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Abstract: Tissue P systems are a class of distributed and parallel computing models investigated in membrane computing, which are
inspired from the structure and functioning of communication cells in tissues. Such systems with cell division (corresponding to the
mitosis behavior of living cells) can theoretically generate exponential working space in linear time, therefore providing a possible way
to solve computational hard problems in feasible time by a space-time trade-off. In this work, we construct a family of tissue P systems
with cell division to solve the vertex cover problems, and achieve a linear time solution (with respect to the size of the problems).
Furthermore, we prove that the systems are constructed in a uniform manner and work in a confluent way.
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1 Introduction

Membrane computinginitialed by G. P̆aun [9] in 2000,
which is now known as a hot and new branch in natural
computing. In membrane computing, a class of
computing models, usually called P systems, are
investigated by abstracting ideas from the structure and
the functioning of a single cell and tissues, even from
human brain. Till now, there are three mainly investigated
classes of P systems: cell-like P systems (generally called
P systems) [9], tissue-like P systems (called tissue P
systems) [2], and neural-like P systems (specified by
spiking neural P systems) [10].

Many variants of all the three classes of P systems, as
well as their computational properties have been
considered [1,3,4,5,6,7,8,15,16,17,18,19]; an overview
of membrane computing or P systems can be found in
[10] and [12], with up-to-date information available at the
membrane computing website
(http://ppage.psystems.eu). For an
introduction to membrane computing, one may consult
[12] and [13]. In the present work, we deal with a variant
of tissue P systems, called tissue P systems with cell
division [11].

Generally speaking, a tissue P system with cell
division can be represented by a graph, where cells are
placed in the nodes of a directed graph, and the edges
correspond to communication channels among the cells.
Each cell contains several objects (represented by multiset
on a given alphabet), communication rules and division
rules. A cell can communicate with other cells (or with
the environment) along channels specified in advance, and
can also divide into two new cells. The communication
between each pair of cells is achieved by the so called
communication rules (also called symport/antiport rules),
which was proposed in [2]. Specifically, by using symport
rules, the objects can be moved across a membrane in one
direction, whereas by using antiport rules, the objects
may move across a membrane in opposite directions.
Inspired from the behavior of mitosis of living cells, a cell
can divide into two new cells by using division rules. The
two children cells have the same label with their mother
cell (the label of the cell precisely identifies the available
rules). In each time unit (as in usual P systems, it is
assumed a global clock in the system, marking the time
for the system), objects can evolve by using the evolution
rules in a non-deterministic maximally parallel manner,
with the restriction that if a cell can perform the division
operation, i.e, a division rule is enabled at that moment,
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then the cell does not participate in any other evolution
rules. It indicates that when a cell is dividing, the
interaction of the cells will be blocked. Hence, during the
division, the rules and the objects in the mother cell
remain unchanged and inherit in each of the two child
cells. We should stress that, if there are rules that can be
applied in a cell, then one of the rules must be applied
that is, each cell in the systems works in synchronized
mode, but for different cells, they work in a parallel way.

In tissue P systems with cell division, by using cell
division rules, we can theoretically generate exponential
working space in linear time during the computation, thus
provide a possible way to solve computational hard
problems in feasible (in polynomial or even in linear)
time by a space-time trade-off strategy.

In this work, we construct a family of tissue P systems
with cell division, which can solve vertex cover problems
in linear time (with respect to the size of the problems).
Specifically, for an instance of vertex cover problemγ
consisting ofn vertices, there exist a such system solving
the instance in at most 2n+ 7 steps. The construction of
the systems is uniform, that is, a family of tissue P
systems with cell division can be constructed by a
deterministic Turing machine in a polynomial time,
which, by receiving the inputs encoding of instances of
vertex covering problems, tell us whether or not these
instances have positive answers or not.

2 Tissue P Systems with Cell Division

In this section, we start by recalling some basic notions in
formal language and automata theory, and then recalling
the tissue P systems with cell division introduced in [11].

By N we denote the set of non-positive integers. For a
setV, by card(V) we denote the size of the setV, which is
number of elements inV. LetV be an alphabet of symbols,
by V∗, we denotes the set of all finite strings of symbols
from V; V+ denotes the set of all non-empty strings over
V.

The definition of tissue P systems with cell division is
complete, but familiarity with the basic elements of classic
tissue P systems is helpful.

A tissue P system with cell divisionof degreem≥ 1 is
a construct

Π = (O,E,w1, . . . ,wm,R, io), where:

–O is a finite alphabet ofobjects;
–E ⊆ O is the set of objects, which are contained in the
environment with arbitrarily copies;

–m≥ 1 is the degree of the system, which means the
system hasmcells (labeled with 1,2, . . . ,m); particular,
with 0, we refer to the environment of the system);

–w1,w2, . . . ,wm are strings over alphabetO, respecting
multisets of objects initially placed in them cells;

–R is a finite set of rules, where the rules are of the
following two forms:

–(i,u/v, j), for i, j ∈ {1,2, . . . ,m}, i 6= j and u,v ∈
O∗;

–[a]i → [b]i [c]i , i ∈ {1,2, . . . ,m} anda,b,c∈ O;
–io ∈ {0,1,2, . . . ,m} is the label of output cell, whose
objects are considered as the computation result when
the system halts.

The rules can be applied as follows. The rules of the
form (i,x/y, j) are communication rules, where
i, j ∈ {1,2, . . . ,m} identify the cells of the system and 0 is
the environment. By using the communication rule, the
objects represented by multisetsx are sent to cellj from
cell i, while the objects represented by multisetsy are sent
to cell i from cell j. If i = 0, it means multisetsx are sent
to cell j from the environment, while multisetsy are sent
out to the environment; ifj = 0, it means multisetsy are
sent to celli from the environment, while multisetsx are
sent out to the environment. For a communication rule
(i,x/y, j), by max{|x|, |y|}, we denote the weight of the
rule.

The division rules are of the form[a]i → [b]i [c]i (i ∈
{1,2, . . . ,m}). The rule is enabled to use, only when a cell
labeled withi contains objecta, then it can divide into two
new cells labeled byi. In the two newly generated cells,
objecta evolves to objectsb andc, which are placed in the
two new cells, respectively.

The rules in the system are used in a non-deterministic
maximally parallel manner. In each step (a global clock is
assumed to mark the time of the whole system), all cells
that can evolve must evolve as in classic P systems with the
following restriction: if a cell is using a division rule, the
cell can not do any communication at that moment. The
objects in the environment are never exhausted (inspired
by the fact that in biological systems, external objects can
provide sources of objects).

The configuration(also called the “state”) of a tissue
P system with cell division can be described by the
objects present in the cells. With this notion, the initial
configuration is tuple (w1,w2, . . . ,wm). By using
communication rules and cell division rules, we can
definetransitionsof the system among configurations. A
series of transitions starting from the initial configuration,
halting or not, is called acomputation. If the computation
proceeds to a halting configuration, where no rule can be
used in any cell, then it is called a successful computation.
With any successful computation, aresult is associated,
which is the number of objects in cell labeled withio.

In the present work, we do not consider the
computational power of tissue P systems with cell
division, but the efficiency of the systems by solving
computational hard problems. A recognizer tissue P
system with cell division can be defined as follows.

Π ′ = (O,Σ ,E,w1, . . . ,wm,R, io, i in), where:

•O is the finite alphabet of objects, containing two
distinguished objectsyes andno;
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•Π = (O,E,w1, . . . ,wm,R, io) is a tissue P system with
cell division defined as above withio = 0;

•Σ ⊆ O/{yes,no} is a finite alphabet of input objects;
•i in is the input cell.

All the computations ofΠ ′ halt, and for any computation
C of Π ′, either objectyes or no (but not both) is present
in the environment when the system halts.

The recognizer tissue P systems with cell division can
be used to solve decision problems as follows. For an
instance of the problemX, the computations of the
systems start from a initial configuration by adding the
code of the problemcod(γ) to the input celli in. If the
computations of the systems finally halt with objectyes

(no) present in the environment, then we say the problem
has a positive (negative) answer. A computationC is
called accepting one (or a rejecting one) if objectyes (or
objectno) presents in the environment when the system
proceeds to the halting configuration of. In the following,
we will formally define the solution to a decision problem
by recognizer tissue P systems with cell division.

Let X = (IX,ΘX) be a decision problem, whereIX is
a set of instances andΘX is a predicate overIX, andΠ =
{Π(n) | n∈ N be a family of recognizer tissue P systems
with cell division. We say that problemX can be solved in
polynomial time by tissue P systemsΠ , if the following
conditions hold.

•The family Π can be constructed in polynomial time
by Turing machine.

•There exits a pair of functions(cod,s) overX such that
–for anyu∈ IX, bycod(u), we can input the instance
into the systemΠ , wheres(u) ∈ N;

–the family of systemsΠ(s(u)) is said to besound
with respect toX,cod, s, that is, for anyu∈ IX, if
there exists an accepting computation ofΠ(s(u))
with inputcod(u), then we haveΘX(u) = 1;

–the family of systemsΠ is called to becomplete
with respect toX,cod,s, that is, for anyu ∈ IX, if
ΘX(u) = 1, then every computation of systemΠu
is an accepting computation;

–the familyΠ is polynomial bounded, if there exists
a polynomial functionp(n) such that, for eachu∈
IX, all computations inΠ(s(u)) halt in, at most,
p(|u|) steps.

The construction of the family of systems is called
uniform, if a family of recognizer tissue P systems with
cell division are constructed in a polynomial time by a
deterministic Turing machine, which give the result of the
instance of the problem by receiving as inputs encoding
of instances of the problems. The system
Π = {Π(n) | n∈ N} is confluent, if every computation of
Π always gives the same answer with the same input
instance of the problem.

3 Solving Vertex Cover Problem in Linear
Time

This section is started by recalling the definition of vertex
cover problems, and then we construct a family of tissue
P systems with cell division in a uniform manner to solve
the vertex cover problems.

The Vertex Cover Problem
INSTANCE: A directed graphγ = (V,E) with n

verticesv1,v2, . . . ,vn, and a positive integerk≤ card(V).
QUESTION: Is there a subsetV ′ ⊆ V with card(V ′)

≤ k such that for all(vi ,v j) ∈ E,1≤ i, j ≤ n, at least one
of vi ,v j is in V ′?

Theorem 1.Vertex cover problems can be solved in linear
time (with respect to the size of the instance) by tissue P
systems with cell division.

Proof Let us consider a vertex cover problemγ = (V,E),
whereV = {v1,v2, . . . , vn} is the set of vertices, andE is
the set of edges with elements of the form(vi ,v j) with
vi ,v j ∈V andi 6= j.

We can codifyγ by function cod(γ) = a1a2 . . .an,
where variableai represents vertexvi . The process of
coding γ to cod(γ) can be finished in linear steps (with
respect ton). In the follosing, we deal with the instanceγ
by the tissue P systems with cell divisionΠ(s(γ)) with

input cod(γ), wheres(γ) = 〈n,k〉= (n+k)(n+k+1)
2 +n.

We construct a family of recognizing tissue P systems
with cell division of degree 4

Π(〈n,k〉) = (O,Σ ,E,w1,w2,w3,w4,R, i in), where:

–O= {ai ,a′i ,a
′′
i | i = 1,2, . . . ,n}∪{ci | i = 1,2, . . . , 2n+

3}∪{di | i = 1,2, . . . ,2n+5}∪{yes,on,c, t};
–Σ = {ai | i = 1,2, . . . ,n}∪{yes,no,c, t};
–E = O−{yes,no};
–w1 = yes no a1a2 . . .an,w2 = λ ,w3 = c1,w4 = d1;
–R= Rd ∪Rc is the set of evolution rules, whereRd is
the set of division rules, andRc is the set of
communication rules;
(1)Rd = {[ai ]2 → [a′i ]2[a

′′
i ]2 | i = 1,2, . . . ,n};

(2)Rc = {(1,no/t,0),(1, ta1a2 . . .an/λ ,2)}
∪{(2,a′i/c,0) | i = 1,2, . . . ,n}
∪{(3,c2n+3/λ ,2),(2,c2n+3/d2n+5,4)}
∪{(3,c j/c2

j+1,0) | j = 1,2, . . . ,2n+2}

∪{(4,dh/d2
h+1,0) | h= 1,2, . . . ,2n+4}

∪{(2,c2n+2ck+1/λ ,0),(1,yes/λ ,4), (4,yes/no,
0)}
∪{(2,c2n+2a′′i a′′j /λ ,0) | (vi ,v j) ∈ E,1≤ i, j ≤ n};

–i in = 1 is the input cell.

The necessary resources to build the system are as
follows:

–the size of the alphabet: 7n+12;
–the initial number of cells: 4;
–the initial number of objects:n+4;
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–the number of rules:n2+6n+12;
–the maximal length of a rule: max{3,n+1}.

Therefore,Π(〈n,k〉) can be built by a deterministic
Turing machine in polynomial time with respect to the
size parametersn and k of the instance of vertex cover
problems.

In the following, we describe how the system
Π(〈n,k〉) with input cod(γ) works. Initially, cell 1 (the
input cell) contains objectsw1 = yes no a1 a2 . . .an, so in
the first step only the communication rules(1,no/t,0)
can be used sending objectno to the environment. (Since
at that moment the system does not halt, objectno can not
be taken as the answer to the instance.) In the next step,
cell 1 can use the communication rule
(1, ta1a2 . . .an/λ ,2) to send objectsta1a2 . . .an to cell 2.
In this way, cell 2 will begin to use division rule
[ai ]2 → [a′i ]2[a

′′
i ]2 (i = 1) at step 3.

In the following 2n− 1 steps, cell 2 will use rules
[ai ]2 → [a′i ]2[a

′′
i ]2 (i = 2,3, . . . ,n) in n− 1 steps (in this

way, we can generate all the possible partitions ofV in 2n

cells with label 2), and using rules
(2,a′i/c,0), i = 1,2, . . . ,n in anothern steps. (The single
priming objectsa′i correspond to the elements in the
subsetV ′ we look for. For any cell 2, the number of
objects a′i corresponding to the number of vertices
contained in a partition ofV can be counted by the
number of object c.) Although this processes are
performed non-deterministically, at step 2n+ 2, all the
rules [ai ]2 → [a′i ]2[a

′′
i ]2 and (2,a′i/c,0) with

i = 1,2,3, . . . ,n will complete their applications.
Cell 3 continuously uses the rules

(3,c j/c2
j+1,0), j = 1,2, . . . ,n+ 2 in 2n+ 2 steps, thus it

contains 2n objectsc2n+3 at step 2n+3. At that moment,
the communication rule(3,c2n+3/λ ,2) can be used to
send one objectc2n+3 to each of the cells with label 2.
The cells with label 2 that contains more thank objectc,
will use the rule(2,c2n+2ck+1/λ ,0) to send objectc2n+3
to the environment (that is the cell 2 corresponding to
subsetV ′ of V that contains more thank vertices will not
contain objectc2+3). Each of cell 2 contains neithera′i nor
a′j with (vi ,v j) ∈ E,1 ≤ i, j ≤ n will use the rule
(2,c2n+2a′′i a′′j /λ ,0) to send out the objectc2n+3. Hence,
the cells with label 2 corresponding to partitions ofV that
contain more thank vertices or do not contain at least one
vertex of every edge inE will have no objectc2n+3 inside.
This process will complete in one step, since each cell 2
only contains onec2n+3. In other words, at step 2n+ 4,
the cells with label 2 of the partitions ofV having less
thank vertices and covering at least one vertices of each
edge inE can hold objectc2n+3. If there exists no such
cell 2, the system halts with objectno presenting in the
environment, thus gives a negative answer to the instance.
In this case, the system halts in 2n+4 steps.

If there exists at least one cell 2 having objectc2n+3
(this means the instance has a positive answer), the
communication rule(2,c2n+3/d2n+5,4) can be used at
step 2n+5, by which at least one objectc2n+3 appears in

cell 4. In 2n+ 4 steps, cell 4 continuously uses the rule
{(4,dh/d2

h+1,0) | h = 1,2, . . . ,2n+ 4} to generated2n+5.
With object c2n+3, cell 4 can use the rules
(2,c2n+2ck+1/λ , 0),(1,yes/λ ,4) and (4,yes/no,0). As
results, objectyes is sent out to the environment and
object no comes into cell 4 when the system halts,
therefore giving a positive answer to the instance of the
problems. In this case, the system halts in 2n+7 steps.

It is easy to check that the family of systemsΠ〈n,k〉
satisfy that (i) all the computations halt; (ii) for each
instance of the problem, if the answer of the problem is
positive, then the objectyes will be present in the
environment when the system halts; if the answer of the
problem is negative, then objectno will present in the
environment when the system halts. So, the family of P
systemsΠ〈n,k〉 are sound and complete. The systems
will halt in at most 2n+ 7 steps, so they are also linear
bounded. Also, we can easily obtain the construction of
the family of systems is uniform and the systems work in
a confluent way.

As explained above, we can conclude that the family of
P systemsΠ(〈n,k〉)with cell division is a uniform solution
for vertex cover problem. ⊓⊔

4 Conclusion

Tissue P systems with cell division can generate
exponential working space by using cell division rules in
linear steps, thus can solve computational hard problems
by a space-time trade off strategy. In this work, a uniform
linear solution for vertex cover problem is achieved by
means of tissue P systems with cell division.

For future work, there are many interesting open
problems to consider, such that obtaining solutions in
feasible (polynomial or linear) time to more complex
decision problems, as well as solutions toPSPACE
problems.
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