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The objective of this paper is to derive, based on the Homotopy Analysis Method
(HAM), an exact analytic solution for the boundary value problem of the coupled non-
linear system of ordinary differential equations

f ′′′ + ff ′′ − f ′
2

+ Aθ + Ef ′ = 0,

θ′′ + Kfθ′ = 0,

f(0) = 0, f ′(0) = 1, θ(0) = 1, f ′(∞) = 0, θ(∞) = 0.

This system arises in the study of the steady magnetohydrodynamic (MHD), viscous,
incompressible and electrically conducting fluid flow over a linearly stretching surface
and heat transfer problem in presence of a transverse constant magnetic field and a
uniform free stream of constant velocity and temperature. The obtained analytical uni-
formly valid solution is verified graphically and numerically and compared with the
numerical results reported previously. The solution agrees with the previous reported
results.

Keywords: Homotopy analysis method, nonlinear partial differential equations, MHD
fluid, flow and heat transfer.

1 Introduction

The MHD flow and heat transfer over a stretching sheet is one of the very important
problems in fluid mechanics. It had been discussed for the first time by Sakiadis [17]. In
last decades the applications of this problem has been widely spreaded in metallurgical in-
dustry, polymer processing, and paper production [2-4]. Accordingly, this problem gained
more attention and many scientists [5-13] discussed this problem but from a numerical
calculation point of view only.
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The flow of a Newtonian fluid with heat transfer with or without Hall effect have been
studied by many authors [2, 14, 18, 19, 21, 22, 26] and the results are very important in the
design of the duct wall and the cooling arrangements [20]. The related problems of flow
over a linearly stretching plate with different thermal boundary conditions are investigated
by many researchers such as Crane [7], Gupta [8], and Rajagopal [15].

The magnetohydrodynamic (MHD) problems of flow of an electrically conducting fluid
over a stretching porous plate in a porous medium with an external transverse uniform
magnetic field has many applications in petroleum industry, purification of crude oil and
fluid droplets sprays wire and fiber coating and polymer technology, production of plastic
sheets and foils, and cold drawing of plastic sheets. All these processes depend on the
physical/rheological properties of the fluid around the sheet. Many studies to understand
the features of the flow over a stretching sheet had been done traditionally for Newtonian
fluids, although the fluids used in industrial purposes are non-Newtonian.

Recently, great attention has been focused on the boundary layer problem of flow of
non-Newtonian fluids over a stretching sheet. Zhang et al. [31] investigated the steady
laminar flow of a non-Newtonian fluid obeying the power-law model over a stretching
surface. They concluded that the problem has a unique normal solution for 0 < n < 1 and
has a unique generalized normal solution for n > 1. Rafael [5] proved the existence of
solution of the boundary layer problem and in [6] discussed the steady boundary layer of a
second grade fluid in a porous medium over a stretching sheet with chemical reaction using
similarity transformation and the Rung-Kutta numerical methods. Asif et al. [1] introduced
the homotopy analysis solution of unsteady boundary layer over a permeable stretching
sheet and neglected the effect of the magnetic field. Wang and Pop [27] derived the solution
of the flow of a power-law fluid film on unsteady stretching sheet without porosity and
neglected the magnetic field effects using the homotopy analysis method. Liao [11, 12]
introduced the analytic solution of the steady state non-Newtonian MHD fluid flow over a
stretching sheet by means of HAM.

Hang Xu and Liao [28] introduced the homotopy analysis solution for the unsteady
power-law fluid flows on an impulsively stretching sheet taking into consideration the Hall
effects. Hayat et al. [9] analyzed the MHD boundary layer flow of an upper convected
Maxwell fluid over a porous stretching sheet by means of homotopy analysis method. An-
dersson et al. [3] derived the series solution for the steady flow of a power law fluid over
a stretching sheet the neglected the porosity and the magnetic field effects. Vajravelu and
Cannon [24] reported the solution of steady state of viscous Newtonian fluid over a non-
linearly stretching sheet. Vajravelu [23], and Vajravelu and Nayfeh [25], studied the steady
boundary layer flow of a newtonian fluid over a stretching sheet. Hang and Liao [29] in-
troduced a dual solution of boundary layer flow over upstream moving plate by using the
homotopy analysis method.

Mahmoud et al. [13] used the method of successive approximations and the numerical
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shooting method to investigate the magnetic field effects on the steady state boundary layer
flow of a non-Newtonian power-law fluid without porosity effects. Mahmmet [30] used the
similarity transformation and the numerical variable step Rung-Kutta method to discuss the
unsteady boundary layer flow of a power-law fluid over a stretching surface in the absence
of the porosity and magnetic field effects. Sajid and Hayat [16] applied the homotopy
analysis method to study the nonsimilar series solution for boundary layer flow of a third
order non-Newtonian fluid over a stretching surface.

In this paper we study the steady boundary layer non-Newtonian power-law fluid flows
over a porous stretching sheet in a porous medium with a transverse magnetic field. We use
the homotopy analysis method by Liao [10] to derive the analytical solution of the velocities
component of the fluid. The numerical verification of the obtained analytical solution is
given, graphical representation of the results of the study of the effects of the magnetic
field and variable porosity on the velocity of the fluid flow is presented and discussed.

2 Problem Formulation

Consider the steady MHD viscous, incompressible, electrically conducting fluid flow
over a linearly stretching surface and heat transfer, in the presence of a transverse constant
magnetic field and a uniform free stream of constant velocity and temperature governed by
the continuity equations, the momentum equation the energy equation and the boundary
conditions read, respectively as follows:

The continuity equation
∂u

∂x
+

∂v

∂y
= 0. (2.1)

The momentum equation

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβT − σB2

0

ρ
u. (2.2)

The energy equation

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2
. (2.3)

The boundary conditions:

u(x, 0) = ax, v(x, 0) = 0, T (x, 0) = Tw = const,

u(x,∞) = 0 and T (x,∞) = 0. (2.4)

where a is the stretching rate constant, u, v are the velocity components of the fluid, ν is
the kinematic viscosity, g is the acceleration due to gravity, β is the coefficient of thermal
expansion, T is the temperature, σ is the electric conductivity, B0 is the imposed magnetic
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field, ρ is the density, and k is the thermal conductivity. In terms of the stream function the
velocity components are

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.5)

Using the transformations

ψ = x
√

aνf(η), η = y

√
a

ν
, θ =

T

Tw
, (2.6)

the system of equations (2.1)-(2.3) can be transformed to

f ′′′ + ff ′′ − f ′2 + Grθ −M2f ′ = 0, (2.7)

θ′′ + Prfθ′ = 0, (2.8)

and the continuity equation (2.1) is satisfied identically, and the boundary conditions be-
come

f(0) = 0, f ′(0) = 1, θ(0) = 1, f ′(∞) = 0 and θ(∞) = 0, (2.9)

where the prime denotes differentiation with respect to η, Gr = gβTw/(a2x) is the local
Grashof number, M2 = σB2

0/(aρ) is the magnetic parameter, and Pr = ρνCp/k is the
Prandtl number.

The system of equations (2.7)-(2.9) is a coupled system of nonlinear ordinary differen-
tial equations and it is difficult to solve by the common methods of solution of the system
of ordinary differential equation.

3 Homotopy Analytic Solution

In this section, the homotopy analysis method (HAM) is applied to obtain analytic so-
lutions for the equations (2.7)-(2.9). For this purpose we choose the set of bases functions
{e−nη;n ≥ 0is an integer} to approximate the unknown functions f(η) and θ(η) respec-
tively, as

f(η) = f0(η) +
∞∑

m=1

fm(η), θ(η) = θ0(η) +
∞∑

m=1

θm(η), (3.1)

where

f0(η) = 1− e−η, θ0(η) = e−η (3.2)

are taken to be the initial guess approximations. Using the rules of solution expression

f(η) =
∞∑

m=0

fm(η) =
∞∑

m=0

2m+1∑

k=0

fm,ke−kη, (3.3)
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θ(η) =
∞∑

m=0

θm(η) =
∞∑

m=0

2m+1∑

k=0

θm,ke−kη, (3.4)

where the coefficients fm,k and θm,k are constants and have to be determined. And ∀m ≥ 1
the mth order aproximation of the solution functions are

fm(η) =
2m+1∑

k=0

fm,ke−kη, (3.5)

θm(η) =
2m+1∑

k=0

θm,ke−kη. (3.6)

According to the above choice of bases functions, the initial guess and the auxiliary
linear operators are

Lf =
1
2

[
∂2

∂η2
+

∂3

∂η3

]
, Lθ = eη

[
∂2

∂η2
+

∂

∂η

]
. (3.7)

The Zero-order deformations are

(1− q)Lf [J1(η, q)− f0(η)] = qhfN1 [J1(η, q), J2(η, q)] , (3.8)

(1− q)Lθ [J1(η, q)− θ0(η)] = qhθN2 [J1(η, q), J2(η, q)] , (3.9)

where J1(η, q) and J2(η, q) are the auxiliary functions, hf and hθ are the auxiliary param-
eters, and 0 ≤ q ≤ 1 is the homotopy parameter such that

J1(η, 0) = f0(η), J1(η, 1) = f(η), (3.10)

J2(η, 0) = θ0(η), J2(η, 1) = θ(η), (3.11)

and the boundary conditions are

J1(0, q) = f(0) = 0, J2(0, q) = θ(0) = 1,

J2(∞, q) = θ(∞) = 0,

∂J1(η, q)
∂η

∣∣∣∣
η=0

= 1,
∂J1(η, q)

∂η

∣∣∣∣
η=∞

= 0. (3.12)

The nonlinear operators are

N1 [J1(η, q), J2(η, q)] =
∂3J1

∂η3
+ J1

∂2J1

∂η2
−

[
∂J1

∂η

]2

+ GrJ2 −M2 ∂2J1

∂η2
, (3.13)

N2 [J1(η, q), J2(η, q)] =
∂2J2

∂η2
+ PrJ1

∂J2

∂η
. (3.14)
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The Taylor’s series expansions of the auxilary functions at q = 0 reads

J1(η, q) = J1(η, 0) +
∞∑

m=1

1
m!

∂mJ1(η, q)
∂qm

∣∣∣∣
q=0

= f0(η) +
∞∑

m=1

fm(η)qm, (3.15)

J2(η, q) = J2(η, 0) +
∞∑

m=1

1
m!

∂mJ1(η, q)
∂qm

∣∣∣∣
q=0

= θ0(η) +
∞∑

m=1

θm(η)qm. (3.16)

By the mth order differentiation of equations (3.8) and (3.9) one gets the mth order
deformations

Lf [fm(η)− χmfm−1(η)] = hfPm(η), (3.17)

Lθ [θm(η)− χmθm−1(η)] = hθQm(η), (3.18)

where

χm =





0 m = 1,

1 m > 1,
(3.19)

and

Pm(η) = f ′′′m−1(η)+
m−1∑
n=0

fn(η)f ′′m−1−n(η)−
m−1∑
n=0

f ′nf ′m−1−n+Grθm−1−M2f ′m−1(η),

(3.20)

Qm(η) = θ′′m−1(η) + Pr

m−1∑
n=0

fn(η)θ′m−1−n(η). (3.21)

Substituting (3.20) and (3.21) into (3.17) and (3.18), and taking into account of (3.5) and
(3.6), one obtains the following recurrence relations for the coefficients fm,k and θm,k

fm,k =
2hf

k2 + k3
Sm,k + χmλm−1,k+1fm−1,k 1 ≤ k ≤ 2m + 1, (3.22)

and

fm,0 = −
2m+1∑

k=0

fm,ke−kη, (3.23)

θm,k =
2hθ

k2 − k
Tm,k−1 + χmλm−1,kθm−1,k, 2 ≤ k ≤ 2m + 2, (3.24)

θm,1 = −
2m+1∑

k=0

θm,ke−kη, (3.25)

where
Sm,k = αm,k + βm,k, 1 ≤ k ≤ 2m + 1, (3.26)

Tm,k = πm,k + δm,k, 1 ≤ k ≤ 2m + 1, (3.27)
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αm,k = [M2k − k3]λm−1,kfm−1,k + Grλm−1,kθm−1,k, (3.28)

βm,k =
m−1∑
n=0

min[2m−2n−1,k−1]∑

s=max[1,k−2n−1]

[s2+s(s−k)]fn,k−sfm−1−n,s, 1 ≤ k ≤ 2m+1, (3.29)

(where βm,1 = 0 and βm,2m+1 = 0)

δm,k = Pr

m−1∑
n=0

min[2m−2n,k]∑

s=max[1,k−2n−1]

[−s]fn,k−sθm−1−n,s, 1 ≤ k ≤ 2m + 1, (3.30)

πm,k = [k2]λm−1,kθm−1−n,s, 1 ≤ k ≤ 2m + 1, (3.31)

λm,k =





1 1 ≤ k ≤ 2m + 2

0 otherwise.
(3.32)

Using the above recurrence relations together with the coefficients in the initial guess func-
tions

f0,0 = 1, f0,1 = −1, θ0,0 = 0 and θ0,1 = 1,

we get
f1,2 = f1,3 = 0, θ1,0 = 0, θ1,1 = −θ1,2 − θ1,3,

f1,0 = −f1,1 = hf

(
M2 −Gr

)
, θ1,2 =

1
2

(1− Pr) hθ, θ1,3 =
1
6
Prhθ,

f2,4 = 0, f2,5 = 0, θ2,0 = 0, θ2,5 = 0,

f2,0 = −f2,1 − f2,2 − f2,3, θ2,1 = −θ2,2 − θ2,3 − θ2,4,

f2,1 = hf

(
Gr −M2

)
+ hf

[
M2 + hf

(
Gr −M2

)]
, f2,2 =

1
12

hfhθGr (1− Pr) ,

θ2,2 = hθ

[(
−1

4
+

5
12

Pr − 1
6
Pr2

)
hθ +

1
2
hf

(
Gr −M2

)]
,

θ2,3 = hθ

[(
1
3
− 1

12
Pr − 2

9
Pr2

)
hθ − hf

(
Gr −M2

)]
,

f2,3 =
1

108
GrPrhfhθ, θ2,4 =

1
12

Pr2h2
θ. (3.33)

Therefore, the analytic series solutions of the system of coupled nonlinear differential
equations with boundary conditions (2.7), (2.8) and (2.9) for different approximations can
be written as

initial approximations:
f(η) ≈ f0(η) = 1− e−η,

θ(η) ≈ θ0(η) = e−η;
(3.34)

the first approximations:

f(η) ≈ f0(η) + f1(η) = (1 + f1,0) + (f1,1 − 1) e−η,

θ(η) ≈ θ0(η) + θ1(η) = θ1,1e
−η + θ1,2e

−2η + θ1,3e
−3η;

(3.35)
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the second approximations:

f(η) ≈ f0(η) + f1(η) + f2(η)

= (f0,0 + f1,0 + f2,0) + (f0,1 + f1,1 + f2,1) e−η + f2,2e
−2η + f2,3e

−3η,

θ(η) ≈ θ0(η) + θ1(η) + θ2(η)

= (θ0,1+θ1,1+θ2,1) e−η+(θ1,2+θ2,2) e−2η+(θ1,3+θ2,3) e−3η+f2,4e
−4η.

(3.36)

All approximations can be obtained by using equations (3.19)-(3.21) and (3.7). The ana-
lytic series solution of the problem can be written as

f(η) =
∞∑

m=0

fm(η), θ(η) =
∞∑

m=0

θm(η). (3.37)

It is important to note that the convergence of the obtaied series solution of the coupled
system is controlable by the axuiliary homotopy parameter hf and hθ which gurantee the
convergence of the obtained series. The optimum values are choosen hf = −1, for the f

function and hθ = −0.3 function. These results can be obtained graphically from h-Curve
for f ′′(0), and (θ′(0), θ′′(0)), respectively.

Figure 3.1: The h-curve for f ′′(0)

4 Results and Discussion

The analytical solution of a coupled nonlinear system of differential equation in the
form (2.7) and (2.8) subjected to a set of boundary conditions (2.9) is obtained by using the
HAM. The obtained analytical solution is verified graphically in figures (3.3) and (3.4) for
M2 = 0.1, Pr = 0.7, and Gr = 0.5 values of the parameters of the problem to show the
behaviour of the solution which satisfy the boundary conditions. It can be used to investi-
gate the effects of the physical parameters on the problem an chickout, as a benchmark, the
numerical results obtained by the different numerical calculation methods.
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Figure 3.2: The h-curve for θ′(0) and θ′′(0)

Figure 3.3: The presentation of the solution f(η) function

Figure 3.4: The presentation of the solutions θ(η) and f(η) functions
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