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Abstract: The dominating set problem is a well known NP hard problem. It means that as the instance size grows, they quickly become
impossible to solve on traditional digital computers. Tile assembly model hasbeen demonstrated as a highly distributed parallel model
of computation. Algorithmic tile assembly has been proved to be Turing-universal. This paper proposes a tile assembly system for the
dominating set problem. It only needsΘ(mn) tile types to solve such a complex problem in the timeΘ(m+n) wheren andm are the
number of vertices and edges of the given graph, respectively.
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1 Introduction

Biological systems are a rich source for computing
devices design. A lot of classical computing devices are
inspired by biological systems such as automaton and
Turing machine. In recent years, computing devices
inspired by cells (or molecules inside cells such as DNA)
are deeply investigated. Most of such computing systems
inspired by cells, tissues and neural networks are
theoretically proved to be universal [12,13,14] and
computationally efficient [15,16,20,21,22,23,24,25,26,
27,28,29,30]. This work focuses on computing systems
based DNA tile assembly which is a prospective method
to overcome the ultimate limits of silicon-based
technology.

The dominating set problem is a well known NP hard
problem. It means that as the instance size grows, they
quickly become impossible to solve on traditional digital
computers. The main goal of this paper is to utilize the
computational power of tile assembly to solve the
dominating set problem, while minimizing the
dependency of the process on particular problem instance.

Parallel computation by tile assembly is largely
different from the previous DNA computing [1], and even

is regarded as overcoming the previous DNA computing
in some sense. Winfree [17] extended Wang tilings [18] to
the tile assembly model with a view to model
self-assembly process of DNA motifs. Furthermore, the
computation by self-assembly has been proved to be
Turing-universal.

Therefore, DNA computation based on self-assembly
becomes a significant role in bio-molecular computing.
Since Winfree [19] first constructed the simple
two-dimensional tiles using DNA strands to demonstrate
the feasibility of computing through the self-assembling
of tiles, Mao [10] came up with more complicated tiles
(TX) to experimentally execute four steps of logical
(cumulative XOR) operations. Barish et al. [2] proposed
and experimentally demonstrated an algorithmic
self-assembly to perform two primitive computations:
copying and counting. Fujibayashi et al. [8] used tiles and
DNA origami to grow crystals containing a cellular
automaton pattern and proved that programmable
molecular self-assembly may be sufficient to create a
wide range of complex objects in one-pot reactions.
Dwyer [6] proposed two architectures that are enable by
self-assembly for implementations of molecular
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computers solving highly demanding computational
problems.

In addition, a large number of researches have
emerged into this field and applied this biological
technique to implementing more intricate computation.
Lagoudakis [11] presented an algorithmic design for
solving the SAT problem by encoding of the algorithm in
a general way separated the algorithm from the data.
Jonoska [9] developed an algebraic representation of the
self-assembly process and used it to prove that the model
of self-assembly precisely captures NP-computability
under certain conditions. Furthermore, the tile assembly
model has been designed to do algebraic computation.
Huang [7] gave an algorithmic factoring tile system on
the basis of Euclids algorithm. Barua [3] demonstrated
how the tile assembly process was used for computing the
finite field multiplication and addition. In addition, Brun
[4,5] developed how to make use of the tile assembly to
compute the sums and products of two numbers and to
factor non-deterministically an integer into the product of
two integers.

The rest of the paper is organized as follows: after
introducing basic concepts used throughout the paper in
Section 2, we will show the detail method of how to
design the tile assembly system to solve the dominating
set problem and discuss its computational complexity in
Section 3. Section 4 will summarize the contributions of
this work.

2 Preliminary

Formally, the standard tile assembly system introduced
and validated as a universal computational framework
will be our abstract model. Informally, a tile is modeled as
a square with glues on each side. Two adjacent tiles will
attach to each other if they have compatible glues. We
recall some definitions of formal tile system as it was
originally introduced in [4].

A tile is a four-tuple< σE,σS,σW,σN > over a set of
binding domainsΣ such that: (1)Σ is a finite alphabet of
binding domains andnull ∈ Σ ; (2) D = {E,S,W,N}
denotes a set of direction functions from positions to
positions, i.e.,Z2 to Z

2 such that for all positions(x,y),
E(x,y)=(x + 1,y), S(x,y)=(x,y − 1), W(x,y)=(x − 1,y)
and N(x,y)=(x,y + 1); (3) σX represents the binding
domain in the directionX.

If A is a configuration, then within systemS, a tile t
can attach toA at position (x,y) and produce a new
configuration A′ iff: (1) (x,y) ∈ A; (2)
σd∈Dg(bdd(t),bdd−1(A(d(x,y)))) > τ; (3) ∀(u,v) ∈ Z2,
(u,v) 6= (x,y)⇒ A′(u,v) = A(u,v); (4) A′(x,y) = t, where
E−1 =W, S−1 = N, W−1 = E, N−1 = S. That is, a tile can
attach a configuration only in empty positions and only if
the total strength of the appropriate binding domains on
the tiles in neighboring positions meets or exceeds the
temperatureτ.

3 Solving the Dominating Set Problem based
on Tile Assembly System

3.1 Definition of the Dominating Set Problem

Given a graphG= (V,E) whereV = {v1,v2, ...,vn} is the
set of vertices andE = {e1,e2, ...,em} is the set of edges.
In graph theory, a dominating set of a graphG= (V,E), is
a subsetV1 ∈V such that for allu∈V−V1 there is av∈V1
with (u,v) ∈ E. The size of a dominating set is the number
of vertices it contains. The dominating set problem is to
find a minimum size dominating set inG. The dominating
set problem has been proved to be a NP-complete problem.

3.2 Construction of Algorithmic Tile Assembly
System

As was mentioned above, our design attempts to simulate
a non-deterministic algorithm for finding the dominating
setV1. The algorithm is given below:

Non-deterministic Dominating set(v1,v2, ...,vn;
e1,e2, ...,em)
(1) Set all edges to be immarked
(2) for (i = 1,2, ...,n) do
(3) Assign a value (0 or 1) to the vertexvi
(4) Mark all edgesej( j = 1,2, ...,m) which include the
vertexvi(vi = 1)
(5) if all edges are marked
(6) then return Yes and outputv1,v2, ...,vn wherevi = 0 or
1
(7) else return Failure

To perform the algorithm above for finding the
dominating set, we constructed five kinds of tile subsets
which areT1, T2, T3, T4 andT5. The tile setT1 shown in
Fig. 1 over the binding domain setΣ1 = {i,=,#,0,1}
(i = 1,2, ...,n) aims to assign a value 0 or 1 to the vertex
vi(i = 1,2, ...,n). If vi = 1, thenvi ∈V1; otherwisevi /∈V1.

Fig. 1: Tile set T1 over the symbol setΣ1 for stochastically
selecting vertex from the vertex setV = {v1,v2, ...,vn}, where
Σ1 = {i,=,#,0,1}(i = 1,2, ...,n).

After stochastically guessing a subsetV1 ⊆ V , the
next operation is to decide whether the setV1 can satisfy
the conditions of the dominating set. Our design is to
makeV1 be compared with each edge ofE. That is to say,
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Fig. 2: Tile setT2 over the symbol setΣ2 to decide whether the
vertex chosen at random can dominate the edges, whereΣ2 =
{(i, j),#,h,k,OK}(i, j = 1,2, ...,n).

for each edgeei j ∈ E, it needs to compareei j with each
vertexvk ∈ V1. If for all edgesei j ∈ E, there always exist
vi ∈ V1 or v j ∈ V1, then the subsetV1 is accepted as a
dominating set. The tile subsetT2 shown in Fig.2 over the
binding domain set Σ2 = {(i, j),#,h,k,OK}
(i, j = 1,2, ...,n) focuses on performing the functions
above. The binding domainσE represents the edgeei j ,
and σS = h (h = 1,2, ...,n) denotes the vertexvh. If
(σE,σS) = ((i, j),h) and h /∈ {i, j}, then it makes
(σW,σN) = (σE,σS) in Fig. 2(b). Similarly, the tile in
Fig.2(a) performs the same function. If
(σE,σS) = ((i, j),k) and k ∈ {i, j} , then it makes
(σW,σN) = (OK,σS) in Fig. 2(c).

The tile setT3 illustrated in Fig.3 is designed to
transmit the data in the process of computation.T3 is over
the binding domain set Σ3 = {#,OK, i,=,∗}
(i = 1,2, ...,n) whereσE, σS denote the input andσW, σN
denote the output binding sides. Then we use the tile
subset T4 in Fig. 4 over the binding domain set
Σ4 = {S, i,#,0, i1}(i = 1,2, ...,n) to extract the subsetV1.
It decides whethervi ∈ V1 according to the inputσS. If
σS = i, then the vertexvi ∈V1 and outputs the valuei1 in
the centre of the tile. Otherwise, it outputs the value 0 in
the centre of the tile. Finally, it needs to identify which
final tile assembly configuration represents the
dominating set. The tile setT5 shown in Fig.5 over the
binding domain setΣ5 = {S,#,Yes} aims to mark the one
that denotes the dominating set and output Yes in the
centre of the tile.

Fig. 3: Tile setT3 over the symbol setΣ3 for implementation of
data transmission, whereΣ3 = {#,OK, i,=,∗}(i = 1,2, ...,n).

As discussed above, we construct the tile assembly
system including five tile subsets. They are proved to find
the dominating set in Theorem 1 as follows.

Fig. 4: Tile setT4 over the symbol setΣ4 for distracting the final
vertex sub-set, whereΣ4 = {S, i,#,0, i1}(i = 1,2, ...,n).

Fig. 5: Tile set T5 over the symbol setΣ5 to identify the
dominating set, whereΣ5 = {S,#,Yes}.

Theorem 1. Given the graphG= (V,E). LetΣD =∪5
i=1Σi ,

gD = 1,τD = 2, andTD = ∪5
i=1Ti be a set of tiles overΣD

with Ti andΣi shown in Fig.i(i = 1,2, ...,5). Then the tile
systemSD = (TD,gD,τD) can find all the dominating sets
of the graphG.

Proof. For the input graph, letV = {v1,v2, ...,vn} andE =
{e1,e2, ...,em}. For simplicity of discussion, letei = ei

j iki

such thatei = (v j i ,vki ), wherev j i ,vki ∈V.
Let the tile setΓD be constructed as follows,

ΓD = {α0 =< null,null,%,11>,

αi =< %,null,%, i > (i = 1,2, ...,n),

αn+1 =< %,null,null,∗>,

β0 =< null,11,=,11>,

βi =< null,11,( j i ,ki),11> (i = 1,2, ...,m),

βm+1 =< null,11,S,null >}.

Then the seed configurationSD : Z×Z → ΓD is such
that
(1) S(−i,0) = αi(i = 0,1,2, ...,n+1),
(2) S(0, i +1) = βi(i = 0,1,2, ...,m+1),
(3) for all other positions(x,y) ∈ Z

2, S(x,y) = empty.
According to the rules above, the seed configuration

can be constructed so thatV andE are denoted in the seed
configuration.

As for the tile tT1 ∈ T1, the following conditions are
satisfied:
(1)bdW(F(0,1)) = bdE(tT1)
(2)bdN(F(−1,0)) = bdS(tT1).
Then some tiletT1 ∈ T1 will non-deterministically attach
to the seed configuration on the position (-1, 1), i.e.
F(−1,1) = tT1. Similarly, some tilest ′T1

∈ T1 can attach to
the positions(−i,1)(i = 2,3, ...,n). These tiles growth
aims to produce a subsetV1 ⊆V at random.
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Therefore, from the second row to the(m+1)−th row,
the tilest ∈Ti(i = 2,3) will decide whether the subsetV1 ⊆
V can include one vertex of the edgeei

j iki
(i = 1,2, ...,m).

In the (m+ 2)− th row, the system will extract the
subsetV1. Moreover, the identifier tileT5 will attaches to
the position(−(n+ 1),m+ 2) to identify the dominating
sets. Then, the tile systemSD = (TD,gD,τD) can find all
the dominating sets of the graphG. �.

It is noticed that the tile assembly system
SD = (TD,gD,τD) can find all the dominating sets.
Furthermore, in order to find the minimum dominating
set, it needs to combine the tile assembly system with the
gel electrophoresis technique. As designed in Fig.4, we
make a red single DNA strand denote the existence of the
vertexvi so thatvi ∈V1 which has shorter oligonucleotide
than that representing the absence of a vertex. After gel
electrophoresis, we can see that the strands running
fastest are our desired answers to the minimum
dominating set problem.

The complexity of the design is considered in terms of
computation time and the number of distinct tiles
required. It is obvious from the design of the tile sets
shown in Fig.i(i = 1,2, ...,5) that the computation time
T(SD) is equal to the depth of the final assembly
configuration. In fact, it is induced from the Theorem 1
that

T(SD) = (n+1)+(m+2)−1= m+n+2

=Θ(m+n)

wheren andmare the number of vertices and edges of the
given graph respectively. And the number of tile types
N(SD) can be concluded according to the
Fig.i(i = 1,2, ...,5) that

N(SD) = 2n+(m+m(n−2)+2m)+(3+n)+(n+1)+1

= 4n+mn+m+5 =Θ(mn).

4 Conclusions

In this paper, we proposed an algorithmic tile assembly
system to solve the dominating set problem. The model
presented here is based on the automatic growth of tile
assembly units and therefore, inherit several advantages
from it. The dominating set problem is a NP-complete
problem and it takes exponential time to solve it in a
traditional digital computer, while in tile assembly based
supercomputing, it only needsΘ(mn) tile types to solve
such a complex problem in the timeΘ(m+ n) wheren
andm are the number of vertices and edges of the given
graph respectively.

A great deal of experimental researches has
demonstrated the feasibility of construction for large
shapes based on tile assembly. We have reasons to believe
that the algorithmic establishment for solving the
dominating problem by applying tile assembly system as
developed here will provide some helps to solve other NP
hard problems.
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