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Abstract: For the analysis of square contingency tables with the same row and column ordinal classifications, McCullagh (1978)
considered the palindromic symmetry (PS) model, which has amultiplicative form for cumulative probabilities that an observation will
fall in row (column) categoryi or below and column (row) categoryj (> i) or above. The present paper proposes a modified PS model
which indicates that (1) the symmetric odds for cumulative probabilities with distance 1 from main diagonal of the tableare constant
and (2) there is the structure of quasi-symmetry for them with distancek (≥ 2). Also the present paper gives the decomposition of the
symmetry model using the proposed model. Examples are given.
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1 Introduction

For anR×Rsquare contingency table with the same row and column ordinal classifications, letpi j denote the probability
that an observation will fall in theith row andjth column of the table (i = 1, . . . ,R; j = 1, . . . ,R). The conditional symmetry
model is defined by

pi j =

{

δψi j (i < j),
ψi j (i ≥ j), (1)

whereψi j = ψ ji ; see McCullagh (1978). A special case of this model obtainedby puttingδ = 1 is the symmetry (S)
model (Bowker, 1948; Bishop, Fienberg and Holland, 1975, p.282). Note that model (1) withδ replaced byδ j−i is
Goodman’s (1979) diagonals-parameter symmetry model. Caussinus (1965) proposed the quasi-symmetry model for cell
probabilities, defined by

pi j = αiβ jψi j (i 6= j),

whereψi j = ψ ji . This may be expressed as
pi j = ξiφi j (i 6= j),

whereφi j = φ ji . The marginal homogeneity (Stuart, 1955) model is defined by

pi· = p·i (i = 1, . . . ,R),

where

pi· =
R

∑
t=1

pit , p·i =
R

∑
s=1

psi.

Let

Gi j =
i

∑
s=1

R

∑
t= j

pst (i < j),
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and

Gi j =
R

∑
s=i

j

∑
t=1

pst (i > j).

The marginal homogeneity model may be expressed as

Gi,i+1 = Gi+1,i (i = 1, . . . ,R−1).

McCullagh (1978) considered a multiplicative model for cumulative probabilities{Gi j }, i 6= j, which was referred to as
the palindromic symmetry (PS) model, including the S model and the conditional symmetry model as special cases. The
PS model is defined by

Gi j =

{

∆αiΨi j (i < j),
αi−1Ψi j (i > j), pii =Ψii , (2)

whereΨi j =Ψji andα1 = 1 without loss of generality. Note that (2) with∆ replaced by∆i is the generalized PS model
(McCullagh, 1978).

The conditional symmetry model for{pi j } is also expressed similarly as a multiplicative form for{Gi j } as

Gi j =

{

∆Ψi j (i < j),
Ψi j (i > j), pii =Ψii , (3)

whereΨi j = Ψji . A special case obtained by putting∆ = 1 is the S model. Note that Tomizawa (1989) and Tahata,
Yamamoto and Tomizawa (2012) gave the decompositions of theconditional symmetry model and the S model,
respectively, using the PS model. Tomizawa (1993) proposedthe cumulative diagonals-parameter symmetry model,
defined by (3) with ∆ replaced by∆ j−i. Miyamoto, Ohtsuka and Tomizawa (2004) proposed the cumulative
quasi-symmetry model for{Gi j}, defined by

Gi j = γiΨi j (i 6= j), pii =Ψii ,

whereΨi j =Ψji . This model may be expressed as

Gi j

G ji
=

γi

γ j
(i < j);

or
Gi j G jkGki = G ji Gk jGik (1≤ i < j < k≤ R).

See also Yamamoto, Ando and Tomizawa (2011) for this model.
The PS model is also expressed as

Gi,i+1

Gi+1,i
= ∆ (i = 1, . . . ,R−1), (4)

and

Gi j

G ji
= ∆

αi

α j−1
(i < j; j 6= i +1). (5)

Note that (4) is equivalent to the extended marginal homogeneity model in Tomizawa (1984, 1995) (also see Tahata and
Tomizawa, 2008), and (5) is different from the structure of the cumulative quasi-symmetry model because (5) depends
on both parameters of∆ and {αi}. Now we are interested in considering a new model, which has astructure of
cumulative quasi-symmetry for{Gi j , | j − i| ≥ 2}, in addition to{Gi,i+1/Gi+1,i = ∆}. For various models of symmetry of
cell probabilities, cumulative probabilities and marginal probabilities, see also, e.g., Lawel (2003, Chap. 11), Kateri and
Agresti (2007), a reference list in Tomizawa and Tahata (2007), and Agresti (2013, Chap. 11).

Section 2 in the present paper proposes a new model which modifies the PS model. Section 3 gives a decomposition of
the S model using the proposed model. Section 4 describes thegoodness-of-fit test for models. Section 5 gives examples.
Section 6 provides some concluding remarks.
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2 Modified palindromic symmetry model

Consider a model defined by

Gi j =







βiΨi j (i < j; j 6= i +1),
Γ βiΨi j ( j = i +1),
βi−1Ψi j (i > j),

pii =Ψii ,

whereΨi j =Ψji andβ1 = 1 without loss of generality. We shall refer to this model as the modified palindromic symmetry
model (MPS) model. A special case of this model obtained by puttingΓ = 1 and{βi = 1} is the S model. The MPS model
is also expressed as

Gi,i+1

Gi+1,i
= Γ (i = 1, . . . ,R−1), (6)

and

Gi j

G ji
=

βi

β j−1
(i < j; j 6= i +1). (7)

The equation (6) indicates that the cumulative probabilitythat an observation will fall in row categoryi or below and
column categoryi +1 or above (i.e.,Gi,i+1) is Γ times higher than the cumulative probability that the observation falls
in row categoryi +1 or above and column categoryi or below (i.e.,Gi+1,i); this is the structure of the extended marginal
homogeneity model. The equation (7) states that the cumulative probability that an observation will fall in row category
i or below and column categoryj (i < j; j 6= i +1) or above, isβi/β j−1 times higher than the cumulative probability that
the observation falls in row categoryj or above and column categoryi or below.

Let G∗
i, j−1 = Gi j andG∗

j−1,i = G ji for j − i ≥ 2. Then (7) is expressed as

G∗
i, j−1

G∗
j−1,i

=
βi

β j−1
(i < j; j 6= i +1). (8)

Namely, this indicates that there is the structure of cumulative quasi-symmetry for{Gi j } with | j − i| ≥ 2. Note that this
structure is different from the PS model. The equation (8) also may be expressed as

G∗
klG

∗
lmG∗

mk= G∗
lkG∗

mlG
∗
km (1≤ k< l < m≤ R−1). (9)

The equation (9) implies

θ ∗
i j ;st = θ ∗

st;i j (1≤ i < j < s< t ≤ R−1), (10)

where

θ ∗
i j ;st =

G∗
isG

∗
jt

G∗
it G

∗
js
=

Gi,s+1G j ,t+1

Gi,t+1G j ,s+1
.

Namely, from (10) the MPS model implies the symmetry of odds ratios based on{Gi j } with | j − i| ≥ 2.
Let X andY denote the row and the column variables, respectively. Under the MPS model,Γ > 1 is equivalent to

FX
i > FY

i for i = 1, . . . ,R− 1, whereFX
i = ∑i

k=1 pk· andFY
i = ∑i

l=1 p·l . Therefore the parameterΓ in the MPS model
would be useful for making inferences such as thatX is stochastically less thanY or vice versa.

Define the odds ratio besed on{Gi j}, i 6= j, by θi j ;st = (GisG jt )/(Git G js) for 1≤ i < j < s< t ≤ R. The PS model
implies

θi j ;st = θst;i j (1≤ i < j < s< t ≤ R).

The MPS model implies
θi j ;st = θst;i j (1≤ i < j < s< t ≤ R;s 6= j +1),

and
Γ θi j ;st = θst;i j (1≤ i < j < s< t ≤ R;s= j +1).

Therefore, the PS model implies the symmetry of odds ratios based on{Gi j }, i 6= j; however, the MPS model implies
the symmetry of odds ratios with the asymmetry partially. Note that both the PS and MPS models have the structure of
constant of odds{Gi,i+1/Gi+1,i}, i = 1, . . . ,R−1.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


112 K. Iki et. al. : A Modified Palindromic Symmetry Model for Square

3 Decomposition of symmetry model

Tomizawa, Miyamoto and Ouchi (2006) proposed the cumulative subsymmetry (CSS) model, defined by

Gi,i+2 = Gi+2,i (i = 1, . . . ,R−2).

Consider the model of equality of marginal means,

E(X) = E(Y).

We shall refer to this model as the ME model.
We obtain the decomposition of the S model as follows:

Theorem 3.1.The S model holds if and only if all the MPS, CSS and ME models hold.

Proof. If the S model holds, then the MPS, CSS and ME models hold. Assuming that all the MPS, CSS and ME models
hold, then we shall show that the S model holds. Since the MPS model hold, we see

R−1

∑
i=1

Gi,i+1 = Γ
R−1

∑
i=1

Gi+1,i.

Also we have

FX
i −FY

i = Gi,i+1−Gi+1,i (i = 1, . . . ,R−1),

and

E(X) = R−
R−1

∑
i=1

FX
i , E(Y) = R−

R−1

∑
i=1

FY
i .

Thus we see

E(Y)−E(X) =
R−1

∑
i=1

Gi,i+1−
R−1

∑
i=1

Gi+1,i.

Since the ME model holds, we obtainΓ = 1. From the MPS and CSS models, we can see

Gi,i+2

Gi+2,i
=

βi

βi+1
= 1 (i = 1, . . . ,R−2).

Sinceβ1 = 1, thus we see{βi = 1}. Therefore we obtainGi j = G ji (i < j). Namely, the S model holds. The proof is
completed.

4 Goodness-of-fit test

Let ni j denote the observed frequency in the(i, j)th cell of theR×R table (i = 1, . . . ,R; j = 1, . . . ,R). Assume that a
multinomial distribution applies to theR×R table. The maximum likelihood estimates of expected frequencies under
models could be obtained by using the Newton-Raphson methodin the log-likelihood equation. Each model can be tested
for goodness-of-fit by the likelihood ratio chi-squared statistic (denoted byG2) with the corresponding degrees of freedom.
The test statisticG2 is given by

G2 = 2
R

∑
i=1

R

∑
j=1

ni j log

(

ni j

m̂i j

)

,

wherem̂i j is the maximum likelihood estimate of expected frequencymi j under the given model. The number of degrees
of freedom for the MPS model is(R−1)(R−2)/2, which is equal to that for the PS model.
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5 Examples

Example 1.The data in Table 1, taken from Stuart (1955), are constructed from unaided distance vision of 7477 women
aged 30-39 employed in Royal Ordnance factories in Britain from 1943 to 1946. [These data have been analyzed by many
statisticians, including Stuart (1955), Caussinus (1965), Bishop et al. (1975, p. 284), McCullagh (1978), Goodman (1979),
Tomizawa (1989), Tomizawa and Tahata (2007), and Tahata andTomizawa (2011).]

Table 3 gives the values of likelihood ratio statisticG2 for testing the goodness-of-fit of each model in Theorem 3.1
and the PS model. [For the values ofG2 for the other models, see the corresponding articles.] The Sand ME models fit
these data poorly, however, the PS, MPS and CSS models fit these data well. When the MPS and PS models are compared,
theG2 value for the MPS model is less than that for the PS model with the same number of degrees of freedom.

Under the MPS model, the maximum likelihood estimate ofΓ is Γ̂ = 1.20. Hence, under this model, the probability
that a woman’s right eye grade isi or below and her left eye grade isi + 1 or above is estimated to bêΓ = 1.20 times
higher than the probability that the woman’s right eye gradeis i +1 or above and her left eye grade isi or below. Since
Γ̂ is greater than 1, the probability that the grade of the righteye is less thank (k= 2,3,4) is estimated to be greater than
the probability that the grade of the left eye is less thank. Namely, the right eye is estimated to be better than the left
eye. Also, the maximum likelihood estimates of{βi} are β̂2 = 0.78 andβ̂3 = 0.61, namely,Ĝ13/Ĝ31 = β̂1/β̂2 = 1.29,
Ĝ14/Ĝ41 = β̂1/β̂3 = 1.64 andĜ24/Ĝ42 = β̂2/β̂3 = 1.27 with β̂1 = 1. Therefore, fori < j with j − i ≥ 2, the probability
that a woman’s right eye grade isi or below and her left eye grade isj or above is estimated to bêβi/β̂ j−1 times higher
than the probability that the woman’s right eye grade isj or above and her left eye grade isi or below.

Also under the PS model, the maximum likelihood estimate of∆ is ∆̂ = 1.18 (being close to the value ofΓ̂ of the MPS
model). Hence, under the PS model, the probability that a woman’s right eye grade isi or below and her left eye grade is
i+1 or above is estimated to bê∆ =1.18 times higher than the probability that the woman’s right eye grade isi+1 or above
and her left eye grade isi or below. Also under the PS model, the maximum likelihood estimates of{αi} areα̂2 = 0.93
andα̂3 = 0.88, namely,Ĝ13/Ĝ31 = ∆̂ α̂1/α̂2 = 1.27, Ĝ14/Ĝ41 = ∆̂ α̂1/α̂3 = 1.35, andĜ24/Ĝ42 = ∆̂ α̂2/α̂3 = 1.25 with
α̂1 = 1. Therefore, under the PS model, fori < j with j − i ≥ 2, the probability that a woman’s right eye grade isi or
below and her left eye grade isj or above is estimated to bê∆α̂i/α̂ j−1 times higher than the probability that the woman’s
right eye grade isj or above and her left eye grade isi or below.

Moreover, under the MPS model, the odds ratioθ34;12 is estimated to bêΓ = 1.20 times greater than the odds ratio
θ12;34. On the other hand, under the PS model, the odds ratioθ34;12 is estimated to be equal to the odds ratioθ12;34.
Therefore, under the MPS model, the ratio of the odds that a woman’s left eye grade is ‘Best (1)’ instead of ‘Best (1)’ or
‘Second (2)’ when her right eye grade is ‘Third (3)’ or ‘Worst(4)’ to the odds when her right eye grade is ‘Worst (4)’,
is estimated to bêΓ = 1.20 times greater than the ratio of the odds that a woman’s right eye grade is ‘Best (1)’ instead
of ‘Best (1)’ or ‘Second (2)’ when her left eye grade is ‘Third(3)’ or ‘Worst (4)’ to the odds when her left eye grade is
‘Worst (4)’.

From Theorem 3.1, we see that the poor fit of the S model is caused by the influence of the lack of structure of the ME
model rather than the MPS and CSS models.

Example 2.The data in Table 2, taken from Tomizawa (1984, 1985), are constructed from unaided distance vision of 4746
students aged to 18 to about 25 including about 10% women in Faculty of Science and Technology, Science University of
Tokyo in Japan examined in April 1982.

We see from Table 3 that the S and ME models fit these data poorly, however, the PS, MPS and CSS models fit these
data well. When the MPS and PS models are compared, theG2 value for the MPS model is somewhat greater than that
for the PS model.

Under the MPS model, the maximum likelihood estimate ofΓ is Γ̂ = 0.85. Also under the PS model, that of∆ is
∆̂ = 0.82. ThereforeΓ̂ is close to∆̂ for these data. Namely the{Ĝi,i+1/Ĝi+1,i(= 0.85)} under the MPS model are close to
the{Ĝi,i+1/Ĝi+1,i(= 0.82)} under the PS model. In addition, under the MPS model, the maximum likelihood estimates of
{βi} areβ̂2 = 1.29 andβ̂3 = 1.17, namely,Ĝ13/Ĝ31 = β̂1/β̂2 = 0.77,Ĝ14/Ĝ41 = β̂1/β̂3 = 0.85 andĜ24/Ĝ42 = β̂2/β̂3 =

1.10 with β̂1 = 1. On the other hand, under the PS model, the maximum likelihood estimates of{αi} areα̂2 = 1.13 and
α̂3 = 0.91, namely,Ĝ13/Ĝ31= ∆̂ α̂1/α̂2 = 0.72,Ĝ14/Ĝ41= ∆̂ α̂1/α̂3 = 0.90 andĜ24/Ĝ42= ∆̂ α̂2/α̂3 = 1.01 with α̂1 = 1.
Therefore, for these data, the values of{Ĝi j/Ĝ ji}, i < j, under the MPS model are close to the corresponding values under
the PS model.

In a similar manner to Example 1, the interpretations under the MPS and the PS models are obtained although the
details are omitted here.
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Table 1: Unaided distance vision of 7477 women aged 30-39 employed inRoyal Ordnance factories in Britain from 1943
to 1946; from Stuart (1955). (Upper and lower parenthesizedvalues are the maximum likelihood estimates of expected
frequencies under the PS and MPS models, respectively.)

Right eye Left eye grade
grade Best (1) Second (2) Third (3) Worst (4) Total
Best (1) 1520 266 124 66 1976

(1520.00) (264.49) (133.21) (58.95)
(1520.00) (266.46) (129.43) (64.22)

Second (2) 234 1512 432 78 2256
(235.59) (1512.00) (423.40) (86.78)
(233.52) (1512.00) (430.86) (82.71)

Third (3) 117 362 1772 205 2456
(107.30) (370.90) (1772.00) (204.18)
(110.99) (363.15) (1772.00) (205.63)

Worst (4) 36 82 179 492 789
(43.68) (72.67) (179.86) (492.00)
(39.22) (76.47) (178.34) (492.00)

Total 1907 2222 2507 841 7477

Table 2: Unaided distance vision of 4746 students aged to 18 about 25 including about 10% women in Faculty of Science
and Technology, Science University of Tokyo in Japan examined in April 1982; from Tomizawa (1984, 1985). (Upper and
lower parenthesized values are the maximum likelihood estimates of expected frequencies under the PS and MPS models,
respectively.)

Right eye Left eye grade
grade Best (1) Second (2) Third (3) Worst (4) Total
Best (1) 1291 130 40 22 1483

(1291.00) (129.75) (41.45) (19.84)
(1291.00) (131.57) (44.47) (18.91)

Second (2) 149 221 114 23 507
(149.23) (221.00) (107.43) (25.50)
(147.50) (221.00) (107.08) (28.23)

Third (3) 64 124 660 185 1033
(62.79) (130.51) (660.00) (190.03)
(59.59) (131.21) (660.00) (193.45)

Worst (4) 20 25 249 1429 1723
(22.13) (22.60) (243.74) (1429.00)
(22.22) (20.69) (240.08) (1429.00)

Total 1524 500 1063 1659 4746

Table 3: Likelihood ratio chi-squared valuesG2 for models applied to the data in Tables 1 and 2.

Applied Degree of G2

models freedom Table 1 Table 2
S 6 19.25* 16.96*
PS 3 6.24 1.98

MPS 3 1.55 4.95
CSS 2 5.00 3.86
ME 1 11.98* 9.95*

* means significant at the 0.05 level.
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6 Concluding remarks

Compare the PS and the MPS models. From (4) and (6), both of thePS and the MPS models have the structure of extended
marginal homogeneity model. Also, from (5) and (7), the MPS model has the structure of cumulative quasi-symmetry for
{Gi j} with | j − i| ≥ 2, although the PS model does not have the similar structure.From (8), (9) and (10), when we want to
see the structure of cumulative quasi-symmetry (i.e., (8) or (9)) including the structure of symmetry of odds ratios based
on {Gi j} with | j − i| ≥ 2, the MPS model rather than the PS model would be appropriate. In addition, as described in
Section 2, the PS model implies the structure of symmetry of odds ratios{θi j ;st} based on{Gi j}, i 6= j; however, the MPS
model implies the structure of symmetry of odds ratios with the structure of asymmetry partially (beingΓ θi j ;st = θst;i j for
1≤ i < j < s< t ≤ R ands= j +1).

The decomposition of the S model into the MPS, CSS and ME models, given by Theorem 3.1, would be useful for
seeing the reason for its poor fit when the S model fits the data poorly. Indeed, for the data in Table 1, the poor fit of the
S model is caused by the poor fit of the ME model rather than the MPS and CSS models, i.e., by the reason that the mean
of grade of the right eye is different from the mean of grade ofthe left eye (see Example 1).
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