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Abstract: This paper presents four optimization algorithms: Bacterial Foraging Optimization (BFO), Particle Swarm Optimization
(PSO), Chaos Particle Swarm Optimization (CPSO) and Bacterial Swarm Optimization (BSO), and a neural network compensator:
Resource Allocation Network (RAN) to aircraft automatic landing control design. When wind disturbance is beyond the originally
scheduled flight condition, the aircraft automatic landing system can not be used in such environment during serious wind speed
changes. The proposed intelligent control scheme can enhance the PID control performance of the autopilot and guide the aircraft to a
safe landing in difficult environment.
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1 Introduction

On March 1, 2008, at Hamburg airport, a Lufthansa
Airbus A320 tried to land in crosswind condition, which
exceeded the limit for the aircraft, and made the left wing
touch ground. The pilots then performed a go around and
successfully saved the aircraft from crashing. The
atmospheric disturbance causes the problem of flight
safety and reduces the flying quality. An accident
survey [1] of 1,843 aircraft accidents from 1950 through
2009 categorized the causes to be. Weather was a
contributing factor, the percentage of weather and weather
related to total accidents is 28%. The first automatic
landing system (ALS) was developed in England in 1965.
Since then, most aircraft have had this system installed.
The ALS relies on the instrument landing system (ILS) to
guide the aircraft into the proper altitude, position, and
approaching angle during the landing phase. According to
Federal Aviation Administration (FAA) regulations [2],
environmental conditions considered in the determination
of dispersion limits are: headwinds up to 25 knots,
tailwinds up to 10 knots, crosswinds up to 15 knots,
moderate turbulence, and wind shear of 8 knots per 100
feet from 200 feet to touchdown.

Conventional automatic landing systems, which
utilize PID controller in control system design, can

provide a smooth landing that is essential to the comfort
of passengers. However, these systems work only within a
specified operational safety envelope. When the
conditions, such as turbulence or wind shear, are beyond
the envelope, they often cannot be used. Most
conventional control laws of the ALS are based on the
gain scheduling method [3]. Control parameters are preset
for different flight conditions within a specified safety
envelope, which is relative defined by FAA regulation.
When the conditions, such as turbulence, are beyond the
envelope, the ALS is disabled and manual operation is
engaged. An inexperience pilot may not be able to guide
the aircraft safely. Therefore it is desirable to develop an
intelligent ALS that expands the operational envelope to
include more safe responses under a wider range of
conditions. The goal of this study is to show that the
proposed intelligent ALS can relieve human operation
and guide the aircraft to a safe landing in
wind-disturbance environment. In recent years, intelligent
control is more and more popular in control engineering
applications. Many intelligent concepts have been applied
into various scientific and engineering researches. There
are also obvious achievements in flight control domain
such as neural networks, fuzzy systems, and evolutionary
computation [4]- [9].
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PID control has been applied to controller design for
decades. It is the most used controller in engineering
applications. Control gains of the PID can be tuned by
many techniques. In recent years, evolutionary
computation is the most used one. This study applies
artificial life models to modeling and simulating life-like
phenomena for aircraft automatic landing controller
design. This paper is mainly based on the following four
algorithms to adjust the control parameters of pitch
autopilot, they are Bacterial Foraging Optimization
(BFO) [10], Particle Swarm Optimization (PSO) [11],
Chaos Particle Swarm Optimization (CPSO) [12] and
Bacterial Swarm Optimization (BSO) [13]. Control
scheme is based on the PID-RAN controller. It uses a
traditional PID controller to stabilize the system and train
the RAN [14] to provide precise control. The gains of PID
controller are adjusted based on the artificial life models.

2 Model Description

At the aircraft landing phase, the pilot descends from the
cruise altitude to an altitude of approximately 1200 ft
above the ground. The pilot then positions the aircraft so
that the aircraft is on a heading towards the runway
centerline. When the aircraft approaches the outer airport
marker, which is about 4 nautical miles from the runway,
the glide path signal is intercepted, as shown in Fig.
1 [15]. As the airplane descends along the glide path, its
pitch, attitude, and speed must be controlled. The descent
rate is about 10 ft/sec and the pitch angle is between -5 to
+5degrees. Finally, as the airplane descends 20 to 70 feet
above the ground, the glide path control system is
disengaged and a flare maneuver is executed. The vertical
descent rate is decreased to 2 ft/sec so that the landing
gear may be able to dissipate the energy of the impact at
landing. The pitch angle of the airplane is then adjusted,
between 0 to 5 degrees for most aircraft, which allows a
soft touchdown on the runway surface.

Fig. 1: Glide path and flare path

A simplified model of a commercial aircraft that
moves only in the longitudinal and vertical plane is used

in the simulations for implementation ease [7]. The
motion equations of the aircraft are given as follows:

∆ u̇ = Xu(∆u−ug)+Xw(∆w−wg)+Xq∆q
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whereu is the aircraft longitudinal velocity (ft/sec),w is
the aircraft vertical velocity (ft/sec),q is the pitch rate
(rate/sec),θ is the pitch angle (deg),h is the aircraft
altitude (ft),δE is the incremental elevator angle (deg),δT
is the throttle setting (ft/sec),γo is the flight path angle
(-3deg),and g is the gravity (32.2 ft/sec2). The parameters
Xi ,Zi andMi are the stability and control derivatives.

To make the ALS more intelligent, reliable wind
profiles are necessary. Two spectral turbulence forms
modeled by von Karman and Dryden are mostly used for
aircraft response studies. In this study the Dryden
form [7] was used for its demonstration ease. The model
is given by:

ug = ugc +N(0,1)

√

1
∆ t

(

σu
√

2au

s+au

)

(6)

wg = N(0,1)

√

1
∆ t

(

σw
√

3aw(s+bw)

(s+au)2

)

(7)

where
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The parameters are:ug is the horizontal wind velocity
(ft/sec),wg is the vertical wind velocity (ft/sec),u0 is the
nominal aircraft speed (ft/sec),uwind510 is the wind speed
at 510 ft altitude,Lu andLw are scale lengths (ft),σu and
σw are RMS values of turbulence velocity (ft/sec),∆ t is
the simulation time step (sec),N(0,1) is the Gaussian white
noise with zero mean and unity standards deviation,ugc is
the constant component ofug, andh is the aircraft altitude
(ft). Fig. 2 shows a turbulence profile with a wind speed of
30 ft/sec at 510 ft altitude.
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Fig. 2: Turbulence profile

3 Control System

PID controller is a simplified structure of an aircraft
landing controller as shown in Fig. 3. Its inputs consist of
altitude and altitude rate commands along with aircraft
altitude and altitude rate. Via aircraft landing controller
we can obtain the pitch commandθc. Then, the pitch
autopilot is controlled by pitch command. The pitch
autopilot is shown in Fig. 4. Detail descriptions can be
found in [7]. In order to enable aircraft to land more
steady when an aircraft arrives to the flare path, a constant
pitch angle will be added to the controller. In general, the
PID controller is simple and effective but there are some
drawbacks such as apparent overshoot and sensitive to
external noise and disturbance. When severe turbulence is
encountered the PID controller may not be able to guide
the aircraft to land safely. With RAN compensator the
proposed controller can overcome these disadvantages. It
uses a traditional PID controller to stabilize the system
and train the RAN to provide precise control. The gains
of PID controller are adjusted based on experiences, what
it provides are tolerable solutions, not desired solutions.
The RAN can effectively meliorate these conditions.

Fig. 3: PID-controller

Fig. 4: Pitch autopilot

Fig. 5 shows the application of the intelligent system
to the ALS. The four inputs of the aircraft are altitude,
altitude rate, altitude command, and altitude rate
command and also are the inputs for the PID controller
and the intelligent system. The input of pitch autopilotU ,
which is the control signal of aircraft model, is the
summation of the PID controller outputUPID and the
intelligent system outputUIS. The conventional PID
controller is used to stabilize the aircraft and to help
intelligent system in learning process, then the intelligent
system improves the performance of the intelligent
controller in severe wind disturbance condition. The
adjust-gains mean using the optimization algorithm to
replace the original PID value after repeated training.

Fig. 5: The intelligent control scheme

At each sampling instantk, the function of the
intelligent system includes two phases, which are recall
process and learning process. First, the intelligent system
will utilize Yd(k + 1) and Y (k) to address the
corresponding weights in order to generate an outputUIS
in the recall process, where theY (k) is the output of the
dynamic aircraft model at sampling instantk and the
Yd(k + 1) represents the desired dynamic aircraft model
output at the next time step, as shown in Fig. 6.UIS in the
recall process is taken to be an calculation of the
demanded control signalU . And then it is integrated with
the output of PID controllerUPID to form the demanded
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control signalU . In the learning process, as shown in Fig.
7, U is obtained in the recall process and regarded as the
desired output. The error obtained fromU −UIS is used to
update the corresponding weights that are stored at
locationY (k) andY (k+1). The error will converge after
several iterations, then the intelligent system can
compensate for the PID controller.

Fig. 6: The control process of intelligent system

Fig. 7: The learning process of intelligent system

Fig. 8: Structure of RAN [16]

The RAN, as shown in Fig. 8, uses a sequential
learning algorithm. The output of the RAN algorithm has
the following form:

y(n) =
HN

∑
j=1

ϕ j (x(n))w j(n)+θ(n) =
HN

∑
j=0

w j(n)ϕ j (x(n))

= W T
H (n)ϕH (x(n)) (8)

whereHN is the number of hidden units,ϕ j (x(n))is the
response of thejth hidden neuron to the input vectorx
,ϕ j(x0) = 1, andθ = w0ϕ0 is the bias term. The activation
function of the neuron is a Gaussian function.

ϕ j(x) = exp
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−
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)

ϕ( · ) ∈ [0 ∼ 1] (9)

where m j = (m j
1,m

j
2, ...,m

j
p) is the center of thejth

activation function, andσ j is the width of the jth
Gaussian function.WH ∈ R(HN+1)×1is the weight vector
from the hidden layer to the output layer.

The learning process of RAN involves allocation of
new hidden units as well as adjustment of network
parameters. The network begins with no hidden units. As
observations are received, the network grows, using them
as new hidden units. The following two criteria must be
met for an observation(x0,y0) to be added as a new
hidden unit to the network:

∥

∥x−m j

∥

∥> ε(n) (10)

e(n) = d(n)− y(n)> emin (11)

where m j is the center of the hidden unit which is the
closest tox(n), ε(n) andemin are thresholds to be selected
appropriately. When a new hidden unit is added to the
network, the parameters associated with the unit are

Wj+1 = e(n) (12)

m j+1 = x(n) (13)

σ j+1 = K
∥

∥x(n)−m j

∥

∥ (14)

K is an overlap factor, determining the overlap of the
responses of the hidden units in the input space. When the
observation(x0,y0) does not meet the criteria for adding a
new hidden unit, the network parametersWH use the
back-propagation algorithm to the updating law as
follows:

w j(n+1) = w j(n)−ηw
∂E(n)
∂w j(n)

= w j(n)+ηw(d(n)− y(n))ϕ j(x(n)) (15)
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whereη is the learning rate.

4 Optimization Algorithms

The proposed control scheme still needs a PID controller
to provide primary control signals to the pitch autopilot.
Instead of trial-and-error, PID control gains are tuned by
different artificial life models as follows.

A. BFO

The bacterial foraging system consists of four principal
mechanisms, namely chemotaxis, swarming,
reproduction, and elimination dispersal [10].
(i) Chemotaxis
This process simulates the movement of anEscherichia
coli (E.coli) cell through swimming and tumbling via
flagella. Biologically, anE.coli bacterium can move in
two different ways. It can swim for a period of time in the
same direction, or it may tumble, and alternate between
these two modes of operation for the entire lifetime.
Suppose θ i( j,k, l) represents ith bacterium at jth
chemotactic, kth reproductive and lth elimination
dispersal step.C(i) is the size of the step taken in the
random direction specified by the tumble (run length
unit). Then in computational chemotaxis the movement of
the bacterium may be represented by

θ i( j+1,k, l) = θ j( j,k, l)+C(i)
∆(i)

√

∆ T (i)∆(i)
(18)

where∆ indicates a vector in the random direction whose
elements lie in [-1, 1].
(ii) Swarming
An interesting group behavior has been observed for
several motile species of bacteria includingE.coli and
Salmonella Typhimurium (S. typhimurium), where
intricate and stable spatiotemporal patterns (swarms) are
formed in a semisolid nutrient medium. A group ofE.coli
cells arrange themselves in a traveling ring by moving up
the nutrient gradient when placed amidst a semisolid
matrix with a single nutrient chemoeffecter. The cells,
when stimulated by a high level ofsuccinate, release an

attractantaspertate, which helps them to aggregate into
groups and thus move as concentric patterns of swarms
with high bacterial density. The cell-to-cell signaling inE.
coli swarm may be represented by the following equation:

Jcc(θ ,P( j,k, l)) =
s

∑
i=1

Jcc(θ ,θ i( j,k, l))

=
s

∑
i=1

[−dattrac tant exp(−ωattrac tant

p

∑
m=1

(θm −θ i
m)

2)]

+
s

∑
i=1

[−hrepellant exp(−ωrepellant

p

∑
m=1

(θm −θ i
m)

2)] (19)

whereJcc(θ ,P( j,k, l)) is the objective function value to
be added to the actual objective function (to be
minimized) to present a time-varying objective function,
S is the total number of bacteria,p is the number of
variables to be optimized that are present in each
bacterium, andθ = [θ1,θ2, ...,θ p]T is a point in the
p-dimensional search domain.dattrac tant , ωattrac tant ,
hrepellant , ωrepellant are different coefficients that should be
chosen properly.
(iii) Reproduction
The least healthy bacteria eventually die while each of the
healthier bacteria (those yielding lower value of the
objective function) asexually split into two bacteria,
which are then placed in the same location. This keeps the
swarm size constant.
(iv) Elimination and Dispersal
Gradual or sudden changes in the local environment
where a bacterium population lives may occur due to
various reasons:e.g., a significant local rise of temperature
may kill a group of bacteria that are currently in a region
with a high concentration of nutrient gradients. Events
can take place in such a fashion that all the bacteria in a
region are killed or a group is dispersed into a new
location. To simulate this phenomenon in BFO, some
bacteria are liquidated at random with a very small
probability while the new replacements are randomly
initialized over the search space.

B. PSO

The main steps in the particle swarm optimization process
are described as follows [11]:
(i) Initialize a population (array) of particles with random
positions and velocities in the problem space.
(ii) Calculate the fitness function and set the values to the
pbest for each particle, and set the best value of all the
particles togbest.
(iii) Change the velocity and position of the particle
according to equations (20) and (21), respectively:

v(k+1)
id = w · v(k)id + c1 · rand1· (pbestid − x(k)id )+

c2 · rand2· (gbestd − x(k)id ) (20)

x(k+1)
id = x(k)id + v(k+1)

id (21)
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(iv) Calculate the fitness again and compare the particle’s
fitness evaluation with the particle’spbest. If the current
value is better thanpbest, then set thepbest value equal
to the current value, and thepbest location equal to the
current location in d-dimensional space.
(v) Compare the fitness evaluation with the population’s
overall previous best. If the current value is better than
gbest, then resetgbest to the current particle’s array index
and value.
(vi) Loop to step (iii) until a criterion is met, usually a
sufficiently good fitness or a maximum number of
iterations (generations).
The definition of the parameters are

v(k)id : velocity of individualiat iterationk, where

vmin
d ≤ v(k)id ≤ vmax

d
w: inertia weight factor,
c1,c2: acceleration constant,
rand1,rand2: uniform random number between 0 and 1,
x(k)id : current position of individuali at iterationk ,
pbesti: pbest of individual i,
gbest: gbest of the group.

C. CPSO

The random movement which is obtained by the definite
motion equation is called chaotic motion. The variable
that presents chaotic state is called chaotic variable thatis
very sensitive to initial value. The chaotic variable has the
characteristic of traversing all states according to the
determination formula from any point (except for
fixed-point) starting. The Logistic equation is a typical
chaotic map system, its expression is [12]:

Xn+1 = µXn(1−Xn),n = 1,2,3, ...,

0≤ µ ≤ 4,Xn ∈ [0,1] (22)

where, µ is a control parameter. According to chaotic
variables with ergodicity and randomness having the
enhancement population’s search ability, based on chaotic
ideas, some domestic and foreign scholars have proposed
many kinds of improvement chaos particle swarm
optimization (CPSO) algorithms. These improvement
algorithm’s fundamental mode is:
(i) using chaotic variables to initialize particle’s position
and velocity in order to increase population’s diversity
and ergodicity;
(ii) using early-maturing judgment mechanisms to
monitor population’s evolution situation, and randomly
generating an initial value to replace original swarm in
order to reinitialize the particle’s velocity.
Since these chaotic variables in CPSO algorithm has not
involved in the parameters such as inertia weight w and
random numbersc1 and c2 of PSO algorithm, so these
parameter choices will have a very tremendous influence
to optimize performance of CPSO algorithm. Especially,
when the w value is larger, which will help PSO to jump
out the local optimum, and when the w value is smaller,
which will is advantageous to CPSO algorithm

convergence.

D. BSO

In what follows we briefly outline the new BSO algorithm
step by step [13].
(i) Initialize parametersn, N, NC, NS, Nre, Ned, Ped,

C(i)(i =1,2,. . . ,N), φ i.
Where,
n: Dimension of the search space,
N: The number of bacteria in the population,
NC: No. of Chemo-tactic steps,
Nre : The number of reproduction steps,
Ned : The number of elimination-dispersal events,
Ped : Elimination-dispersal with probability,
C(i) :The size of the step taken in the random direction

specified by the tumble.
ω : The inertia weight.
C1: Swarm Confidence.
θ(i, j,k) : Position vector of theith bacterium, injth

chemotactic step, andkth reproduction.
V i : Velocity vector of theith bacterium.

(ii) Update the following:
J(i, j,k) : Cost or fitness value of theith bacterium in
the jth chemo-taxis, andkth reproduction loop.
θ g best : Position vector of the best position found by

all bacteria.
Jbest(i, j,k) : Fitness of the best position found so far.

(iii) Reproduction loop:k = k+1
(iv) Chemotaxis loop:j = j+1

[substepa] For i =1,2,. . . ,N, take a chemotactic step
for bacteriumias follows.

[substepb] Compute fitness function,J (i, j,k).
[substepc] Let Jlast=J (i, j,k) to save this value since

we may find a better cost via a run.
[substepd]Tumble: generate a random vector

∆(i) ∈ Rn with each element∆m(i),
m =1,2,...,p, a random number on [-1, 1].

[substepe] Move :Let

θ(i, j+1,k) = θ(i, j,k)+C(i)
∆(i)

√

∆ T (i)∆(i)
(23)

[substepf] ComputeJ(i, j+1, k) .
[substepg] Swim: we consider only theith bacterium

is swimming while the others are not
moving then.

i) Let m =0 (counter for swim length).
ii) While m<s N(if have not climbed down too long).
•Let m = m+1.
•If J(i, j+1, k) <Jlast (if doing better), let

Jlast = J(i, j+1,k) and letθ(i, j+1,k) equal to eq.(23)
to compute the newJ(i, j+1,k) as we did in
[substepf]

•Else, letm = Ns. This is the end of the while
statement.

(v) Mutation with PSO operator
For i = 1,2, . . . , S
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Update theθ g best andJbest(i, j,k)
Update position and velocity of thedth coordinate of
theith bacterium according to the following rule:

V new
id = ω ·V new

id +C1 ·ϕ1 · (θ g bestd
−θ old

d (i, j+1,k))

θ new
d (i, j+1,k) = θ old

d (i, j+1,k)+V new
id (24)

(vi) Let S r=S/2.
The Sr bacteria with highest cost function (J) values die
and the other half of bacteria population with the best
values split (and the copies that are made are placed at the
same location as their parent).
(vii) If k<Nre, go to step (i). We have not reached the
specified number of reproduction steps. So we start the
next generation in the chemo-taxis loop.

5 Simulations

Different combinational control schemes are tested. Fig. 9
to Fig. 12 show the results of using BSO algorithm with
PID-RAN controller in the wind turbulence speed at 121
ft/sec.

Fig. 9: Turbulence profile (121 ft/sec)

Fig. 10: Aircraft pitch and pitch command

Fig. 11: Aircraft vertical velocity and command

Fig. 12: Aircraft altitude and command

Table I shows the maximum wind speed that the
proposed automatic landing controller can overcome by
using different optimization algorithms with the
PID-RAN controller in turbulence condition. Compared
to previous works [16], as shown in Table II, the proposed
control scheme has better performance than the one use
only neural network controller without compensation and
fine tune to the control gains.

Table I. The results from using pid-ran controller with
different optimization algorithms
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Table II. Results from using different neural network
controllers [16]

6 Conclusion

The purpose of this paper is to investigate the use of
optimization algorithms with PID-RAN in aircraft
automatic landing system and to make the automatic
landing system more intelligent. Current flight control
law is adopted in the intelligent controller design.
Tracking performance and adaptive capability are
demonstrated through software simulations. For the safe
landing of an aircraft using a conventional PID controller
or a RAN controller the wind speed of turbulence limits
are 30ft/sec and 70 ft/sec, respectively [16]. In this study,
a well-trained BSO with PID-RAN control scheme can
reach 148 ft/sec. The proposed controllers have better
performance than previous works, and it can act as an
experienced pilot and guide the aircraft to a safe landing
in severe wind turbulence environment.
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