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Abstract: This paper is devoted to study the existence of global attractdfi®2) and uniform bounds of it ih®(Q) for a class of
parabolic problems with homogeneous boundary conditions wich invalwesform strongly elliptic operator of second order in the
domainQ c R". The main tools used to prove the existence of global attractor are thégeebrused in Hale8] and Cholewa 5],
and for the uniform bound of the attractor we use the Alikakos-MosettiberarocedureI].
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1 Introduction We assume thal is uniformly strongly elliptic

) operator, that is, there is a constant- 0, such that
Today, the concept of global attractor is a very useful tool

for studying the asymptotic behavior of differential
equations, that is, an attractor is a nonempty subsetf

the phase space which is compact, invariant under the
flow and attracts every bounded set under the semigroup_ . XE Qand€ = (&,.... &) € R",

associated to the PDE (for more details séfe [10] and The main goal of this work is to prove the existence

Lhaia[)e;ﬁéepr:gilgrfrem) For example, suppose that thend uniform boundedness of global attractor for the initial
boundary value probleni) where the operatdr presents
lower order terms. The presence of such that terms in the
operatorL, in particularbjuy, makes it difficult to obatins
directly the Lyapunov function as in the works of Ha8. [

ajj (X ElEJ z (2

™

i,j)=1

U =Lu+f(u),t>0, xeQ
ut,x)=0, t>0,x€0Q Q)

u(0,-) = u’(-) € Hy(Q),

models a certain phenomenon. Hée— R" is a bounded
domain with smooth boundargQ, L is second order
elliptic operator given by

0u

0u A
Lu—I le ﬁx +Z bj (x % —— + (C(X)+A)u,

with coefficientsajj, bj,c: Q — R smootha;j = aji, i, j =

1---,n,A e Randf:R — R is a nonlinear function of
classC?(R) satisfying the condition

LetX = L?(Q) be a Hilbert space and define the linear
operatorA: D(A) C X — X by

D(A) = HX(Q) NH3(Q),
Au= —Lu, Yue D(A).

There are many studies on PDE’s fdk) (with the
operatorA being self-adjoint (se€], [8], [9]). In our case
the operatoA is not self-adjoint.

We will show that the operatoA is sectorial and
assuming thahd is chosen such that REA) > 0, we can
define the fractional powerA® and the corresponding

1f/(s)] <C(1+1g]" 1), VseR, (C)  fractional power spaceX® := D(A?), a > 0, endowed
n+2 with the graph norm (see5] Section 1.3.3]).X% is a
where 1< y < {#5if n> 3, andy > 1 if n=2, and Hilbert  space  with  the  inner  product
) (.0)a = J(A$)(A%). Then, X' = D(a)
limsup——= < 0. D
s O o 12(0) andx¥2 — H3(Q).
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With this notation, the probleml) can be written in
the abstract form

0+ Au=F(u)
{u(O) =wex?, ®

whereF : X¥/2 — X is the Nemytskii operator given by
F(u(t))x = f(u(x,t)). From Henry's theory 9], the
equation B) defines a semigroup(t,-) onX/2, fort > 0.

Also, foru € D(Ag), we obtain

0u du

<(A0+)\0|UU)(—Z/ ﬁ | o%

i,j=1

n
> 39 /’— dx+/\/ ul2dx = AgllullZ.
3 Jolaw| Ao J ludx= Aofull

Here we have used). Now, by density it follows that
Ao+ Agl is bounded below and by Proposition 1.3.3%0 [

M 4x+ Ao / w2dx
Q

Next, we describe the contents of the paper. In sectiorp. 39] Ao + Aol is sectorial inX.

2 we will show that the operatok is sectorial and thaf
andF’ is is locally Lipschitz continuous. In sectidhwe
prove the existence of local and global solution Hfgnd
finally in section4 we prove the existence of the global
attractor and the uniform boundedness for it.

2 The sectoriality of operator A

Firstly, we will be prove the following.

Lemma 1Let Ay : D(Ag) =
operator given by

D(A) € X — X be a linear

19 du
i’JZ:lTXi (aij (X)TXJ)

Then, A is sectorial in X.
Furthermore, there is a constapt> 0 such that
4)

[Ull42(0) < P[lAoullx, Yue X.

Proof. Let Ag > 0. We will show thatAg + Agl € setorial,
then by the Remark 1.3.1 i p.32] it follows thatA is
sectorial. Indeed, we hav@(Ag) = D(Ag + Aol ) and for
u,v e D(Ag),

dv Ju

((Ag+ Aol )u,V)x = Z (9x ox
i OX;

N 1/
a“
e 1/ dxJ

= (u, (Ao +Aol)V)x,

thus,Ag + Agl is symmetric operator.

Using the Sobolev embeddings (s&ef. 23]) and the
density ofCg (Q) in LP(Q), 1< p < », we conclude that
Ao + Aol is densely defined irX. Therefore,D(Ag) is
densely defined iiX.

Now, let f € X be such that(Ag + Aol)u = f.
Following the Example 3 in 4, p. 294] taking
ap = Ao > 0, we conclude that there is € D(Ag)
satisfying(Ag+ Aol )Ju= f. Thus,R(Ag+ Agl ) = X. Using
Theorem 13.11 itenfd) in [11, p.334] we conclude that
Ao+ Apl is selfadjoint.

—dx+ Ao/ uvdx

)dx+ Ao / uvdx

Finally using the results of elliptic regularity (taking
m=1,k=0,p=2andBj=1,j=1in[12 p. 14]), we
have

[Ullhz@) < PllAoullL2(q)

wherep > 0 and kefAp) = {0}. This last result is extend
to X by density ofD(Ag). O

Lemma 2.The operator A is sectorial in X.

Proof. LetB: D(B) C X — X be a linear operator given by

{ue L2(Q) ‘Bucl?(Q),u=0indQ} =

c(x) +A)u,

whereD(B) =
HE(Q).

By Gagliardo-Nirenberg’s inequality (Theorem 10.1 in
[7,p. 27]) withm=r=p=2,j=1and6 =1/2, we have

1
Ullig(oy < ClullZz g U112 0 (5)
whereC is a constant.

By other side, from the Young's inequality aris)(we

obtain

Uz (o) < %Hu||H2(Q) +%:||U|||_2(Q)a ve>0. (6)
Substituting 4) in (6) we get
C2
Ul g () HAoU|||_2 + o Ul (D)
Thus,
IBulb < 2% Aotz + o ey (@

where in the last inequality we have used) (and
T = max{ max/bj (x)|, max|c(x) + A }.
Q xeQ

Xe
Observe thaA = Ag + B where A is sectorial inX,
D(Ao) € D(B). Therefore, by Theorem 2.6.3 ifaZ, p. 69]
and @) follows thatA is a sectorial inX.
Now, we prove thaF is locally Lipschitz continous.

Lemma 3lf f : R — R is a function of class &R), the
assumptior{C) is satisfied and g 1 then F: X%/2 — X is
locally Lipschitz continous.
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Proof. The casen = 1 was proved in§, p.75]. Now, let
n > 2. Using the mean value theorem and assumpt@n (
we have

[f(s)—f(r)|=|f'(6s+(1-0)r)|[s—r|, 0<O<1
<C(1+416s+(1— )| Y)s—r|

<Cy(L+]s [ s—r], (9)

whereC; =Cy(y), 1< y< M2ifn>3andy > 1lifn=2.
Now, we will to show that forp > 1 satisfying

py = 2%, the functionF : L7 (Q) — LP(Q) is locally
Lipschitz continuous. Indeed, using) (ve get

IF W= F W) B, = [ 17(u09) = F(v(x)|Pex
61/9 L UYL+ v(x >|H) U~ V()| Plx
Cz( |Pde)%

([ @ oo 4 oo P ) )
03( 2 )ﬁ(fz)
(s

1
x / (L [UPY=I" -+ () PY -2 )dx)
where in the second inequality we have used tli¢delr
inequality for y and r, with + = 1— % because

uve L2 (Q) =LPY(Q). Sincey andr are conjugate we
have p(y — 1)r = py, thus (u—v)P € LY(Q), and since
uwPy=1 - wP-D e 1"(Q)  we  have  also
14 uPy=1 1 yP-1) € | T(Q). Then,

IF(w-F
X (1 1ullPhy o)+ IMIPh o))

(2+0ull, 2
Q) Ln-2(Q)

(v) |||F_Jp(g> < Cyflu— VHEPV(Q)

1
r

< _yllP
< Csllu V”L%z VI 2,

p(y—1)
(Q)) ’

Therefore,

F -F < - n
[F(u) =F(V)l[Lr(o) < Csllu VHLHZTZ()

x (Tl an, Vi
Ln-2 Q) n

e

In particular, forp = 2, using the immersionsl(Q) —
L9(Q), 0 € [1,:2%] forn> 3 andH3 (Q) = L9(Q), 0 €
[1,00) for n= 2, we have

[IF (u) -

Finally, given & > 0 such thatuyv € X2 with
lull /2, VI x12 < & we have

IIF(u) —

F (V) x < Grllu—Vilxyz (14 [ullxaz + [Viixez) "

FV)llx < Cayllu—Vllx2,

where C5,, = C7(1+ 25)"%. ThereforeF is locally
Lipschitz continuous]

Lemma4let f: R — R be a function of class €R)
satisfying(C). Then, F: X%/2 — X is a function of class
ct  with F(u e 2ZX¥Y2X) given by
[F’(u)h](x) = f’(u(x))h(x), for all u,h € X¥/2,

Moreover, there is a constanteX20 such that

IF'(u) —

F/(V)H;f(xl/{x) < CHU_V”xl/Z
2
x (14 ullyasz + IVlxa2) "%, (20)
for all u,v e X/2,

Proof. First we obtain the Gateaux differential of the
Nemytskii's operator. Thus, far,h € X/2 we have

_!L”E) 1 f’(u(x)+stth(x))th(x)ds

[

x)ds= f'(u(x))h(x),

where we have used the Dominated Convergence Theorem

of Lebesgue and the fact thatc C?(R) with s= s(x) €
[0,1].
From assumption(), we obtain
[£7(5)] < Cy(1+1s"2), (co)

wherese Rwith2< y< ™3 if n>3andy>2ifn=2
Similarly, as was done fo®j using CC), we have

[£(8) — /()| < Coy(L+ s 2+ |r|"?)[s—r], (11)

where 2< y < ™2 if n>3andy > 2ifn=2

Now, we can show the is of classCl in the sense of
Fréchet. We begin by defining

P(X) 1= F(u+h)(x) = F(u)(x) — '(u(x))h(x),

foruh e L2 andx € Q. Thus, forp > 1 such thapy =
2% and (L1) we obtain

ATAL

<y [ | [ s e +shop-2+ Jui -2 shix)
x [n()|dg "dx

Il X)+shix)) — f'(u(x)]dsh)| dx

<8, [ InGOZP(L+1u0) Y2+ () ¥2) Pl
<8, [ InGOR (L4 U092+ () P2
y=2
<CRINIER ) ([ (2+ U0 P+ ()P 7
Y
y=2
<R INEH ) (L Ul gy + 1N ) 7

—2
C2, N5 ) (L4 1ullovc) + IMllLavi) P2,

© 2014 NSP
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where we have useddttler's inequality for¥ and yTy2
Then,

2
®llLeia) (@) L+ [lullLeva y+ Ihleve))

Now, by the Sobolev embeddings we obtain

@llLee)

<C7 ||h|| o)
||hHHg(Q Y

—2
) (L4 lullyz o) + hllyae))

®@lLpo

ThereforeW -0 When||h|\H1 — 0.

In part|cular forp = 2 the functionF is of classC! in
the sense of Echet with[F’(u)h](x) = f’(u(x))h(x), for
allu,h e H}(Q).

Now we will show the estimatel(). In fact, for
u,v,h € LP¥(Q) denoting
AF(u,v) :=F'(u) —F'(v)
and using {1) we obtain
[ aF @ whlg, = [ 1T(u00) = F'(v60)| (o Poix

<cly [ (L lueol2+ |v<x>\V*2) U6~ V()Plh(x)[Pdx
<GBy [ (1 WGOIPY 24 V) -2 () - V)P
< 09 P [ (1+ U092 + o H-2) Pax)

< oy llu=VilFoy gy 111 P )

0(y—2)
x (1+ lullPa

1
0(y—2) 2
P o)+ IVIT 2 o))

LPo(y-2) (Q)

<ch ||h|\pr<Q)

10, yHU—VHpr(Q)

p(y—2)
x (14 ull o2 ) + Vo2 )
(L
Q) Lr2(Q)
p(y—2)
M2 )
wheref = 6(y) and we have used thedtttler's inequality
for y, y and 8 with 8 = thenp(y—2)6 = py and

uPv=2) \P(r-2) ¢ L9(Q).
Therefore,

p _ullP
<Clylu—vi s,

x (Ll g

v—2'

F’ (uyh—F'(u)h ) <Croyllu—v h| 2n
([F(u) (WhllLp@) < Croyllu=V] 20, )II IIL%(Q)
2
><(1+HUIIL% Q+||V|| m )
m2@) L2 (0)

Finally by the Sobolev embedding we obtain
IF (Wh—F'(WhllLsg) < Crayllu=Viuy o)
—2

X (14 [Uluao) + IVle )" “Ihllza)-

From this last inequality taking = 2 immediately follows
(20). O

Now let’s get uniform bounds for the solutions &) (

Lemma 5Consider the problem(1) under all the

hypothesis to get the existence of smooth solutions and

satisfying
uf(u) < U+, (12)
where and T are positive constants. Then,
3,30
sup||u(t, u°)[|L=(0) < 82274 T max{[|u’[ 2(0), 1}, (13)

t=0

whered > 0is defined in(28) below.

Proof. We use Alikakos-Moser iteration (se&][e [5])
which allows us to obtain estimates &¥(Q) for the

solutions of parabolic equations of second order. Indeed,

multiplying (1) by v*~%, k=1,2,...
Q we get

ou, ok
k1 -1
utu dx_/ ) dx

P Ldx+ /

and integrating over

+/\udx

n /Q ébi (024

+ /Q f(u)u?Ldx (14)
For |, we have
/ 0u a(u )dx
|le 0x. X
uzk l) d(uzk—l)
__ =3 22k - / Z o dx (15)
Similarly, for 1l, we have
” _/ Zbl Zk 1 10“ Zk ldX
—1
= zibl T )dx (16)
Replacing 15) and (@6) in (14) we get
1d [ ox. (1-2% 2 ou2 )
?&/Qu dx= k-2 / z dx| xj dx
2k—1
d(u : ) u2k—1dx

42 /Q uf (i 2dx+2 /Q _Zlbi(x)

+2k/Q(c(x) + )2 dx

© 2014 NSP
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Now, using @) and (L2) we get

d ’ 1 n oot
a/guzdxg—( )a/gizl[ (Lof,xi )12

k-2
n 2kt
42 / (ZU% + 1)U 2dx+ 2B, / Zld(“) w2 dx
Q oG 9%
L KCL0+A) / W dx, (17)
Q
whereB, = max sup|b.( )| andC;, := sup|c(x)|. Using
1<i<nyec XeQ
Holder’s inequality in 17), we obtain
Zk 1
g/ Wdx< — /Z (u
dt Jo

+2"Z/ uzkdx+2kr/ w2 2dx
o

([ (Y ay!

(18)

2kl
+25*/ Zx «M

+2k(c;;(x)+A)/Qu dx

W 11,vk=1,2,.
| +---+df),d >0andr >

d/udx< /Z

+2kr/ (U + 1)dx+ 285
Q

. K_
Sinceu? 2 <
nrfl(

ccand(dp+---+dy)" <
1in (18) we obtain

k1
u2

2k2

2k N3 ok % ok
><(/Qu dx) +2(Z+C°°(x)+/\)/gu dx

2k1
5,51,
/\)/ u? dx-+ 28, ( / 21 dx. dx%( / U dx) 2

+2¢7|1Q. (19)

1%dx+2X(Z + T+CH(%)

\_ 2k2

Now, using the Cauchy’s inequality in19) with £ = é%
we get
uzk 1

%/”d /Z o%

k x
+2 (Z+T+Cw(x)+)\)/gu dx

_2k2

P (u2k71)

r2e (s[5 (2

2dx+ i_n/ P'dx) + 270

Since 2< % <4forallk=12,...
as

, we can write 20)

kl
u2

dx+ [2(Z +1

dt/u dxs ’9/2

n(B)° ]/ u2k+2kr|Q|.
Q

+CL(X)+A)+ (21)

Takingj=0,p=2,m=1,r=2,9=10= 3 in
Gagliardo-Nirenberg inequality we obtain
IVl2(0) < CIVIlF2 g YV

VVeH (Q), (22)

whereC = C(Q,n). Again, using the Young's inequality
in (22) with m= % > 1 ande € (0,1) we obtain

2m(1-0)

m—1 e G Lot
——EmICMm 1HV|||_1(_Q1)

1
< 7£m||v||26m +
m m

2
VI 0

< e|ViiBq) +CellVIIEy (23)
where C; = 28*3*1 and & = . From the

definition of norm inH'(Q) we can see thal@) can be
written as

2 _Ant2
n+2C

1-¢ C
M)~ M) < WPy (24)
Now, using 24) in (21) with v= " we get
/ 24 (11— s)/  dx +5‘CE(/ uzkdx)z
dt £ Q € Q
n(B:)?
+ [+ THCLX) +A) + (19) ]/Qu2k+2kr|£2\
S(1—¢ n(B%)2
. . ) Mg T+CL00+A) + (3) ]
X / 2 Cs(/ uwdx)® + 27/ Q).
JQ JQ
Then, fixinge = &, k=1,2,... such that
S(1—¢ n(B%)2
_3 . )+2k(Z+r+C;g(x)+)\)+ (8 o
andg, = p2~* wherep is a positive constant, we have

%fg W dx< —2K [ U dx+ 1 (24) 32 [ u2'dx)® + 27| Q)

(25)
where = Sfpfgfz. Applying Lemma 1.2.5 inf§, p.
17] withy(t) = [, u“dxin (25) we obtain

:(—(2;%21)’“‘9)/ i[a(f )} dx+[24(¢ ?dx < (W0 Zdx (293 ( [ v dx)2 410
Bf'; % /Qu x\max{/g(u) X, (29 (/QU X)“+1] |}
+T+C;(X)+A)+¥]/{2u2k+2kr|g‘. (20) SmaX{/Q(UO)dex,u(zk)g-ﬁ-lmik_l‘FT‘Q|}7 (26)
@© 2014 NSP
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_ —k+1
wheremy_; = sup( [ u ldx)2 o Taking the 5—th
>0
root on both sides of26) and then the supremum on the

left hand we get

1
me<max{ W) o g (0292 110) * . (27)

1
Since, |\U0||sz(g) < supl¥(x)|(fodx) <
xeQ
1
U= ()| Q]2 =: &, we can see that the first term of

(27) is uniform bounded by.#", for all k € N. Now,
enlargingu to the value
5 :=max{y,1,1/Q|,#?}. (28)

z@)

to the valuex; := max{my,1}. Then, using28) in (27) we
have

Enlarging alsam (which is defined by sujpu(t
xXeQ

m < max{%,(é(Zk)gﬂnﬁk,lJré) * }7 k=23,...

We can see that the numberg, k= 1,2,... are bounded
by the corresponding, satisfying the recurrence relation

xk:max{% (8(29)27¢", +6) zk}, k=23,... (29)

Sinced > 1 andx; > 1 we can see that sequenog }ken
is increasing. Furthermore, f&r= 2 the second term of
(29) is bounded because

Xo = max{%, (8(2)"2x3 + 6) i }
< max{%/, (26(2)“*2%)%}
< max{Ji/, (25(2)"2) i max{my, 1}}

By other side, the sequende }kcn is dominated by the
sequencd z }ken given by

z71=%X=>1
n 1
7= (26(2) 2t Y&z, k=23,...

Taking the limit wherk — co we havex, := Ilim Xk < Zoo 1=
—»00

lim z. Thus,

k—sco

[

25 2|'( %Jrlillz
ZlkEL( (2927

) <

suplju(t

t>

< 21(5(2)%+2)*:2L

L)

<z1(5(2)3+2) % (20) (:-%) [2k"£”w (szgg)} 141
< 5227t max{ sup|lu(t, )IILz(Q),l} (30)

Finally we will show that supu(t,uo)HLz(Q) <y, where
0

=
y > 0. Indeed, similarly as we did above, we multiply the
equation of the probleni] for u and integrate ove® we
obtain

o], 3 o
e

From ) and (L2) we get

2; WPdx < a/ Zi )2dx +B*/ Z—udx

+(C§;+A)/Qu2dx+/g(Zu +1)dx

du au
dx. Ix;

d+/Zb.

ujudx

=1

X)+A)u 2dx+/

whereB;, e C are defined as above. Using Poincare’s and
Holder’s inequality we obtain

d /2 = 2 c (OU240d
— udx<—2019/udx ZBZQ/ —)“dx) 2
dt/Q Q 280 Qi;(axi) )
X (n/ uzdx)% +2(C;, +/\)/ u?dx
Q Q
22 / Wdx+ 27/Q)|. (31)
Q
By Cauchy'’s inequality witkeg > 0 in (31), we have
"By
&
(32)

CB.ep .
Q4 CLH+A+T+

d 2 ~
sl < 2(—
dt/gu dx< 2(—C3 +
x/ u?dx+ 21| Q)
o

where in the last inequality we have used Poidtar
inequality.
Choosinggg such that

—  CBig nB;,
“CO+ TSR A C A F <L

Thus, in 32) we have

3/ dx < —2/ Wdx+ 21|Q)]. (33)

dt /o Q

Using Lemma 1.2.4ind, p. 17] to 33), we get
sup|u(t,t) 2o < max{ ||z 721} (34)
=0

Therefore, using34) in (30) we obtain

(Q)J}.

3,3
suplu(t, o) () < 822 max{ ]2

Thus we get the resultl
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Lemma6let f: R — R be a function of class €R)
satisfying(D). Then givere > 0 there exists m=: m> 0
such that

vEi(v) < eV +m,

forallv e R.
Proof. From the assumptiorD), follows that is there is

M > 0 such thatf(v) < &v?, for all |v| > M. Since the
set{x € Q : |v| < M} is bounded inR" where we take

v=V(x) and f be a continuous function. Thus, we have

|vf(v)] < mg. Therefore, joining these two facts follow the
result.C]

3 Local and global solution

Lemma 7(Local solution).Under the growth assumption
(C) the problem(3) has local solution in %/2.

Proof. By Lemma3 and Lemma2 we can see that the
hypothesis of Theorem 2.1.1 if,[p. 62] are satisfied, thus
we have the result]

Theorem 1(Bounded global solution). Assume the
growth conditiongC) and dissipation(D) holds, then the
solution of the problem  (3) with
wWeBr={ve X¥2: IVllyz (o) < R} is define globally
and there exist a constant K> 0 such that

limsup|u(t, 1) [ly1 (g < Ki.
t—so00 0
Proof. From (13) and Lemmab’, we obtain that

u e L®(Q), then ||[F(u)jx < C(||uHLw(Q)). Thus, if
u® € X9, thenu is a local solution inX? of the problem

(3) satisfying the constants variation formula. Since, the

operatorA is sectorial positive, we have
lu(t,u®)[Ixa < [|A%e " u|x
t
+ [ IATe M ) F (ufs o)) xdls

t
< Coe’ﬁtlluollxw/ cu(t—s)" e PUI||F (u(s,u%)) |xds
0

t
< ol|illxe +erClullmay) [ (=) ds

where ¢y, ¢1 are positive constants withh € (0,1) and
Red(A) > B > 0. It follows thatu(t,u®) in the normX®

is limited to finite intervals of time witlr < 1. Therefore,
for o = 1/2 a solution is global.

As before, using the formula of the constants variation

and sincd|u(t7u°)||Lw<Q) <Ko forallt > 0, we obtain

lu(t,u®)lxe < cat™ e P |[u°)x

From this, it follows

t
limsup]u(t, 1) |xe < Iimsupclc(Km)/ r~9e Fds
t—o0 t—oo 0

= 1C(Keo)M (1—a)B% 1 =K.

Let{T(t,) :t > 0} be a semigroup iX!/? given by
T(t,u%) = u(t,w0), vt >0,
where u is the unique global solution of3). This
semigroup({T (t,-) : t > 0} is aCo—semigroup inX/2,
As a consequence of Theordmesults

Corollary 1.Under the hypotheses of Theorénit follows
that semigroug(T (t,u%) : t > 0} is point dissipative.

4 Existence of global attractor

Theorem 2The G—semigroup{T (t,-) : t > 0} associated
to the problen(3) has global attractore in X/2,

Proof. We show first tha€y—semigroup{T (t,u°) : t > 0}
is compact inXY/2. In fact, we see that the resolvent/f
is compact, sinc&! = D(A) is embedding compactly in
X = L?(Q) and of the Proposition 4.25 i p. 118], the
result follows. Now, using the Theorem 3.3.1 5 p. 80],
we have theCy—semigroup{T (t,u°) : t > O} is compact
in X¥/2, Finally, by Corollary’sl and 1.1.6 in§, p.13] the
result follows.]

As a consequence of Lemrband Lemmab, we have

Theorem 3Assuming the same hipotheses of Leniiga
we have

sup||ullL=(q) < Ko,

ues/

where K = Ko(Q,n, .1, ~q)) is a positive
constant.
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0

t
SCat*aefﬁt||u0||,_m(Q)+clc(Km)/0 (t—9) T Bl-9dg

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

500 — 1~ S r> R. Figueroa-lbpez, G. Lozada-Cruz: On Global Attractors for a Class of...

References Rodiak Nicolai Figueroa
Lopez received the PhD
degree in  Mathematics
(2013) from Universidade

Estadual Paulista (UNESP)
[2] Arrieta, J. M.; Carvalho, A. N.; Rodguez-Bernal, A. at S0 Jog do Rio Preto.

Parabolic problems with nonlinear boundary conditions and His research interests area
th(isc(allgr;(;r)llinearities J. Differential Equations156, 376— in the study of the asymptotic
' dynamics of parabolic partial

[3] Arrieta, J. M.; Carvalho, A. N.; Rodguez-Bernal, A. ‘ d?lcferential gquationsp and
?étr:?i:ttigfs Ofuﬁ‘?rtr)sh%opﬁglse(r:no;mth F:‘;glz'i?eg?ﬁ?::t?;ry their applications, domain’s discretization via the finite
EquationséS 1-37 (2000) : element method, the convergence compact operators and

[4] Brezis, H.Functional analysis, Sobolev spaces and partial semigroups theory.
differential equations Universitext. Springer, New York,
(2011).

[5] Cholewa, J. W.; Dlotko, T.Global attractors in abstract
parabolic problemsLondon Mathematical Society Lecture
Note Series, Cambridge University Press, Cambri@y&
(2000).

[6] Engel, K. J.; Nagel, R.One-parameter semigroups for
linear evolution equationsGraduate Texts in Mathematics,
Springer-Verlag, New Yorkl 94, (2000).

[7] Friedman, A. Partial Differential Equations Dover

[1] Alikakos, N. D. An application of the invariance principle
to reaction-diffusion equationg. Differential Equations33,
201-225 (1979).

German Jedis Lozada
Cruz, PhD in Mathematics
(2001) from  University
of Sdo Paulo at 8o Carlos.
Assistant professor at the
Departament of Mathematics
of State University of
S4o Paulo. Has experience in
Mathematics with emphasis

Publications, Inc. Mineola, New York, (2008). in Partial Differential
[8] Hale, J. K. Asymptotic behavior of dissipative systeMath.  Equations. The areas of interest are asymptotic behavior
Surveys Monogr., Amer. Math. So@5, (1988). of reaction diffusion equations in dumbbell domains,
[9] Henry, D. Geometric theory of semilinear parabolic exjstence of attractors and continuity of attractors with
equationsLect. Notes in Math., SpringeB40, (1981). relation to small parameter..

[10] Raugel, G. Global attractors in partial differential
equations Handbook of dynamical systems, North-Holland,
Amsterdam?, 885-982 (2002).

[11] Rudin, W. Functional analysis Second edition.
International Series in Pure and Applied Mathematics.
McGraw-Hill, Inc., New York, (1991).

[12] Zheng, S.Nonlinear evolution equationsChapman &
HalllCRC Monographs and Surveys in Pure and Applied
Mathematics, Chapman & Hall/CRC, Boca Raton, EB3
(2004).

© 2014 NSP
Natural Sciences Publishing Cor.



	Introduction
	The sectoriality of operator A
	Local and global solution
	Existence of global attractor

