
Appl. Math. Inf. Sci.8, No. 1, 287-292 (2014) 287

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080135

Direct Adaptive H∞ Control for a Class of Nonlinear
Systems based on LS-SVM

Dan-Dan Zhao1, Chun-Li Xie2,∗ and Pei-Chang Wang3

1 School of Computer Science and Engineering, Dalian Nationalities University, 116600 Dalian Liaoning , China
2 College of Electromechanical and Information Engineering, Dalian Nationalities University, 116600 Dalian Liaoning, China
3 College of Information and Communication Engineering, Dalian Nationalities University, 116600 Dalian Liaoning, China

Received: 17 Jun. 2013, Revised: 22 Oct. 2013, Accepted: 24 Oct. 2013
Published online: 1 Jan. 2014

Abstract: A scheme of direct adaptiveH∞ control based on least squares support vector machines (LS-SVM)is proposed for a class
of nonlinear uncertain systems. In this method, LS-SVM is employed to construct the adaptive controller, and an on-line learning rule
for the weighting vector and bias is derived. A parameter selection methodbased on the genetic algorithm (GA) is given for LS-SVM
regression with Gauss kernel.H∞ control is used to attenuate the effect on the tracking error caused by LS-SVM approximation errors
and external disturbances. Lyapunov theory is used to prove the uniformly ultimately bounded stability of the close-loop system. The
simulation result shows the effectiveness and feasibility of the proposedmethod.
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1 Introduction

Least squares support vector machines (LS-SVM) has
been proposed by Suykens et al. for modeling and control
of nonlinear systems [1,2]. LS-SVM takes equality in
instead of inequality constrains of SVM in the problem
formulation such that LS-SVM is easy to train, which
promotes the applications of LS-SVM and many function
approximation and nonlinear control problems have been
tackled with LS-SVM in the last decades [3,4,5,6].
However, those works lack the definite stability proof of
the closed loop system using LS-SVM approaches.

A direct adaptive controller is developed
incorporating LS-SVM, Lyapunov theory andH∞ control
theory under plant uncertainties and external disturbances
in this paper. In this method, the LS-SVM is employed to
approximate unknown nonlinear dynamics in the plant,
and then the tracking error caused by LS-SVM
approximation errors and external disturbance are tackled
as the complex interference. To improve the resulting
approximation precise, an innovative optimization
algorithm known as the genetic algorithm (GA) [7,8] are
adopted to automatically tune two parameters in LS-SVM
design. It is shown that the designed controller ensures
not only guarantee the asymptotic stability of the

close-loop system, but also guarantees the tracking error
to satisfy the set performance index by introducingH∞
control. The numerical simulation is presented to show
the effectiveness of the proposed method.

This paper is organized as follows. Section 2 presents
the background about control problem in a class of
nonlinear uncertain systems. LS-SVM and its parameters
selection are briefly described in Section 3.The proposed
direct adaptiveH∞ controller based on LS-SVM is
designed in Section 4. Numerical examples are given to
illustrate the effectiveness of the proposed method in
section 5. Finally, conclusions are offered in Section 6.

2 Problem Formulation

Consider the nth-order nonlinear systems of the form
{

x(n) = f (x, ẋ, · · · ,x(n−1))+bu+d
y = x

(1)

where f is unknown but bounded continuous function,b
is a positive unknown constant,d is a bounded
disturbance signal of the system,u ∈ R andy ∈ R are the
input and the output of the system, respectively. Let

∗ Corresponding author e-mail:chunlix@sina.com.cn

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080135


288 D. Zhao et al: Direct AdaptiveH∞ Control for a Class of...

x = (x, ẋ, · · · ,x(n−1))T ∈ Rn is the state vector of the
system which is assumed to be available.

Let ym be a bounded reference signal, ande = ym − y
the output tracking error.

The control objective is to forcey follow the given
reference signalym under the constraints that all signals
involved must be bounded. Hence a feedback control
u(x |W ) base on LS-SVM and an adaptive law for
adjusting the parameter vectorW of LS-SVM are both
determined to satisfy the following conditions.

(1) the closed-loop system is globally stable in the
sense that all variables involved must be uniformly
bounded.

(2) the following H∞ tracking performance will be
achieved with the given inhibitory levelρ > 0,

t̄
∫

0

eT Qe≤ eT (0)Pe(0)+
1
η

W̃T (0)W̃(0)+ρ2

t̄
∫

0

ωT ωdt

(2)
Where t̄ ∈ [0,∞],e = [e, ė, · · · ,e(n−1)]T ,ω ∈ L2[0,T ],

Q = QT ≥ 0 and P = PT ≥ 0. ω is the compound
interference caused by LS-SVM approximation errors and
external disturbance,W is the parameter vector of
LS-SVM, W̃ is the estimate error vector of the LS-SVM,
η > 0 is the learning rate of LS-SVM.

3 LS-SVM and Its Parameter Selection

3.1 LS-SVM Regression

In the section, we briefly discuss LS-SVM regression. For
further details on LS-SVM we refer to Ref. [1].

Given the following training sample set(D):
D = {(xk,yk) |k = 1,2, · · · ,N }, where is the total number
of training data pairs,xk ∈ Rn is the regression vector and
yk ∈ R is the output. The following model is taken

f (x) = wTϕ(x)+b (3)

where the nonlinear mappingϕ : Rn → Rnh maps the
input data into a so-called high dimensional feature space
(which can be infinite dimension). The regularized cost
function of the LS-SVM is given as:

minJ(w,ε) = 1
2wT w+ 1

2γ
N
∑

k=1
ε2

k

s.t.yk = wT ϕ(xk)+b+ εk,k = 1,2, · · · ,N
(4)

wherew ∈ Rnh is the weight vector,εk ∈ R is slack
variable,b ∈ R is a bias term andγ ∈ R is regularization
item. The Lagrangian corresponding to Eq. (4) can be
defined as follows:

L(w,b,ε;α) = J(w,ε)−
N

∑
k=1

αk
{

wT φ(xk)+b+ εk − yk
}

(5)

where αk ∈ R(k = 1,2, · · · ,N) are the Lagrange
multipliers. Using the Karush-Kuhn-Tucker (KKT)
conditions, we get the linear equations

[

b
α

]

=

[

0
⇀

1
T

⇀

1 ∆ + γ−1I

]−1
[

0
y

]

(6)

with y = [y1, · · · ,yN ]
T ∈ RN , 1 = [1, · · · ,1]T ∈

RN ,α = [α1, · · · ,αN ]
T ,∆kl = ϕ(xk)

T ϕ(xl) =
K(xk,xl),∀k, l = 1,2, · · · ,N is the kernel function
satisfying Mercer′s condition. In this paper, the Gaussian
RBF kernelK(xk,xl) = exp(−‖xk −xl‖

2/2σ2) is chosen
as the kernel function, whereσ is the kernel parameter.
And the resulting LS-SVM regression model becomes

f (x) =
N

∑
k=1

αkK(x,xk)+b (7)

whereαk,b are the solution to Eq. (6).
It is well known that LS-SVM generalization

performance depends on a good setting of regularization
parameterγ and the kernel parameterσ . In order to
achieve the better generalization performance, the
parameters of LS-SVM can be selected by GA.

3.2 Hyper-Parameters based on GA Algorithm

For the problem of parameters selection by GA, each set
of γ andσ is taken as an individual in a population, and the
estimated generalization error as the fitness. As thek-fold
cross-validation is a very reliable method to estimate the
generalization error [1,2], it is employed in this paper. In
k-fold cross-validation, the training data is randomly split
into k roughly equal subsets. An LS-SVM decision rule
is trained using (k− 1) of these subsets and validated on
the subset left out. This procedure is repeatedk times with
each of thek subsets used as the validation subset in turn.
Averaging the validation errors over thek trials gives an
estimate of the generalization error. The flowchart of the
GA-based parameters selection algorithm for the LS-SVM
is shown in Fig. 1.

4 Direct Adaptive H∞ Controller Design and
Stability Analysis Based on LS-SVM

First, letk = (kn,kn−1, · · · ,k1)
T ∈ Rn be such that all roots

of the polynomialh(s) = sn+k1s+ · · ·+kn are in the open
left-hand plane. If the functionf and the constantb are
known, andd = 0, then the control law

u∗ =
1
b
[− f (x)+ y(n)m +kT e] (8)

applied to system (1) can result in
e(n) + k1e(n−1) + · · · + kne = 0, which implies that
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lim
t→∞

e(t) = 0 (the main objective of control). Sincef andb

are unknown, andd 6= 0, then the optimal controlu∗ can
not be implemented. Hence, the adaptive controller based
on LS-SVM will be designed to approximate this optimal
control.

Obtain optimal parameters

Take the   -fold crossvalidation error as 

Fitness, implement genetic operations to

Create the next generation

Is the maximum 

Generation number

Reached ?

Rtrain LS-SVM

Yes

Generate initial population of 

which each individual represents
a set of   and 

Read in the training set

Calculate the   

crossvalidation error for each set

of   and   in the population

k

No

Stop

Start

-foldk

Fig. 1 Structure of least support vector machines

The controlu is supposed to consist of an adaptive
control û(x |W ) based on LS-SVM and aH∞ robust
controlv, i.e.,

u = û(x |W )− v (9)

where

v =−
1
r

BT Pe (10)

r > 0 is a design parameter,P is a symmetric positive
definite matrix satisfying the Riccati equation

PA+AT P+Q−
2
r

PBBT P+
2

ρ2 PBBT P= 0 (11)

wherer ≤ 2ρ2. Substituting (9) into (1), we will have

x(n) = f (x)+b[û(x |W )− v]+d (12)

After some straightforward manipulation, we can
obtain the error of the closed-loop system

ė= Ae+B[u∗(x)− û(x |W )]+Bv−Bd/b (13)

where

A =











0 1 0 · · · 0 0
0 0 1 · · · 0 0

· · · · · ·
0 0 0 · · · 0 1

−kn −kn−1 −kn−2 · · · −k2 −k1











,B =













0
0
...
0
b













LS-SVM is used to approximate the optimal control.
The output of LS-SVM is

û(x |W ) = WT β (14)

where

W = [ w1 w2 · · · wN+1]
T ,

β (x) = [1,K(x1,x), · · · ,K(xN ,x)]
T .

The following objective is to design the controlu and
the adaptive law of the weight vectorW to realize the
control task. First, the optimal weight vectorW∗ is
defined as

W∗ = arg min
W∈Ω

[

sup
x∈D

|û(x |W )−u∗(x)|
]

(15)

whereΩ = {W |‖W‖ ≤ M} andD = {x |‖x‖ ≤ M1}
are the feasible region of the weight vector and the state
vector, respectively,M and M1 are specified by the
designer. We assume thatW and x never reach the
boundaryΩ andD. The minimum approximation error is
defined as

ωn = u∗(x)− û(x|W ∗) (16)

Substituting (14) and (16) into (13), we get the error
equation of the closed-loop system

ė= Ae+B{[u∗(x)− û(x |W∗ )]
+[û(x |W∗ )− û(x |W )]}+Bv−Bd/b (17)

or equivalently

ė= Ae−BW̃T β +Bv+Bω (18)

whereω = ωn − d/b, andW̃ = W −W∗ is the estimate
error of the parameter vectorW.

Ẇ = ηeT PBβ (19)

Theorem.For the nonlinear system (1) if the adaptive
control scheme based on LS-SVM is chosen as (9), and the
adaptive law of the parameter is chosen as (19), then the
whole adaptive control scheme guarantees the following
properties:

i) x,u ∈ L∞.
ii) the following H∞ tracking performance (2) will be

achieved with the given inhibitory levelρ .
Proof. We choose the Lyapunov function as

V =
1
2

eT Pe+
1

2η
W̃T W̃ (20)
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Differentiated with respect tot, we get

V̇ =
1
2
(ėT Pe+eT Pė)+

1
2η

(̇̃W
T
W̃ +W̃T˙̃W) (21)

Sincė̃W = Ẇ, and according to (18), (21) becomes

V̇ = 1
2[e

T AT Pe+ vBT Pe−W̃T βBT Pe+
ωBT Pe+ 1

η
˙̃W

T
W̃+eT PAe+eT PBv−

eT PBW̃T β +eT PBω + 1
η W̃T˙̃W]

(22)

From (10), we can obtain

V̇ = 1
2eT (PA+AT P− 2

r eT PBBT P)e−
W̃T (βBT Pe− 1

η Ẇ)+ 1
2ωBT Pe+ 1

2eT PBω]
(23)

Based on the adaptive law (19) and the Riccati equation
(11), we can obtain

V̇ =−1
2eT Qe− 1

2ρ2 eT PBBT Pe+ 1
2ωBT Pe

=−1
2eT Qe− 1

2

(

1
ρ BT Pe−ρω

)T (
1
ρ BT Pe−ρω

)

+ 1
2ρ2ω2

≤−1
2eT Qe+ 1

2ρ2ω2 ≤ −1
2λmin(Q)‖e‖2 + 1

2ρ2|ω̄|2

(24)
whereω̄ is the upper bound ofω, λmin(Q) is the minimum
eigenvalue of the matrixQ. From the above equation, we
can know when‖e‖ ≥ ρ |ω̄ |/λmin(Q), thenV̇ < 0. Hence,
we can establish thatx,u ∈ L∞.

Integrating the above equation from 0 tot̄ yields

V (T )−V (0)≤−
1
2

∫ t̄

0
eT Qedt +

1
2

ρ2
∫ t̄

0
ωT ωdt (25)

SinceV (T )≥ 0, from (25) we can obtain

1
2

∫ t̄
0 eT Qedt ≤V (0)+ 1

2ρ2∫ t̄
0 ω2dt = 1

2eT (0)Pe(0)+

1
2η W̃T (0)W̃(0)+ 1

2ρ2
t̄
∫

0
ωT ωdt

(26)
Therefore, the theorem holds.�

5 Simulation Result

Consider the following nonlinear system






ẋ1 = x2

ẋ2 =−0.1x2− x3
1+12cost +u+d

y = x1

(27)

where f = −0.1x2 − x3
1 + 12cost, b = 1, d is the square

wave disturbance whose vibration amplitude is±1, and
period is 2π.

In this example, in order to research the control effect
for nonlinear systems, we will adopt the LS-SVM and
neural networks to construct the adaptive controller,
respectively. The reference signal is assumed to be
ym = sint. Let k = [k2,k1]

T = [1,2]T , and the control is
chosen as

u∗ = [−0.1x2− x3
1+12cost −sint +2ė+ e]

The initial condition is assumed to be
x1(0) = x2(0) = 0. To collect the training data, the
Gaussian noise with zero mean and standard deviation 1
is selected as the input. By solving the physical model
(27) using the fourth-order Runge-Kutta method, the
input and output data of (27) are collected. The
two-dimensional search space ofγ andσ2 is [1, 104 ] and
[0.1, 103 ]. The population size and the maximum
generation number are set to 30 and 100, respectively. By
the proposed GA-based tuning method with the 5-fold
cross-validation error as fitness, the optimal set of(γ ,σ2)
is found at(5188.8,9.7).

Select the positive definite matrixQ = diag(10,10),
and the given inhibitory levelρ = 0.1,0.05, and
r = 0.02,0.005. Then after solving the Riccati equation
(11), we obtain the positive definite matrix

A =

[

0 1
−1 −2

]

,P=

[

15 5
5 5

]

The simulation results are shown in Fig.2 (ρ = 0.1)
and Fig.3 (ρ = 0.05).

(a) Tracking error

 (b) Control input  
(b) Control input

Fig. 2 Simulation results withρ = 0.1
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 (a) Tracking error
(a) Tracking error

(b) Control input
(b) Control input

Fig. 3 Simulation results withρ = 0.05

According to the simulation results, we can conclude
when the value ofρ is smaller, the tracking effect is
better, but the control gain is bigger accordingly (the
control input ranges from−14.3508 to 13.707 inρ = 0.1,
and the control input ranges from−17.8989 to 14.2823 in
ρ = 0.05). Hence, the reasonable selection for the
inhibitory level ρ is very necessary in practical
applications.

At the same time, the control precision based on LS-
SVM (the average error is 0.0057 withρ = 0.1 and 0.0021
with ρ = 0.05) is higher than that based on neural networks
(the average error is withρ = 0.1 and 0.0113 with ρ =
0.05).

6 Conclusions

A direct adaptiveH∞ control scheme based on LS-SVM is
developed for a class of nonlinear uncertain systems.
LS-SVM is employed to approximate the optimal control,
and an on-line learning rule for the weighting vector and
bias is derived. The GA is adopted to optimize the
parameters of LS-SVM.H∞ control is used to attenuate
the effect on the tracking error caused by LS-SVM
approximation errors and external disturbance. Based on
Lyapunov stability theory, it is rigorously proved that the
stability of the whole closed-loop system is assured and
the tracking performance is achieved.

Acknowledgement

This work was supported in part by the Fundamental
Research Funds for the Central under Grant.

References

[1] J. A. K. Suykens. Nonlinear modeling and support vector
machines. Proceeding of the 18th IEEE Conference on
Instrumentation and Measurement Technology, New York:
Institute of Electrical and Electronics Engineers Inc, 187-294
(2001).

[2] J. A. K. Suykens. Support vector machines: a nonlinear
modeling and control perspective. European Journal of
Control,7, 311-327 (2001).

[3] J. A. K. Suykens, J. Vandewalle, B. De Moor. Optimal control
by least squares support vector machines. Neural Networks,
14, 23-35 (2001).

[4] X. C. Xi, A. N. Poo, S. K. Chou. Support vector
regression model predictive control on a HVAC plant. Control
Engineering Practice,15, 897-908 (2007).

[5] S. plikci. Support vector machines based neuro-fuzzy control
of nonlinear systems. Neurocomputing,73, 2097-2107
(2010).

[6] J. Shin, H. J. Kim, Y. Kim. Adaptive support vector regression
for UAV flight control. Neural Networks,24, 109-120 (2011).

[7] J. H. Holland. Adaptation in Natural and Artificial Systems.
Ann Arbor, Michigan: University of Michigan Press, (1975).

[8] D. E. Goldberg. Generic Algorithm In Search, Optimization,
and Machine Learning. Reading, Massachusets: Addison-
Wesley, (1989).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


292 D. Zhao et al: Direct AdaptiveH∞ Control for a Class of...

Dan-Dan Zhao received
his Master degree in
Computer Application
Technology from Liaoning
Shihua University, China,
in 2003. Her expertise
is on adaptive control,
machine learning and
information processing.

Chun-Li Xie
received his Ph.D. degree
in Control Theory and
Control Engineering
from Dalian University of
Technology, China, in 2011.
His expertise is on adaptive
control, machine learning and
application. Corresponding
author of this paper.

Pei-Chang Wang
received his Ph.D. degree
in Control Theory and
Control Engineering from
The National Polytechnic
Institute of Lorraine
(in French, l’Institut National
Polytechnique de Lorraine,
or INPL), France, in 1990.
His expertise is on intelligent
information processing.

c© 2014 NSP
Natural Sciences Publishing Cor.


	Introduction
	Problem Formulation
	LS-SVM and Its Parameter Selection
	Direct Adaptive H Controller Design and Stability Analysis Based on LS-SVM
	Simulation Result
	Conclusions

