
(0,π] .
Proof. Before proving the theorem, we will mention some
results, which will be needed later. Weconsider the initial
value problems:

−y′′+

[
A
x
+q(x)

]
y = λy, (10)

y(0) = 0, (11)

and

−ỹ′′+

[
A
x
+ q̃(x)

]
ỹ = λ ỹ, (12)

ỹ(0) = 0. (13)

It can be shown [20] that there exists a kernel

K(x, t)
(

K̃(x, t)
)

continuous on(0,π)× (0,π) such that

by using the transformation operator every solution of
equations (10), (11) and (12), (13) can be expressed in the
form:

y(x,λ ) = sin
√

λx+
∫ x

0
K(x, t)sin

√
λ tdt +O

(
eτx
√

λ

)
,

(14)
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ỹ(x,λ ) = sin
√

λx+
∫ x

0
K̃(x, t)sin

√
λ tdt +O

(
eτx
√

λ

)
,

(15)

respectively, where the kernelsK(x, t)
(

K̃(x, t)
)

is

obtained from the solution of a certain Goursat problem
associated with the equation

∂ 2K(x, t)
∂x2 −

[
A
x
+q(x)

]
K(x, t) =

∂ 2K(x, t)
∂ t2 − A

t
Kx, t)

subject to the boundary conditions

2
dK (x,x)

dx
= q(x),

K (x,0) = 0,

whereτ =
∣∣∣Im

√
λ
∣∣∣ . This problem can be solved by using

Riemann method[26,27].
Using equations (14) and (15), we find that

y(x,λ )ỹ(x,λ ) = sin2
√

λx (16)

+
∫ x

0

(
K(x, t)+ K̃(x, t)

)
sin

√
λxsin

√
λ tdt

+
∫ x

0
K(x, t)sin

√
λ tdt

∫ x

0
K̃(x,m)sin

√
λmdm

+O

(
eτx

√
λ

)
.

Extending the range ofK(x, t), K̃(x, t) with respect to the
second argument, i.e. K(x,−t) = K(x, t),
K̃(x,−t) = K̃(x, t) and applying some straight forward
computation, we find that,

y(x,λ )ỹ(x,λ ) =
1
2

(
1−cos2

√
λx

)
(17)

+
1
2

∫ x

0

˜̃K(x,ξ )cos2
√

λξ dξ

+O

(
eτx
√

λ

)
,

where

˜̃K(x,ξ ) = 2
[
K(x,x−2ξ )+ K̃(x,x−2ξ )

]
(18)

+2
∫ x

−x+2ξ
K(x,r)K̃(x,r−2ξ )dr

+2
∫ x−2ξ

−x
K(x,r)K̃(x,r+2ξ )dr.

Next, we define the function

W (λ ) = y′(π,λ )−Hy(π,λ ). (19)

The zeros ofW (λ ) are the eigenvalues ofL or L̃
subject to conditions (2), (3). The asymptotic results of
(7) and (8) imply that y(x,λ ) and ỹ(x,λ ) are entire
functions of order1

2 and henceW (λ ) is also an entire
function of order12 of λ .

If we multiply equation (10) by ỹ(x,λ ), equation (12)
by y(x,λ ) and then subtract them, we obtain, after
integration[0,π] , we get[

ỹ(x,λ )y′(x,λ )− y(x,λ )ỹ′(x,λ )
]
| π

x=0 (20)

+
∫ π

0
(q̃(x)−q(x))y(x,λ ) ỹ(x,λ )dx = 0.

Together with the initial conditions at zero and the
assumptioñq(x) = q(x) on on

[π
2 ,π

]
, then it yields

0 =
[
ỹ(π,λ )y′(π,λ )− y(π,λ )ỹ′(π,λ )

]
(21)

+
∫ π

2

0
(q̃(x)−q(x))y(x,λ ) ỹ(x,λ )dx.

Denote
Q(x) = q̃(x)−q(x) , (22)

and

H(λ ) =
∫ π

2

0
Q(x)y(x,λ ) ỹ(x,λ )dx. (23)

From the properties ofy(x,λ ) andỹ(x,λ ) are considered,
the functionH (λ ) is an entire function. Forλ = λn, since
the first term of equation (21) is zero, hence

H (λn) = 0, n ∈ N. (24)

In addition, using (16) and (23) for 0< x ≤ π,

|H (λ )| ≤ Beτπ
, (25)

where B is constant andτ =
∣∣∣Im

√
λ
∣∣∣ . By using the

asymptotic forms of (7) and (8), we obtain

W (λ ) =
(

n+
1
2

)
cos

(
n+

1
2

)
π +O

(
lnn
n

)
.

Now we define

Ψ (λ ) =
H (λ )
W (λ )

, (26)

which is entire function from the above argument and it
follows from asymptotic form ofW (λ ) and with equation
(25) that we have

|Ψ (λ )|= O

(
1√
λ

)
,

for all |λ | enough large. Thus, from the Liouville’s
theorem, we obtain far allλ

Ψ (λ ) = 0, (27)

or
H (λ ) = 0. (28)

Further substituting equation (17) into equation (23), we
have

0=
∫ π

2

0
Q(x)

(
1−cos2

√
λx

)
dx (29)

+
∫ π

2

0
Q(x)

[∫ x

0

˜̃K(x,ξ )cos2
√

λξ dξ
]

dx

+O

(
eτx
√

λ

)
.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


504 M. Sat: Half Inverse Problem for the Sturm-Liouville Operator...

This equation can be written as

0=
∫ π

2

0
Q(x)dx

−
∫ π

2

0
cos2

√
λξ

[
Q(ξ )+

∫ π
2

ξ

˜̃K(x,ξ )Q(x)dx

]
dξ

+O

(
eτx
√

λ

)
.

Letting λ → +∞ (λ ∈ R), from Riemann-Lebesgue
lemma, we obtain

∫ π
2

0
Q(x)dx = 0, (30)

and

∫ π
2

0
cos2

√
λξ

[
Q(ξ )+

∫ π
2

ξ

˜̃K(x,ξ )Q(x)dx

]
dξ = 0.

(31)
From the completeness of the function systems{

cos2
√

λξ , λ ∈ R

}
, we get

Q(ξ )+
∫ π

2

ξ

˜̃K(x,ξ )Q(x)dx = 0, 0< ξ <

π

2
. (32)

Since equation (32) is a homogenous Volterra integral
equation, it has only trivial solution. Thus we have
obtained our result

Q(x) = q̃(x)−q(x) = 0, a.e. x ∈ (0,π] . (33)

This completes the proof.
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