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Abstract: This paper obtains solitary waves, shock waves and singular solitons alonwith conservation laws of the Rosenau Korteweg-
de Vries regularized long wave (R-KdV-RLW) equation with power law nonlinearity that models the dynamics of shallow water waves.
The ansatz approach and the semi-inverse variational principle are used to obtain these solutions. The constraint conditions for the
existence of solitons are also listed.
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1 Introduction

The theory of solitons is one of the most progressive
research areas in applied mathematics and theoretical
physics [1–20]. Solitons or nonlinear waves appear
everywhere in daily lives. Optical solitons are the most
fundamental pulses that travel through the optical fibers
for transcontinental and transoceanic distances. The
modern telecommunication system in information
sciences has advanced because of the progress in the
research on optical solitons [9, 12]. Apart from nonlinear
optics, solitons are also observed on lake shores, beaches
as well as canals. The dynamics of dispersive shallow
water waves is extensively studied by various known
models. These are the Rosenau-Kawahara equation,
Rosenau-KdV equation, Rosenau-RLW equation and
many others. This paper is going to introduce the
R-KdV-RLW equation, with power law nonlinearity, that
serves as yet another model to study the shallow water
waves.

The aim of this paper is to solve the R-KdV-RLW
equation by the ansatz method and the semi-inverse
variational principle (SVP). The solitary waves, shock
waves and the singular solitons will be determined. It will
be seen that the shock wave solutions will be available for

only two particular values of the power law nonlinearity
parameter. However, the solitary waves and the singular
solitons are defined as long as the power law nonlinearity
parameter is bigger than unity.

2 Governing Equation

The dimensionless form of the R-KdV-RLW equation that
is going to be studied in this paper is given by [5,13,14,20]

qt +aqx +b1qxxx +b2qxxt + cqxxxxt + k (qn)x = 0 (1)

Here,q(x, t) is the nonlinear wave profile wherex and t
are the spatial and temporal variables respectively. The
first term is the linear evolution term, while the coefficient
of a is the advection or drifting term. The two dispersion
terms are the coefficients ofb j for j = 1,2. The higher
order dispersion term is the coefficient ofc while the
coefficient of nonlinearity isk wheren is the nonlinearity
parameter. These are all known and given parameters. It
is, however, necessary to note that

n > 1 (2)

in order for the solitons to exist.
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Equation (1) is a combination of R-KdV equation [13]
and R-RLW equation both of which are studied in details
in the context of shallow water waves. This R-KdV-RLW
equation is a combination of the two forms of dispersive
shallow water waves that is analogue to the improved
KdV equation. Therefore this equation models dispersive
shallow water waves with the equal-width factor taken
into account.

Equation (1) will be solved by the ansatz method. The
traveling wave hypothesis fails to retrieve as wave of
permanent form for equation (1). The ansatz method will
be applied to extract the solitary waves, shock waves as
well as the singular solitons for the R-KdV-RLW equation
(1). This study will now be detailed in the next three
subsections.

2.1 Solitary Waves

In order to obtain the solitary wave solution to the R-KdV-
RLW equation, the starting hypothesis is taken to be [15]

q(x, t) = Asechp [B(x− vt)] = Asechpτ (3)

whereA is the amplitude of the soliton, whileB is the
inverse width andv is the soliton velocity and

τ = B(x− vt). (4)

The value of the unknown exponentp > 0 will be obtained
by the balancing principle. Substituting equation (3) into
equation (1) gives

{

v
(

1+b2p2B2+ cp4B4)−a−b1p2B2} sechpτ

+B2(p+1)(p+2)
{

b1−b2v−2cvB2(p2+2p+2
)}

sechp+2τ

+ cvB4(p+1)(p+2)(p+3)(p+4)sechp+4τ
−nkAn−1sechnpτ = 0. (5)

By the balancing principle, equating the exponentsnp and
p+4 leads to

p =
4

n−1
. (6)

Also, from equation (5), setting the coefficients of the
linearly independent functions sechp+ jτ for j = 0,2,4
leads to

A =

[

8(n+1)(n+3)(3n+1)b1cB4

k(n−1)2{(n−1)2b2+4(n2+2n+5)cB2}

]

1
n−1

(7)
and the velocity (v) of the soliton is

v =
a(n−1)4+16(n−1)2b1B2

(n−1)4+16(n−1)2b2B2+256cB4 (8)

or

v =
b1(n−1)2

(n−1)2b2+4cB2 (n2+2n+5)
. (9)

Upon equating the values of the velocity of the soliton
from equations (8) and (9) leads to the width of the
soliton being given by

B =
n−1
n+1

[

D−
(

n2+2n+5
)

ac

32b1c

]
1
2

, (10)

whereD is given by

D =

√

a2c2 (n2+2n+5)2+16(n+1)2b1c(b1−ab2). (11)

Substituting (10) into (7) leads to

A =

[

{

D−
(

n2+2n+5
)

ac
}2

8(n+1)2b1b2+
(

n2+2n+5
){

D−
(

n2+2n+5
)

ac
}

]

1
n−1

×
[

(n+3)(3n+1)
16(n+1)ck

]
1

n−1

, (12)

which is the amplitude of the soliton expressed completely
in terms of known parameters. The width of the soliton
given by equation (10), which is also in terms of known
parameters, will exist provided

b1c
{

D−
(

n2+2n+5
)

ac
}

> 0 (13)

and equation (11) stays valid for

a2c2(n2+2n+5
)2

+16(n+1)2b1c(b1−ab2)> 0. (14)

Finally, the solitary wave solution to the R-KdV-RLW
equation is given by

q(x, t) = Asech
4

n−1 [B(x− vt)] . (15)

The following figure shows the profile of a solitary wave
for a = 1, b1 = b2 =−1,c = k = 1, v = 0.5, n = 2.

2.2 Shock Waves

In order to extract the shock wave solution to the R-KdV-
RLW equation (1), the starting hypothesis is [5]

q(x, t) = A tanhp τ (16)

for p > 0. The definition ofτ stays the same as in (4). For
this case, the parametersA andB are free parameters while
v is the velocity of the shock wave. Substituting (16) into
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(1) leads to
[

a− v− (b1−b2v)
(

3p2−3p+2
)

B2

− 2
(

5p4−10p3+25p2−20p+8
)

cvB4
]

tanhp−1 τ

−
[

a− v− (b1−b2v)
(

3p2+3p+2
)

B2

− 2
(

5p4+10p3+25p2+20p+8
)

cvB4
]

tanhp+1 τ

+(p−1)(p−2)B2
{

b1−b2v+5
(

p2−3p+4
)

vcB2
}

tanhp−3 τ

− (p+1)(p+2)B2
{

b1−b2v+5
(

p2+3p+4
)

vcB2
}

tanhp+3 τ

− (p−1)(p−2)(p−3)(p−4)cvB4 tanhp−5 τ

+(p+1)(p+2)(p+3)(p+4)cvB4 tanhp+5 τ

+nkAn−1
(

tanhnp−1 τ − tanhnp+1 τ
)

= 0 (17)

By the balancing principle, equating the exponent pairs
(np+1, p+5) or (np−1, p+3) leads to the same value
of p as in equation (6). Next, setting the coefficient of the
linearly independent function tanhp−5 τ and tanhp−3 τ to
zero leads to

p = 1 or p = 2. (18)

This leads to the following two sub cases that will be
individually handled in the following two subsections.

2.2.1 Case-I: p=1

Sincep = 1, equation (6) implies

n = 5. (19)

This implies the R-KdV-RLW equation, with power law
nonlinearity, transforms to

qt +aqx +b1qxxx +b2qxxt + cqxxxxt + k
(

q5
)

x
= 0. (20)

Now, equating the coefficients of the remaining linearly
independent functions tanhp− j τ, for j = −1,1 to zero,
gives the speed of the shock wave as

v =
a−2b1B2

16cB4−2b2B2+1
(21)

and

v =
a−8b1B2

136cB4−8b2B2+1
. (22)

Then, equating the two values of the speed from equations
(21) and (22) gives the biquadratic equation for the free
parameterB as

24b1cB4−20acB2− (b1−ab2) = 0, (23)

whose solution is

B =

[

5ac−
√

25a2c2+6b1c(b1−ab2)

12b1c

]
1
2

. (24)

Next setting the coefficients of the linearly independent
functions tanhp+ j τ, for j = 3,5 to zero leads to the values
of the second free parameterA as

A = B

(

24vc
k

)
1
4

(25)

and

A =

[

6B2
(

b1−b2v+40vcB2
)

5k

]
1
4

. (26)

Equating the two values of the parameterA from
equations (25) and (26) leads to the quadratic equation for
the parameterB as

20cvB2+b1−b2v = 0 (27)

which leads to

B =
1
2

√

b2v−b1

5cv
. (28)

Finally, equating the two values of the parameterB from
equations (24) and (28) leads to the quadratic equation for
the speedv of the shock wave as

(

3b2
2−50c

)

v2+(50ac−6b1b2)v+3b2
1 = 0 (29)

whose solution is

v =
3b1b2−25ac+5

√

25a2c2+6b1c(b1−ab2)

3b2
2−50c

(30)

provided
3b2

2 6= 50c (31)

and
25a2c2+6b1c(b1−ab2)> 0. (32)

This expression for the speed of the shock wave is in
terms of the known given parameters that is retrievable
only using this approach.

The following figure shows the profile of a shock wave
for p = 1, a = b1 = 1, b2 =−1, c = k = 1, A = 1.
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2.2.2 Case-II: p=2

For p = 2, n = 3 by virtue of equation (6). In this case,
equation (1) reduces to

qt +aqx +b1qxxx +b2qxxt + cqxxxxt + k
(

q3)

x = 0. (33)

Similarly, as in the case forp = 1, the speed of the shock
wave is given by

v =
a−8b1B2

136cB4−8b2B2+1
(34)

and

v =
a−20b1B2

616cB4−20b2B2+1
. (35)

Upon equating the two expressions for the speedv given
by (34) and (35), leads to the biquadratic equation for the
parameterB as

184b1cB4−40acB2− (b1−ab2) = 0, (36)

whose solution is

B =

[

10ac−
√

100a2c2+46b1c(b1−ab2)

92b1c

]
1
2

. (37)

Again from the coefficients of the linearly independent
functions tanhp+ j τ, for j = 3,5 gives the free parameter
A as

A = 2B2
(

30cv
k

)
1
2

(38)

and

A = 2B

[

(

b1−b2v+70vcB2
)

k

]
1
2

. (39)

Equating the two expressions for the parameterA from
equations (38) and (39) leads to the quadratic equation for
the second parameterB of the shock wave given by

40cvB2+b1−b2v = 0 (40)

that yields

B =
1
2

√

b2v−b1

10cv
. (41)

Next, equating the two values of the parameterB from
equations (37) and (41) gives a quadratic equation for the
speedv of the shock wave as
(

23b2
2−200c

)

v2+(200ac−46b1b2)v+23b2
1 = 0 (42)

which solves to

v =
23b1b2−100ac+10

√

100a2c2+46b1c(b1−ab2)

23b2
2−200c

(43)
as long as

23b2
2 6= 200c (44)

and
100a2c2+46b1c(b1−ab2)> 0. (45)

This is the expression for the speed of the shock wave, for
n = 3, in terms of the given parameters as long as the
constraint connections between the known parameters,
given by equations (44) and (45), hold.

The following figure shows the profile of a shock wave
for p = 2, a = b1 = 1, b2 =−1, c = k = 1, A = 1.

2.3 Singular Solitons

This subsection will retrieve the singular soliton solution
to the R-KdV-RLW equation. Singular solitons are
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unwanted features in any nonlinear evolution equations.
These solutions are spikes and therefore can possibly
provide an explanation to the formation of Rogue waves,
provided the conditions are just right. The starting
hypothesis is given by [15]

q(x, t) = Acschpτ (46)

whereA andB are free parameters andτ is still defined as
in equation (4). Substituting equation (46) into
equation (1) leads to

{

v
(

1+b2p2B2+ cp4B4)−a−b1p2B2} cschpτ

−B2(p+1)(p+2)
{

b1−b2v−2cvB2(p2+2p+2
)}

cschp+2τ

+ cvB4(p+1)(p+2)(p+3)(p+4)cschp+4τ
−nkAn−1cschnpτ = 0 (47)

and then proceeding as in subsection 2.1 gives the singular
soliton soliton solution as

q(x, t) = Acsch
4

n−1 [B(x− vt)] . (48)

with the same definition of the parameters as well as the
same constraint conditions as in Section 2.1.

3 Conservation Laws

There are two conserved quantities for the R-KdV-RLW
equation with power law nonlinearity. They are the
momentum (M) and the energy (E). These are
respectively given by

M =
∫ ∞

−∞
qdx =

A
B

Γ
(

1
2

)

Γ
(

2
n−1

)

Γ
(

1
2 +

2
n−1

) (49)

and

E =
∫ ∞

−∞

{

q2−b2 (qx)
2+ c(qxx)

2
}

dx

= A2
[

{

(n−1)2(n+7)(3n+5)−16b2(n−1)(3n+5)B2

+256(n+2)cB4}/
{

B(n−1)2(n+7)(3n+5)
}

]

×
Γ
(

1
2

)

Γ
(

4
n−1

)

Γ
(

1
2 +

4
n−1

) (50)

The 1-soliton solution given by (15) is used to compute
these conserved quantities from their densities.

4 Semi-inverse Variational Principle

This section integrates the R-KdV-RLW equation by the
semi-inverse variational principle (SVP) that is also
known as the inverse problem approach. This approach

will lead to an analytical 1-soliton solution to the
governing equation (1) that is not an exact solution. There
are constraint conditions that need to hold in this case as
well. They will naturally fall out during the course of
derivation of the solution. Therefore, in order to solve
equation (1), the starting hypothesis is taken to
be [4,8,11]

q(x, t) = g(x− vt) = g(s) (51)

where
s = x− vt (52)

andv is the speed of the solitary wave whileg represents
the wave profile. Substituting (51) into (1) and integrating
once with respect tos gives

(v−a)g− (b1−b2v)g′′+ cvg′′′′− k (gn) = 0 (53)

whereg′′= d2g/ds2 andg′′′′= d4g/ds4 and the integration
constant is taken to be zero, without any loss of generality.
Now, multiplying both sides of equation (53) by g′ and
integrating once more, leads to

(v−a)g2− (b1−b2v)
(

g′
)2

+ cv
{

2g′g′′′−
(

g′′
)2
}

− 2kgn+1

n+1
= K, (54)

whereK is the integration constant. The stationary integral
is then defined as [4,8,11]

J =
∫ ∞

−∞
Kds =

∫ ∞

−∞

[

(v−a)g2− (b1−b2v)
(

g′
)2

+ cv
{

2g′g′′′−
(

g′′
)2}− 2kgn+1

n+1

]

ds (55)

The hypothesis for 1-soliton solution to (1) is taken to be

g(s) = Asech
4

n−1 [B(x− vt)] . (56)

Substituting this hypothesis into (55) and carrying out the
integrations, leads to

J =

[

(v−a)A2

B
− 16bA2B

(n−1)(n+7)
− 768(n+2)cvA2B3

(n−1)2(n+7)(3n+5)

− 32(n+3)kAn+1

(n+1)(n+7)(3n+5)B

] Γ
( 4

n−1

)

Γ
( 1

2

)

Γ
( 4

n−1 +
1
2

) . (57)

Then, SVP states that the amplitude (A) and the width (B)
of the soliton can be obtained after solving the coupled
syetem of equations given by [4,8,11]

∂J
∂A

= 0 (58)

and
∂J
∂B

= 0. (59)
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These lead to

v−a− 16(b1−b2v)B2

(n−1)(n+7)
− 768(n+2)cvB4

(n−1)2(n+7)(3n+5)

− 16k(n+3)An−1

(n+7)(3n+5)
= 0 (60)

and

v−a+
16(b1−b2v)B2

(n−1)(n+7)
+

2304(n+2)cvB4

(n−1)2(n+7)(3n+5)

− 32k(n+3)An−1

(n+1)(n+7)(3n+5)
= 0. (61)

Eliminating the amplitudeA between equations (60) and
(61) leads to the biquadratic equation for the widthB as

256P2B4+32(n−1)(n+7)(b1−b2v)B2

+P1(n−1)2(n+7)2 = 0 (62)

where

P1 =
16k(n−1)(n+3)An−1

(n+1)(n+7)(3n+5)
(63)

and

P2 =
12(n+2)(n+7)cv

3n+5
. (64)

Therefore the solution to (62) is

B = 1
4

[

(n−1)(n+7)
{

−(b1−b2v)+
√

(b1−b2v)2+P1P2

}

P2

]
1
2

(65)
for

(b1−b2v)2+P1P2 > 0 (66)

and

P2

{

−(b1−b2v)+
√

(b1−b2v)2+P1P2

}

> 0. (67)

Then the amplitudeA can be computed by substituting
the widthB into (60) or (61). The velocity of the soliton is
given by (60) or (61).

5 Conclusion

This paper addressed the dynamics of shallow water
waves by the R-KdV-RLW equation with power law
nonlinearity. Additionally, shock wave solutions and the
singular soliton solutions are retrieved. Finally, the SVPis
utilized to retrieve a single solitary wave solution
although this is not an exact solution, yet analytical.

The results of this manuscript is going to be
profoundly helpful towards further ongoing research on
shallow water waves. The perturbation terms will be

added and the soliton perturbation theory will be
implemented to obtain the adiabatic parameter dynamics
of the solitary waves. With strong perturbations, the
extended R-KdV-RLW equation will be integrated for
exact as well as other analytical solitons. There will be
several integration architectures that will be implemented
into retrieving the solutions. Later, the stochastic
perturbation terms will be taken into account and the
mean free velocity of the solitons will be obtained after
solving the corresponding the Langevin equation. These
just form a tip of the iceberg.
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