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Abstract: In this paper, a numerical algorithm, based on the use of genetic algorithmtechnique, is presented for solving a class of
nonlinear systems of second-order boundary value problems. In thistechnique, the system is formulated as an optimization problem by
the direct minimization of the overall individual residual error subject tothe given constraints boundary condtions, and is then solved
using continuous genetic algorithm. In general, the proposed technique uses smooth operators and avoids sharp jumps in the parameter
values. The applicability, efficiency, and accuracy of the proposed algorithm for the solution of different problems is investigated.
Meanwhile, the convergence analysis based on the resulting statistical datais also discussed.
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1 Introduction

Systems of second-order boundary value problems
(BVPs) occur frequently in applied mathematics,
engineering, theoretical physics, biology and so on [1,2,
3]. If the systems of second-order BVPs cannot be solved
analytically because, generally, the solution cannot be
exhibited in a closed form even when it exists, which is
the usual case, then recourse must be made to numerical
and approximate methods.

Many classical numerical methods used with
second-order initial value problems cannot be applied to
second-order BVPs. We all know that the finite difference
method can be used to solve linear second-order BVPs,
but it can be difficult to solve nonlinear second-order
BVPs. Furthermore, the finite difference method requires
some major modifications that include the use of some
root-finding technique while solving nonlinear
second-order BVPs. For a nonlinear system of
second-order BVPs, there are few valid methods to obtain
numerical solutions.

In this paper, we apply the continuous genetic
algorithm (CGA) (The term ”continuous” is used to

emphasize that the continuous nature of the optimization
problem and the continuity of the resulting solution
curves) for the solution of the following nonlinear system
of second-order BVPs [4]:

a1,0 (x)u
′′

1(x)
+a1,1 (x)u

′

1(x) + a1,2 (x)u1(x)
+a1,3 (x)u

′′

2(x) + a1,4 (x)u
′

2(x)
+a1,5 (x)u2(x) +G1 (x, u1(x), u2(x)) = f1 (x) ,

a2,0 (x)u
′′

2(x)
+a2,1 (x)u

′

2(x) + a2,2 (x)u2(x)
+a2,3 (x)u

′′

1(x) + a2,4 (x)u
′

1(x)
+a2,5 (x)u1(x) +G2 (x, u1(x), u2(x)) = f2 (x) ,

(1)

subject to the boundary conditions

u1(a) = α1, u1(b) = β1,

u2(a) = α2, u2(b) = β2,
(2)

where a ≤ x ≤ b, αk, βk, k = 1, 2 are real finite
constants,G1, G2 are nonlinear functions ofu1, u2, and
f1, f2 and a1,i, a2,i, i = 0, 1, 2, 3, 4, 5 are continuous
functions on[a, b].

The previous studies for system (1) and (2) can be
summarized as follows: in [5], the authors have discussed
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the existence of solutions, including the approximation of
solutions via finite difference equations. Recently, the
iterative reproducing kernel method and a combination of
homotopy perturbation and reproducing kernel methods
are carried out in [6,7]. The authors in [4,8,9] have
developed the sinc-collocation, the homotopy
perturbation, and the cubic B-spline scaling function
methods to solve system (1) and (2). In [10] also, the
author has provided the variational iteration method to
further investigation to the aforementioned system.
Furthermore, the homotopy analysis method has been
applied to solve system (1) and (2) as described in [11].
Finally, the B-spline method for solving the linear form of
system (1) is proposed recently in [12]. On the other
hand, the numerical solvability of other version of
differential equations and other related equations can be
found in [13,14,15] and references therein.

CGA was developed in [16] as an efficient method for
the solution of optimization problems in which the
parameters to be optimized are correlated with each other
or the smoothness of the solution curve must be achieved.
It has been successfully applied in the motion planning of
robot manipulators, which is a highly nonlinear, coupled
problem [17], in the numerical solution of two-point
BVPs [18], and in the solution of optimal control
problems [19]. Their novel development has opened the
doors for wide applications of the algorithm in the fields
of mathematics and engineering. It has been also applied
in the solution of fuzzy differential equations [20]. The
reader is asked to refer to [16,17,18] in order to know
more details about CGA, including their justification for
use, conditions on smoothness of the functions used in the
algorithm, several advantages of CGA over conventional
GA (discrete version) when it is applied to problems with
coupled parameters and(or) smooth solution curves, etc.

In this paper, we introduce a novel method based on
CGA for numerically approximating a solution of
nonlinear systems of second-order BVPs (1) and (2). The
new method has the following characteristics; first, it
should not require any modification while switching from
the linear to the nonlinear case; as a result, it is of
versatile nature. Second, its ability to solve nonlinear
system (1) and (2) without the use of other numerical
techniques. Third, it should not resort to more advanced
mathematical tools; that is, the algorithm should be
simple to understand, implement, and should be thus
easily accepted in the mathematical and engineering
application’s fields. Fourth, the algorithm is of global
nature in terms of the solutions obtained as well as its
ability to solve other mathematical and engineering
problems. Fifth, it requires the minimal amount of
information about specific problems; as a result, the
discretized form of system (1) and (2) is the only required
step that differs from one problem to another one.

This paper is organized in six sections including the
introduction. In Section2, a short preface to optimization
is presented. In Section3, we formulate the system of
second-order BVPs as an optimization problem. Section4

covers the description of GA and CGA in detail.
Numerical examples and convergence analysis are
presented in Section5. Finally, in Section 6 some
concluding remarks are presented.

2 Preface to optimization

Optimization plays a crucial role in various disciplines in
sciences, industry, engineering, and almost in every aspect
of the daily life. Optimization problems are encountered,
for example, in communication systems, antenna design,
applied mathematics, medicine, economic, and so on.

In mathematics, statistics, empirical sciences,
computer science, or management science, mathematical
optimization is the selection of a best element with regard
to some criteria from some set of available alternatives. In
the simplest case, an optimization problem consists of
maximizing or minimizing a real function by
systematically choosing input values from within an
allowed set and computing the value of the function. The
generalization of optimization theory and techniques to
other formulations comprises a large area of applied
mathematics. More generally, optimization includes
finding best available values of some objective function
given a defined domain, including a variety of different
types of objective functions and different types of
domains. Normally, there is no single answer for any
optimization problem, and it is necessary to choose the
best solution for a given problem from the multitude of
possible solutions. To achieve this, it is necessary to
define the objective function.

Optimization problems can be divided into two
categories depending on whether the solution is
continuous or discrete. An optimization problem with
discrete solution is known as a conventional optimization
problem, while the continuous version is known as a
continuous optimization problem.

3 Formulation of the optimization problem

An optimization problem is the problem of finding the
best solution from all feasible solutions. In this section,
the system (1) is formulated as an optimization problem
based on the minimization of the cumulative residual of
all unknown interior nodes.

For the first step of formulation, the independent
interval [a, b] is partitioned intoN subintervals of equal
length h given ash = (b− a) /N . The mesh points,
nodes, are obtained using the equationxi = a + ih,
i = 0, 1, . . . , N . Thus, at the interior mesh points,xi,
i = 1, 2, . . . , N − 1, the system to be approximated is
given as:

F1(xi, u1 (xi) , u
′

1 (xi) ,
u′′

1 (xi) , u2 (xi) , u
′

2 (xi) , u
′′

2 (xi)) = 0,

F2(xi, u1 (xi) , u
′

1 (xi) ,
u′′

1 (xi) , u2 (xi) , u
′

2 (xi) , u
′′

2 (xi)) = 0,

(3)
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subject to the boundary conditions

u1 (x0) = α1, u1 (xN ) = β1,

u2 (x0) = α2, u2 (xN ) = β2,

wherex1 ≤ xi ≤ xN−1, i = 1, 2, . . . , N − 1, andF1, F2

are given by:

F1(xi, u1 (xi) , u
′

1 (xi) ,
u′′

1 (xi) , u2 (xi) , u
′

2 (xi) , u
′′

2 (xi)) = a1,0 (xi)u
′′

1(xi)
+a1,1 (xi)u

′

1(xi) + a1,2 (xi)u1(xi)
+a1,3 (xi)u

′′

2(xi) + a1,4 (xi)u
′

2(xi)
+a1,5 (xi)u2(xi) +G1 (xi, u1(xi), u2(xi))− f1 (xi) ,

F2(xi, u1 (xi) , u
′

1 (xi) ,
u′′

1 (xi) , u2 (xi) , u
′

2 (xi) , u
′′

2 (xi)) = a2,0 (xi)u
′′

2(xi)
+a2,1 (xi)u

′

2(xi) + a2,2 (xi)u2(xi)
+a2,3 (xi)u

′′

1(xi) + a2,4 (xi)u
′

1(xi)
+a2,5 (xi)u1(xi) +G2 (xi, u1(xi), u2(xi))− f2 (xi) .

The CGA approach for numerically approximating
the solution to system (1) and (2) consists of replacing
each derivative in the differential system by a difference
quotient, which closely approximates that derivative when
h is small. On the other hand, the difference
approximation formulas, which closely approximate
u′

k (xi) andu′′

k (xi), k = 1, 2, i = 1, 2, . . . , N − 1 using
(n+ 1)-point at the interior mesh points with error of
order O

(

hn−m+1
)

, wheren = 2, 3, . . ., N andm = 1, 2
is the order of the derivative can be easily obtained by
using Algorithm (6.1) in [21]. We mention here that the
numbern is starting from2 and gradually increases up to
N . To complete the formulation substituting the
approximate formulas ofu′

k (xi) andu′′

k (xi), k = 1, 2 in
system (3), a discretized form of system (1) is obtained.
The resulting algebraic equations will be a discrete
function of xi, uk

(

xi−(n−1)

)

, uk

(

xi−(n−2)

)

, ..., and
uk

(

xi+(n−1)

)

, k = 1, 2. After that, it is necessary to
rewrite the discretized system in the form of the
following:

F1(xi, u1

(

xi−(n−1)

)

,
u1

(

xi−(n−2)

)

, ..., u1

(

xi+(n−1)

)

,
u2

(

xi−(n−1)

)

, u2

(

xi−(n−2)

)

, ..., u2

(

xi+(n−1)

)

) ≈ 0,

F2(xi, u1

(

xi−(n−1)

)

,
u1

(

xi−(n−2)

)

, ..., u1

(

xi+(n−1)

)

,
u2

(

xi−(n−1)

)

, u2

(

xi−(n−2)

)

, ..., u2

(

xi+(n−1)

)

) ≈ 0.

The residual of the general interior node,i = 1, 2, . . .,
N − 1, denoted by Res, is defined as:

Res1 (i) = F1(xi, u1

(

xi−(n−1)

)

,
u1

(

xi−(n−2)

)

, ..., u1

(

xi+(n−1)

)

,
u2

(

xi−(n−1)

)

, u2

(

xi−(n−2)

)

, ..., u2

(

xi+(n−1)

)

),

Res2 (i) = F2(xi, u1

(

xi−(n−1)

)

,
u1

(

xi−(n−2)

)

, ..., u1

(

xi+(n−1)

)

,
u2

(

xi−(n−1)

)

, u2

(

xi−(n−2)

)

, ..., u2

(

xi+(n−1)

)

).

The overall individual residual, Oir, is a function of the
residuals of all interior nodes. It may be stated as:

Oir =

√

N−1
∑

i=1

(Res1 (i))
2
+ (Res2 (i))

2
.

The fitness function, Fit, plays a fundamental rule in
optimization techniques (continuous and conventional
version) and its applications. This function is required in
our work in order to convert the minimization problem
into a maximization problem. In fact, we do this to
facilitate the calculations and planning graphics. A
suitable fitness function used in this work is defined as:

Fit =
1

1 + Oir
.

In fact, the value of individual fitness is improved if a
decrease in the value of the Oir is achieved. On the other
hand, the optimal solution of the problem, nodal values,
will be achieved when Oir approaches zero and thus Fit
approaches unity.

4 Steps of CGA technique

The following account presents a brief review of the GA.
After that, a detailed description of the CGA is given.
Moreover, the design of the CGA operators and the
settings of the system parameters will be shown later to
be the key factors on which the efficiency and
performance of CGA rely.

A GA is an optimization technique that mimics
biological evolution as a problem-solving strategy. Given
a specific problem to solve, the input to the GA is a set of
potential solutions to that problem, encoded in some
fashion, and a metric called a fitness function that allows
each candidate to be quantitatively evaluated. These
candidates may be solutions already known to work, with
the aim of the GA being to improve them, but more often
they are generated at random. The GA then evaluates
each candidate according to the fitness function. In a pool
of randomly generated candidates, of course, most will
not work at all, and these will be deleted. However, purely
by chance, a few may hold promise-they may show
activity, even if only weak and imperfect activity, toward
solving the problem.

These promising candidates are kept and allowed to
reproduce. Multiple copies are made of them, but the
copies are not perfect; random changes are introduced
during the copying process. These digital offspring then
go on to the next generation, forming a new pool of
candidate solutions, and are subjected to a second round
of fitness evaluation. Those candidate solutions which
were worsened, or made no better, by the changes to their
code are again deleted; but again, purely by chance, the
random variations introduced into the population may
have improved some individuals, making them into better,
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more complete or more efficient solutions to the problem
at hand. Again these winning individuals are selected and
copied over into the next generation with random
changes, and the process repeats. The expectation is that
the average fitness of the population will increase each
round, and so by repeating this process for hundreds or
thousands of rounds, very good solutions to the problem
can be discovered.

As astonishing and counterintuitive as it may seem to
some, GA has proven to be an enormously powerful and
successful problem-solving strategy, dramatically
demonstrating the power of evolutionary principles. GA
has been used in a wide variety of fields to evolve
solutions to problems as difficult as or more difficult than
those faced by human designers. Moreover, the solutions
they come up with are often more efficient, more elegant,
or more complex than anything comparable a human
engineer would produce.

On the other aspect, GA can be distinguished from
calculus-based and enumerative methods for optimization
by the following characteristics [22,23,24,25,26,27,28]:

1. GA searches for optimal solution using a population
of individuals, not a single individual. This very important
characteristic gives GA much of its search power and also
points to its parallel nature.

2. GA uses only objective function information. No
other auxiliary information is required. Much of the
interest in GA technique is due to the fact that they belong
to the class of efficient domain-independent search
strategies that are usually superior in performance to
traditional methods without the need to incorporate
highly domain-specific knowledge.

3. GA uses probabilistic transition rules, not
deterministic rules, in contrast with the calculus based
and enumerative methods.

Remark.When using GA in optimization problems, one
should pay attention to two points; first, whether the
parameters to be optimized are correlated with each other
or not. Second, whether there is some restriction on the
smoothness of the resulting solution curve or not. In case
of uncorrelated parameters or non-smooth solution
curves, the conventional GA will perform well. On the
other hand, if the parameters are correlated with each
other or smoothness of the solution curve is a must, then
the CGA is preferable in this case [16,17,18,19,20].

The CGA proposed in this work consists of the
following steps [16,17,18,19,20]:

1. Initialization: The initialization function used in
the algorithm should be smooth from one side and should
satisfy constraint boundary conditions from the other
side. Two smooth functions that satisfy the boundary
conditions are chosen in this work, which include the
modified normal gaussian function (MNGF):

pj (k, i) = r (k, i) +A exp
(

−0.5
(

i−µ
σ

)2
)

sin
(

π
N
i
)

,

and the modified tangent hyperbolic function (MTHF):

pj (k, i) = r (k, i) +A tanh
(

i−µ
σ

)

sin
(

π
N
i
)

,

for eachi = 1, 2, . . . , N − 1, j = 1, 2, . . . , Np, andk =
1, 2, wherepj (k, i) is the i-th variable value of thek-th
curve for thej-th parent,r is the ramp function of thei-th
variable value of thek-th curve and defined as:

r (k, i) = αk + β
k
−αk

N
i,

µ, σ are random numbers within the range[1, N − 1] and
(0, (N − 1) /3], respectively, andNp is the population
size.

The two initialization functions differ from each other
by two main criteria: the convex or concave nature and
the possibility of any overshoot or undershoot of the
concerned function. The MNGF is either convex or
concave within the given range of the independent
variable while the MTHF is convex in a subinterval of the
independent variable and concave in the remaining
interval. The MNGF and MTHF, on the other hand, might
result in an overshoot or an undershoot, which might
exceed the values of the given boundary conditions at
some interior mesh points but not at the boundary point
{a, b} as will be shown later. The two initialization
functions are multiplied by the corrector function,
sin (πi/N), which guarantees that the two functions
always satisfy the given boundary conditions.

The choice ofA depend on the boundary conditions
αk andβk, k = 1, 2 as follows:A is any random number
within the range[−3 |βk − αk| , 3 |βk − αk|] if βk − αk

differ from zero, within the range[−3αk, 3αk] if βk − αk

vanished, and finally within the range
[− (N − 1) /3, (N − 1) /3] if βk and αk are both
vanished. It is to be noted that for both initialization
functions, A specifies the amplitude of the corrector
function andσ specifies the degree of dispersion. For
smallσ the parameterµ specifies the center of the MNGF,
while µ specifies the intersection point between the ramp
function and the MTHF, which determines the convexity
point. The two initialization functions together with the
ramp function are shown in Figure1.

The previously mentioned parameterµ, σ andA are
generated randomly due to the fact that the required
solutions are not known for us, and in order to make the
initial population as much diverse as we can, randomness
should be there to remove any bias toward any solution.
The mentioned diversity is the key parameter in having an
information-rich initial population. In other cases where
one of the boundaries of the solution curves is unknown,
the reader is kindly requested to go through [19] for
comparison and more details.

2. Evaluation: The fitness, a nonnegative measure of
quality used to reflect the degree of goodness of the
individual, is calculated for each individual in the
population.

3. Selection: In the selection process, individuals are
chosen from the current population to enter a mating pool
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(a)

(b)

Fig. 1 Initialization process: (a)——— MNGF and· · · · · · ramp
function; (b)——— MTHF and· · · · · · ramp function.

devoted to the creation of new individuals for the next
generation such that the chance of selection of a given
individual for mating is proportional to its relative fitness.
This means that the best individuals receive more copies
in subsequent generations so that their desirable traits
may be passed onto their offspring. This step ensures that
the overall quality of the population increases from one
generation to the next.

4. Crossover: Crossover provides the means by
which valuable information is shared among the
individuals in the population. It combines the features of
two parent individuals, says andh, to form two children
individuals, sayl and l + 1, that may have new patterns
compared to those of their parents and plays a central role
in algorithm. The crossover process is expressed as:

cl (k, i) = c (k, i) ps (k, i) + (1− c (k, i)) ph (k, i) ,

cl+1 (k, i) = (1− c (k, i)) ps (k, i) + c (k, i) ph (k, i) ,

c (k, i) = 0.5
(

1 + tanh
(

i−µ
σ

))

,

for eachi = 1, 2, . . . , N−1 andk = 1, 2, whereps andph
represent the two parents chosen from the mating pool,cl
andcl+1 are the two children obtained through crossover
process, andc represents the crossover weighting function
within the range[0, 1]. The parametersµ andσ are as given
in the initialization process.

Figure 2 shows the crossover process in a solution
curve for the two random parents. It is clear that new
information is incorporated in the children while
maintaining the smoothness of the resulting solution
curves.

(a)

(b)

Fig. 2 Crossover process: (a)——— first child and· · · · · · ramp
function; (b)——— second child and· · · · · · ramp function.

5. Mutation: The mutation function may be any
continuous function within the range[0, 1] such that the
mutated child solution curve will start with the solution
curve of the child produced through the crossover process
and gradually changes its value till it reaches the solution
curve of the same child at the other end. Mutation is often
introduced to guard against premature convergence.
Generally, over a period of several generations, the gene
pool tends to become more and more homogeneous. The
purpose of mutation is to introduce occasional
perturbations to the parameters to maintain genetic
diversity within the population. The mutation process is
governed by the following formulas:

mj (k, i) = cj (k, i) +Am (k, i) sin
(

π
N
i
)

,

m (k, i) = exp
(

−0.5
(

i−µ
σ

)2
)

,

for eachi = 1, 2, . . . , N − 1, j = 1, 2, . . . , Np, andk =
1, 2, wherecj represents thej-th child produced through

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


240 O. Abu-Arqub et al: Application of Continuous Genetic Algorithm ...

the crossover process,mj is the mutatedj-th child, andm
is the gaussian mutation function. The parameterA is as
given in the initialization process.

Regarding the mutation center,µ, and the dispersion
factor,σ, used in the mutation process, three methods are
used for generating the mutation center where each
method is applied to one-third of the population and two
methods are used for generating the dispersion factor
where each method is applied to one-half of the
population. The reader is asked to refer to [18] in order to
know more details and descriptions about these methods.

The mutation process for a random child is shown in
Figure 3. As in the crossover process, some new
information is incorporated in the mutated child while
maintaining the smoothness of the resulting solution
curves.

(a)

(b)

Fig. 3 Mutation process: (a)——— mutated of first child and
· · · · · · ramp function; (b)——— mutated of second child and
· · · · · · ramp function.

6. Replacement: After generating the offspring’s
population through the application of the genetic
operators to the parents’ population, the parents’
population is totally or partially replaced by the
offspring’s population depending on the replacement
scheme used. This is known as non-overlapping,

generational, replacement. This completes the ”life cycle”
of the population.

7. Termination: The CGA is terminated when some
convergence criterion is met. Possible convergence
criteria are: the fitness of the best individual so far found
exceeds a threshold value, the maximum nodal residual of
the best individual of the population is less than or equals
some predefined threshold value, the maximum number
of generations is reached, or the improvement in the
fitness value of the best member of the population over a
specified number of generations is less than some
predefined threshold, is reached. After terminating the
algorithm, the optimal solution of the problem is the best
individual so far found. If the termination conditions are
not met, then the algorithm will go back to step2.

Remark.We mention here the following facts about the
previously mentioned parametersA, µ, andσ: firstly, the
value of these parameters can gradually increase or
decrease out of the mentioned intervals that are given in
the initialization phase, crossover and mutation
mechanisms throughout the evolution process. Secondly,
these values are vary from process to process, from
generation to generation, and from curve to curve; this is
due to the fact that they are generated randomly.

It is to be noted that the two functions used in the
initialization phase of the CGA will smoothly oscillate
between the two ends with a maximum number of single
oscillation. If the final solution curves will have more
smooth oscillations than one oscillation, then this will be
done during the crossover and mutation mechanisms
throughout the evolution process. This is actually done by
those two operators during the run of the algorithm while
solving a problem. However, the evaluation step in the
algorithm will automatically decide whether they are
rejected or accepted modifications due to their fitness
function value.

To summarize the evolution process in CGA an
individual is a candidate solution that consists of two
curves each ofN − 1 nodal values. The population of
individuals undergoes the selection process, which results
in a mating pool among which pairs of individuals are
crossed over with probabilitypci within that pair of
parents, individual solution curves are crossed with
probability pcc. This process results in an offspring
generation where every child undergoes mutation with
probability pmi, within that child individual solution
curves are mutated with probabilitypmc. After that, the
next generation is produced according to the replacement
strategy applied. The complete process is repeated till the
convergence criterion is met where the two curves of the
best individual are the required solution curves. The final
goal of discovering the required nodal values is translated
into finding the fittest individual in genetic terms.
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5 Numerical and convergence analysis

In this section, some numerical problems are studied to
demonstrate the accuracy and applicability of the present
technique. Results obtained are compared with the
analytical solution of each problem in different ways and
are found to be in good agreement with each other. The
effects of various CGA operators and control parameters
on the convergence speed of the proposed algorithm are
also investigated in this section. The analysis includes the
effect of various initialization methods on the
convergence speed of the algorithm in addition to an
analysis of the curve crossover and curve mutation
probabilities, population size, maximum nodal residual,
and the step size effect. In the process of computation, all
the symbolic and numerical computations were
performed by using Visual Basic platform.

The CGA proposed in this paper is used to solve the
given system of second-order BVPs. The input data to the
algorithm is divided into two parts; the CGA related
parameters and the system of second-order BVPs related
parameters. The CGA related parameters include the
population size,Np, the individual crossover probability,
pci, the curve crossover probability,pcc, the individual
mutation probability,pmi, the curve mutation probability,
pmc, the initialization method, the selection scheme used,
the replacement method, the immigration threshold value
and the corresponding number of generations, and finally
the termination criterion. The system of second-order
BVP related parameters include the governing differential
system, the independent interval[a, b], the step size,h, the
boundary values,α, β, and finally the number of nodes,
N . However, the input data to the algorithm are as
follows:

Parameter Description
Np = 500 Population size
pci = 0.9 Individual crossover probability
pcc = 0.5 Curve crossover probability
pmi = 0.9 Individual mutation probability
pmc = 0.5 Curve mutation probability
Rbr = 0.1 Rank-based ratio

In order to the initialization, mixed methods for
initialization schemes in the CGA are used where half of
the population is generated by the MNGF, while the other
half generated using the MTHF. The rank-based selection
strategy is used where the rank-based ratio is set to0.1.
Generational replacement scheme is applied where the
number of elite parents that are passed to the next
generation equals one-tenth of the population size. The
termination criterion used for each problem is a problem
dependent and varies from one case to another. However,
the CGA is stopped when one of the following conditions
is met. First, the fitness of the best individual of the
population reaches a value of0.99999. Second, the
maximum nodal residual of the best individual of the
population is less than or equal to0.00000001. Third, a
maximum number of3000 generations is reached. Fourth,

the improvement in the fitness value of the best individual
in the population over500 generations is less than0.001.
It is to be noted that the first two conditions indicate to a
successful termination process (optimal solution is
found), while the last two conditions point to a partially
successful end depending on the fitness of the best
individual in the population (near-optimal solution is
reached) [16,17,18,19,20].

Due to the stochastic nature of CGA, twelve different
runs were made for every result obtained in this work using
a different random number generator seed; results are the
average values of these runs. This means that each run of
the CGA will result in a slight different result from the
other runs. On the other hand, the system of second-order
BVPs related parameters are depend on the nature of the
problem and will be determined later in the same problem.

Problem 1.Consider the following linear system [8]:

u′′

1 (x) + xu1 (x) + xu2 (x) = f1 (x) ,

u′′

2 (x) + 2xu1 (x) + 2xu2 (x) = f2 (x) ,

subject to the boundary conditions

u1 (0) = 0, u1 (1) = 0,

u2 (0) = 0, u2 (1) = 0,

where0 ≤ x ≤ 1, f1 (x) = 2, andf2 (x) = −2. The exact
solutions are:u1 (x) = x2 − x andu2 (x) = x− x2.

Problem 2.Consider the following nonlinear system [4]:

u′′

1 (x) + xu1 (x) + 2xu2 (x) + xu2
1 (x) = f1 (x) ,

u′

2 (x) + u2 (x) + x2u1 (x) + sin (x)u2
2 (x) = f2 (x) ,

subject to the boundary conditions

u1 (0) = 0, u1 (1) = 0,

u2 (0) = 0, u2 (1) = 0,

where 0 ≤ x ≤ 1,
f1 (x) = 2x sin (πx) + x2 − 2x4 + x5 − 2, andf2 (x) =
sin (πx) (1 + sin (x) sin (πx)) + π cos (πx) + x3 − x4.
The exact solutions are:u1 (x) = x − x2 and
u2 (x) = sin (πx).

Problem 3.Consider the following nonlinear system [7]:

u′′

1 (x) + 20u′

1 (x)
+4 cos (x)u1 (x) + sin (u1 (x)u2 (x)) = f1 (x) ,

u′′

2 (x) + 5exu′

2 (x)
+6 sinh (x)u2 (x) + cos (u2 (x)) = f2 (x) ,

subject to the boundary conditions

u1 (0) = 1, u1 (1) = e,

u2 (0) = 0, u2 (1) = sinh (1) ,

where0 ≤ x ≤ 1, f1 (x) = sin (ex sinh (x)) + 21ex +
4ex cos (x), andf2 (x) = cos (sinh (x)) + 11 cosh2 (x) +
5 sinh (x) cosh (x)+sinh (x)−6. The exact solutions are:
u1 (x) = ex andu2 (x) = sinh (x).
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Throughout this paper, we will try to give the results
of the three problems; however, in some cases we will
switch between the results obtained for the problems in
order not to increase the length of the paper without the
loss of generality for the remaining problems and results.
The convergence speed of the algorithm, whenever used,
means the average number of generations required for
convergence. The step size for the three problems is fixed
at 0.1 and thus, the number of interior nodes equals9 for
all problems.

The convergence data of the three problems is given
in Table1. It is clear from the table that the problems take
1387 generations, on average, to converge to a fitness
value of about0.99999469 with an average absolute nodal
residual of the value3.31605833 × 10−7 and an average
absolute nodal error of the value2.87790635× 10−8.

The evolutionary progress plots, of the best-fitness
individual of Problems1, 2, and3 are shown in Figure4.
It is clear from the figure that, in the first50% of
generations the best-fitness approaches to one very fast,
after that, it approaches to one slower. That means the
approximate of CGA converge to the actual solution very
fast in the first50% of the generations.

The way in which the nodal values evolve for Problem
3 is studied next. Figure5 shows the evolution of the first,
x1, and middle,x5, nodal values ofu1 (x), while Figure6
shows the evolution of the middle,x5, and ninth,x9, nodal
values ofu2(x).

It is observed that from the evolutionary plots that the
convergence process is divided into two stages: the
coarse-tuning stage and the fine-tuning stage, where the
coarse-tuning stage is the initial stage in which
oscillations in the evolutionary plots occur, while the
fine-tuning stage is the final stage in which the
evolutionary plots reach steady-state values and do not
have oscillations by usual inspection. In other words,
evolution has initial oscillatory nature for all nodes, in the
same problem. As a result, all nodes, in the same
problem, reach the near optimal solution together. The
average percentage of the fine-tuning stage till
convergence from the total number of generations across
all nodes of the three problems is given in Table2. It is
clear from the table that the problems spent about30% of
generations, on average, in the coarse-tuning stage, while
the remaining70% is spent in the fine-tuning stage.

The graphs of the exact and approximate solutions of
u1 (x) andu2 (x) for Problem1 are depicted in Figure7,
while the graphs of the absolute error and absolute residual
across all nodes are plotted in Figure8. It is to be noted that
the accuracy of certain node is inversely proportional to its
distance (number of nodes) from the boundaries. From the
last mentioned Figures, we see that we can achieve a good
approximation with the exact solution.

The effect of the step size on the convergence speed
and the corresponding maximum error and maximum
residual is explored next. Tables3 and4 give the relevant
data for Problem2, where the number of nodes covers the
range from10 to 80. It is observed that the reduction in

(a)

(b)

(c)

Fig. 4 Evolutionary progress plots for the best-of-generation
individual across all generations for: (a) Problem1; (b) Problem
2; (c) Problem3.

the step size results in a reduction in the error and
correspondingly an improvement in the accuracy of the
obtained solution. This goes in agreement with the known
fact about finite difference schemes where more accurate
solutions are achieved using a reduction in the step size.
On the other hand, the cost to be paid while going in this
direction is the rapid increase in the number of
generations required for convergence. For instance, while
reducing the step size from0.1 to 0.05, the required
number of generations for convergence jumps from
almost1300 to 1600, i.e.1.23 multiplication factor.
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Table 1 Convergence data of the three problems.

Problem Average generations Average fitness Average error Average residual
1 1503 0.99999765 3.74820144× 10−8 5.29666249× 10−7

2 1359 0.99999303 4.64375608× 10−8 3.87627057× 10−7

3 1299 0.99999339 2.41761536× 10−9 7.75241930× 10−8

Table 2 Average percentage of the coarse-tuning stage of the three problems.

Dependent variable Problem1 Problem2 Problem3
u1 (x) 28% 31% 29%
u2 (x) 29% 30% 32%

Table 3 The influence of the step size on the convergence speed and the corresponding error ofu1 (x) for Problem2.

Step size Average generations Maximum absolute error Maximum absoluteresidual
0.1 1359 7.68619311× 10−8 5.41550512× 10−7

0.05 1671 9.97232193× 10−9 1.11413003× 10−8

0.025 1986 6.79438253× 10−10 7.30971949× 10−9

0.0125 2346 7.18387063× 10−11 4.09574688× 10−10

(a)

(b)

Fig. 5 Evolution of the nodal values ofu1 (x) for Problem3
across all generations at: (a) the first nodal; (b) the fifth nodal.

(a)

(b)

Fig. 6 Evolution of the nodal values ofu2 (x) for Problem3
across all generations at: (a) the fifth nodal; (b) the ninth nodal.
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Table 4 The influence of the step size on the convergence speed and the corresponding error ofu2 (x) for Problem2.

Step size Average generations Maximum absolute error Maximum absoluteresidual
0.1 1359 6.52892144× 10−8 4.47232193× 10−7

0.05 1671 9.18337204× 10−9 1.00726841× 10−8

0.025 1986 5.05074811× 10−10 5.25578188× 10−9

0.0125 2346 4.90500904× 10−11 2.15255136× 10−10

(a)

(b)

Fig. 7 Plot of the exact and approximate solutions for Problem
1, ——— exact solution and× × × approximate solution: (a)
u1 (x); (b) u2 (x).

Numerical comparisons for Problem2 are studied
next. The conventional numerical methods that are used
for comparison with CGA include the following:
sinc-collocation method [4], reproducing kernel method
[6], combination of homotopy perturbation and
reproducing kernel methods [7], cubic B-spline scaling
functions method [9]. Tables5 and6, show a comparison
between the absolute errors of our method together with
other aforementioned methods with20 points for the first
three methods and33 points for the latest method. As it is
evident from the comparison results, it was found that our
method in comparison with the mentioned methods is
much better with a view to accuracy and utilization.

The detailed data ofu1 (x) andu2 (x) for Problem3
that includes the exact nodal values, the CGA nodal values,

(a)

(b)

Fig. 8 Plot of the absolute error and absolute residual for
Problem1: (a)NNN absolute error ofu1 (x) and××× absolute
error ofu2 (x); (b) NNN absolute residual ofu1 (x) and×××

absolute residual ofu2 (x).

the absolute error, and the absolute nodal residuals is given
in Tables7 and8, respectively. It is clear that the accuracy
obtained using CGA is moderate since it has a truncation
error of the order O

(

h10
)

.

The influence of the population size on the
convergence speed of CGA is studied next for Problem3
as shown in Table9. The population size is increased in
steps of100 starting with 100 and ending with1000.
Small population sizes suffer from larger number of
generations required for convergence and the probability
of being trapped in local minima, while large population
size suffer from larger number of fitness evaluations that
means larger execution time. However, it is noted that the
improvement in the convergence speed becomes almost
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Table 5 Numerical comparison ofu1 (x) for problem2 using CGA with other methods.

Node Method of [4] Method of [6] Method of [7] Method of [9] Present method
0.08 1.4× 10−4 5.0× 10−4 7.7× 10−5 5.4× 10−10 3.1× 10−9

0.24 4.4× 10−5 1.4× 10−3 2.2× 10−4 1.2× 10−9 8.0× 10−9

0.40 6.7× 10−5 2.1× 10−3 3.3× 10−4 2.2× 10−9 8.7× 10−9

0.56 9.3× 10−5 2.2× 10−3 3.7× 10−4 2.4× 10−9 9.5× 10−9

0.72 4.9× 10−5 1.8× 10−3 3.1× 10−4 5.8× 10−10 7.3× 10−9

0.88 8.6× 10−5 9.0× 10−4 1.5× 10−4 3.4× 10−10 3.4× 10−9

0.96 7.1× 10−5 3.0× 10−4 5.4× 10−5 1.6× 10−10 1.2× 10−9

Table 6 Numerical comparison ofu2 (x) for problem2 using CGA with other methods.

Node Method of [4] Method of [6] Method of [7] Method of [9] Present method
0.08 2.4× 10−4 2.0× 10−3 7.1× 10−4 1.3× 10−8 1.8× 10−9

0.24 2.3× 10−3 5.6× 10−3 1.9× 10−3 9.9× 10−9 1.9× 10−9

0.40 8.9× 10−4 7.9× 10−3 2.7× 10−3 3.5× 10−8 2.5× 10−9

0.56 1.4× 10−3 8.2× 10−3 2.8× 10−3 1.2× 10−7 5.0× 10−9

0.72 3.1× 10−3 6.5× 10−3 2.2× 10−3 1.0× 10−7 1.8× 10−9

0.88 1.6× 10−3 3.1× 10−3 1.7× 10−3 4.9× 10−8 1.5× 10−9

0.96 9.8× 10−4 1.0× 10−3 3.6× 10−4 5.8× 10−9 5.9× 10−10

Table 7 Numerical results ofu1 (x) for Problem3.

Node Exact value Approximate value Absolute error Absolute residual
0 1 1 0 0
0.1 1.10517092 1.10517092 8.54004085× 10−10 4.98986805× 10−8

0.2 1.22140276 1.22140276 8.42495202× 10−10 6.02052782× 10−8

0.3 1.34985881 1.34985881 7.01441771× 10−10 2.85466838× 10−8

0.4 1.49182470 1.49182470 6.47288927× 10−10 1.81271125× 10−8

0.5 1.64872127 1.64872127 5.74708121× 10−10 3.89186569× 10−8

0.6 1.82211880 1.82211880 4.00564908× 10−10 5.78639569× 10−8

0.7 2.01375271 2.01375271 2.54064751× 10−10 5.56192320× 10−8

0.8 2.22554093 2.22554093 1.75550117× 10−10 5.10268438× 10−8

0.9 2.45960311 2.45960311 1.42755674× 10−11 3.42025281× 10−8

1 2.71828183 2.71828183 0 0

negligible (saturation is reached) after a population size
of 500.

Now, the influence of the maximum nodal residual of
the best individual on the convergence speed and the
corresponding error is investigated. This is the second
termination condition of the algorithm and its value is set
between 0.1 and 0.0000000001. Table 10 gives the
relevant data for Problem3. Regarding the convergence
speed, it is obvious that as the maximum nodal residual
decreases, the number of generations required for
convergence increases rapidly since the searching process
will be dominated by the fine-tuning stage. The difference
between the exact and the CGA nodal values decreases
initially till a maximum nodal residual of the value
0.0000000001 is reached. After that, there will be no
improvement in the accuracy of the solution obtained for
further reduction in the maximum nodal residual. The
proposed approach is a variant of the finite difference

scheme with a truncation error of order O
(

h10
)

. As a
result, the accuracy of the solution obtained is dependent
on the step size used, and for a certain step size there will
be initial improvement while decreasing the maximum
nodal residual till the step size limit is reached where
further reduction will be of no use.

The combined effect of the curve crossover
probability,pcc, and the curve mutation probability,pmc,
on the convergence speed of the algorithm and on the
average fitness for Problem3 are shown in Figure9. The
probability value is increased in steps of0.2 starting with
0.1 and ending with0.9 for both pcc andpmc, where the
individual crossover probability and individual mutation
probability are kept at0.9. It is clear from the figures that
when the probabilities valuespcc andpmc are increasing
gradually, the average number of generation required for
convergence is increasing as well, while the average
fitness is decreasing. Indeed, it can be seen that the curve
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Table 8 Numerical results ofu2 (x) for Problem3.

Node Exact value Approximate value Absolute error Absolute residual
0 0 0 0 0
0.1 0.10016675 0.10016676 5.04412133× 10−9 1.19781737× 10−7

0.2 0.20133600 0.20133601 7.08781948× 10−9 1.74816625× 10−7

0.3 0.30452029 0.30452030 6.98424446× 10−9 1.01331349× 10−7

0.4 0.41075233 0.41075233 6.14133705× 10−9 7.45835232× 10−8

0.5 0.52109531 0.52109531 5.11226279× 10−9 1.06886851× 10−7

0.6 0.63665358 0.63665359 3.91191735× 10−9 1.11482510× 10−7

0.7 0.75858370 0.75858370 2.69370010× 10−9 1.01986328× 10−7

0.8 0.88810598 0.88810598 1.57728076× 10−9 1.21174600× 10−7

0.9 1.02651673 1.02651673 4.99999639× 10−10 8.89829783× 10−8

1 1.17520119 1.17520119 0 0

Table 9 The effect of the population size on the convergence speed of CGA forProblem3.

Np Average generations Average fitness Average error Average residual
100 1654 0.99941551 1.09565517× 10−6 3.26623322× 10−5

200 1598 0.99971946 4.75971286× 10−8 1.56296010× 10−6

300 1496 0.99986403 2.65161347× 10−8 7.56412489× 10−7

400 1384 0.99998299 3.32386734× 10−9 9.45034882× 10−8

500 1299 0.99999339 2.41761536× 10−9 7.75241930× 10−8

600 1279 0.99999447 1.29091708× 10−9 3.62849959× 10−8

700 1272 0.99999466 1.07896381× 10−9 3.52085425× 10−8

800 1270 0.99999502 8.67201518× 10−10 2.43221070× 10−8

900 1268 0.99999554 4.47235053× 10−10 9.14527547× 10−9

1000 1264 0.99999587 3.89764215× 10−10 8.01199580× 10−9

Table 10 The influence of the maximum nodal residual on the convergence speed and the corresponding error for Problem3.

Maximum nodal residual Average generations Average fitness Average error Average residual
0.1 150 0.66715254 2.45134428× 10−4 2.77170881× 10−3

0.01 246 0.91864235 1.69499232× 10−6 4.92016253× 10−5

0.001 350 0.99857452 1.57791166× 10−7 8.03385433× 10−6

0.0001 728 0.99988219 1.93835094× 10−8 6.55284220× 10−7

0.00001 1204 0.99998013 4.10215107× 10−9 1.10423467× 10−7

0.000001 1256 0.99998032 3.64324483× 10−9 1.09332016× 10−7

0.0000001 1271 0.99998654 2.92550326× 10−9 9.47701704× 10−8

0.00000001 1294 0.99999049 2.68850679× 10−9 8.28563642× 10−8

0.000000001 1305 0.99999494 6.98376995× 10−10 7.47558559× 10−8

0.0000000001 1322 0.99999604 4.28455537× 10−10 2.20159822× 10−8

crossover probability and the curve mutation probability
have a minor effect on the performance of the CGA.

Finally, the effect of the different types of
initialization methods on the convergence speed of the
algorithm is discussed next. Three initialization methods
are investigated in this work; the first method uses the
MNGF, the second uses the MTHF, while the third is the
mixed-type initialization method that initializes the first
half of the population using the MNGF and the second
half of the population using the MTHF. Table11 shows
that the used initialization method has a minor effect on
the convergence speed because usually the effect of the
initial population dies after few tens of generations and

the convergence speed after that is governed by the
selection mechanism, crossover and mutation operators.
For Problems1 and 2, the MNGF results in the fastest
convergence speed while for Problem3, the mixed-type
initialization method results in the fastest convergence
speed. In general, the initialization method with the
highest convergence speed is the one that provides initial
solution curves which are close to the optimal solution of
that problem; that is, the optimal solution of the Problems
1 and2 is close to the MNGF. However, since the optimal
solution of any given problem is not assumed to be
known, it is better to have a diverse initial population by
the use of the mixed-type initialization method. As a

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1, 235-248 (2014) /www.naturalspublishing.com/Journals.asp 247

Table 11 Convergence speed of CGA using different initialization functions.

Initialization method Problem1 Problem2 Problem3
MNGF 1241 1206 1452
MTHF 1653 1526 1395
Mixed-type 1503 1359 1299

(a)

(b)

Fig. 9 Plot of the combined effect ofpcc andpmc for Problem3
on: (a) convergence speed; (b) average fitness.

result, the mixed-type initialization method is used as the
algorithm default method [16,17,18,19,20].

6 Concluding remarks

The main concern of this work has been to propose an
efficient algorithm for the solutions of nonlinear system
of second-order BVPs (1) and (2). The main goal has
been achieved by introducing the CGA to solve this class
of differential equations. We can conclude that the CGA
is powerful and efficient technique in finding approximate
solution for linear and nonlinear systems of second-order
BVPs. In the proposed algorithm, each of the derivatives
is replaced by an appropriate difference quotient
approximation, where two smooth solution curves are

used for representing the required nodal values. There is
an important point to make here, the results obtained by
the CGA are very effective and convenient in linear and
nonlinear cases with less computational generation and
less time. On the other aspects, the influence of different
parameters, including the initialization method, the
evolution of nodal values, the maximum nodal residual,
the population size, the curve’s probabilities, and the step
size is also studied.
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