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Abstract: This article looks at the Soret and Dufour effects on the magnetohydrodynamic (MHD) peristaltic flow of variable viscosity
fluid in a symmetric channel. Analysis is presented in the presence of Ohmicheating. Results for the stream function, temperature and
concentration are constructed. The variations of sundry parameters are analyzed.
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1 Introduction

The peristaltic flow problems in channel/tube are widely
seen in several processes of engineering and physiology.
Such flows appear in urine transport from kidney to
bladder, swallowing of food through oesophagus,
movement of chyme in gastrointestinal tract, spermatozoa
transport in the ducts efferentes of male reproductive
tract, ovum movement in the female fallopian tube,
vasomotion of small blood vessels, water transport from
ground to upper branches of tall trees etc. The industrial
applications of peristalsis include blood pumps in heart
lung machine, sanitary fluid transport and transport of
corrosive fluids. Earliest experimental and theoretical
models of peristaltic transport in viscous fluids were
presented by Latham [1] and Shapiro et al [2]. Since then
a vast amount of information on peristalsis under different
aspects has been given by various investigators. Few
recent studies on the title can be seen through the refs [3,
4,5,6,7,8,9,10,16,17,18].

Most of the published papers regarding peristalsis in
channels/tubes have been discussed for constant viscosity
fluid. Very little attention is given to the situations which
can shed light on the peristalsis of variable viscosity fluid.
For instance [11,12,13,14,15]. To date no information is
available on MHD peristaltic flows with variable viscosity
and Soret and Dufour effects. Interaction of peristaltic
motion with heat transfer is significant in oxygenation

and hemodialysis processes. Simultaneous considerations
of heat and mass transfer are available in chemical
industry problems for example in reservoir engineering
regarding thermal recovery process, catalytic reactors,
analysis of hot springs in the sea and medicine diffusion
in blood veins. Further simultaneous occurrence of heat
and mass transfer affecting each other lead to the Soret
and Dufour effects. The magnetohydrodynamic character
of fluid has a pivotal role in solidification processes of
metal and metal alloys, study of nuclear fuel debris,
control of underground spreading of chemical wastes and
pollution, design of MHD power generators, blood and
blood pump machines, treatment of cancer tumor etc. In
view of such discussion, the objective of present article is
to analyze the MHD peristaltic transport of variable
viscosity fluid in a symmetric channel when Soret and
Dufour effects are present. Problem formulation invokes
the long wavelength and low Reynolds number
assumptions. The series solutions are presented and
discussed very carefully.

2 Mathematical analysis

Let us investigate the magnetohydrodynamic flow of an
incompressible viscous fluid in a channel with width 2a.
TheX− axis is chosen along the walls of channel andY−
axis is taken normal to theX− axis. A constant magnetic

∗ Corresponding author e-mail:pensyt@yahoo.com

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080126


212 F. M. Abbasi et al: Soret and Dufour Effects on Peristaltic Transport...

field of strength B0 is exerted in theY− direction.
Induced magnetic field is not accounted because of small
magnetic Reynolds number. Sinusoidal wave propagation
on channel walls with constant wave speedc are
represented by

H(X , t) = a+bcos

(

2π
λ

(X − ct)

)

. (1)

If (U ,V ) and (u,v) are the velocity components in the
laboratory (X ,Y ) and wave(x,y) frames respectively,
then transformations between laboratory and wave frames
are

x=X−ct, y=Y , u=U−c, v=V , p(x,y)=P(X ,Y , t).
(2)

In above expressionsb is the wave amplitude,λ is the
wavelength,t is the time andP and p are the pressures in
laboratory and wave frames respectively. Introducing the
variables in the forms

x =
x
λ
, y =

y
a
, u =

u
c
, v =

v
cδ

, δ =
a
λ
, h =

H
a
, d =

b
a
, p =

a2p
cλ µ0

,

θ =
T −T0

T0
, φ =

C−C0

C0
, M =

(

σ
µ0

)1/2

B0a, υ =
µ0

ρ
,Re =

ρca
µ0

,

t =
ct
λ
,u =

∂ψ
∂y

,v =−
∂ψ
∂x

, Br = PrE, Du =
DC0KT

Csζ µ0T0
, Sr =

ρDKT T0

µ0TmC0
,

Sc =
µ0

ρD
, E =

c2

ζ T0
, Pr =

µζ
K

, andµ(y) =
µ̄(ȳ)
µ0

.

(3)
the conservation laws of mass, linear momentum, energy
and concentration after utilizing long wavelength and low
Reynolds number assumptions yield

d p
dx

=
∂
∂y

(

µ(y)
∂ 2ψ
∂y2

)

−M2
(

∂ψ
∂y

+1

)

, (4)

∂ 2

∂y2

(

µ(y)
∂ 2ψ
∂y2

)

−M2 ∂ψ2

∂y2 = 0, (5)

0= ∂ 2θ
∂y2 +Brµ(y)

(

∂ 2ψ
∂y2

)2
+BrM2

(

∂ψ
∂y +1

)2
+PrDu ∂ 2φ

∂y2 ,

(6)

0=
1
Sc

∂ 2φ
∂y2 +Sr

∂ 2θ
∂y2 , (7)

where p is the pressure,C the concentration field,T the
temperature field,σ the electric conductivity,D the mass
diffusivity, KT the thermal diffusion ratio,ζ the specific
heat,Cs the concentration susceptibility,K the thermal
conductivity,µ(y) the variable viscosity,µ0 the absolute
viscosity,Tm the fluid mean temperature,υ the kinematic
viscosity, M the Hartman number,Re the Reynolds
number, Br the Brinkman number,Du the Dufour
parameter, Sr the Soret parameter,Sc the Schmidt
number,E the Eckret number,Pr the Prandtl number,δ
the wave number,ψ the stream function,C0 and T0 the

concentration and temperature at the boundary,θ the
dimensionless temperature andφ the concentration. The
boundary conditions are

ψ = 0,
∂ 2ψ
∂y2 = 0,

∂θ
∂y

= 0,
∂φ
∂y

= 0, at y = 0,

ψ = F ,
∂ψ
∂y

=−1, θ = 0, φ = 0, at y = h, (8)

h(x)=1+d cos(2πx), F =
∫ h

0

∂ψ
∂y

dy, (9)

whereh(x) is the dimensionless wall shape andF is the
dimensionless flow rate in the wave frame.

Pressure rise per wavelength∆ pλ is

∆ pλ =

1
∫

0

d p
dx

dx. (10)

The dimensionless expression of space dependent
viscosity is [11]

µ(y) = e−αy = 1−αy α ≪ 1,

where ”α” is the viscosity parameter.
We look for solutions in the series form represented

below

ψ = ψ0+αψ1+ ....

F = F0+αF1+ ....

p = p0+α p1+ ....

Employing the procedure of perturbation method and
retaining the results up to orderO(α) we have

ψ = A1+
(F +h)αA2

8(−hM cosh(hM)+sinh(hM))2 , (11)

θ =−
BrM2B1

8(−1+PrScSrDu)(hM cosh(hM)−sinh(hM))2

−
BrMα [B2+B3+B4−B5+B6−B7+B8]

32(−1+PrScSrDu)(hM cosh(hM)−sinh(hM))3 ,

(12)

φ =−
BrM2ScSr [C1−C2+C3]

8(−1+PrScSrDu)(hM cosh(hM)−sinh(hM))2

+
BrMScSrα

[

C4+C5+2
(

C6+C7+
1
4M (C8+C9−C10)−C11−C12+C13

)]

64(−1+PrScSrDu)(hM cosh(hM)−sinh(hM))3 ,

(13)
where the involved Ai(i = 1,2), B j( j = 1 − 8) and
Ck(k = 1− 13) are presented in the Appendix. The heat
transfer coefficient is a vital quantity to be analyzed in the
problems of heat transfer as it incorporates the geometry
of the problems in to the analysis of heat transfer. The
heat transfer coefficient for this problem is defined as
follows:

Z = hxθy.
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3 Discussion

This section describes the impacts of pertinent parameters
on the temperature and concentration. Here 3-D graphs
are explicitly plotted in order to analyze the quantities of
interest in a more detailed manner. These types of graphs
allow the readers to analyze the physical quantities
continuously within a given domain which is not perhaps
visible in the 2-D plots. Also these plots explain the
changing behavior of physical quantities in a better way.
We recall that theme of this study is to point out the
influences of Soret and Dufour. Therefore, the results of
various parameters associated with velocity are not
included. In order to achieve the desired objective, we
present the plots in such a way that the left panels (all the
”a” parts of the Figs.) are for constant viscosity (i.e. for
α = 0.0) and the right ones (all the ”b” parts of the Figs.)
are for variable viscosity ( i.e. forα = 0.4). It is observed
in all the graphs related to temperature that the rise in
temperature for variable viscosity fluid is relatively
slower when compared with fluid having constant
viscosity. Here Figs. 1-5 are drawn for temperature
whereas the Figs. 6-10 show variation of concentration.
Temperature increases with an increase in M (Fig. 1).
Further an increase in temperature is abrupt in view of
Ohmic heating. The variations of Du, Sr, Sc and Br on the
temperature are displayed in the Figs. 2-5. These Figs.
indicate that there is an increase in temperature by
increasing Du, Sr, Sc and Br. It is also found that an
increase in temperature is more for Br when compared to
the other parameters.

Figs. 6-10 are presented to examine the behavior of
embedded parameters on the concentration. Decrease in
concentration is observed when M and Du increase (see
Figs. 6 & 7). Concentration also decreases when Sr, Sc
and Br are increased (Figs. 8-10). Again through these
Figs. it is clear that decrease in concentration is abrupt for
variation in M, Sc and Sr but is slow for the case of Du.
Further it is seen that the fluid with variable viscosity has
a higher value of concentration compared to that of fluid
with constant viscosity.

Behavior of heat transfer coefficient Z for various
parameters is shown in the Figs. 11-15. As expected, Z
shows an oscillatory behavior which is because of
peristalsis. It is also noted that there is no variation in Z
for amplitude ratio ( d ) between 0 and 0.3. It is observed
from Fig. 11 that Z increases when M is increased. The
absolute values of Z in variable viscosity fluid are more
than the constant viscosity fluid. Figs 12-15 show that Z
increases with the increase in Du, Sr, Sc and Br. Effects of
Du, Sr, Sc and Br on Z are opposite to that of M.

Fig. 1: (a and b) Effect of M onθ when Du=0.5, Sr=0.5, Sc=0.5,
d = 0.3, η = 1.4 , Br=0.5 and x=0.

Fig. 2: (a and b) Effect of Du onθ when M=0.5, Sr=0.5, Sc=0.5,
d = 0.3, η = 1.4 , Br=0.5 and x=0.
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Fig. 3: (a and b) Effect of Sr onθ when Du=0.5, M=0.5, Sc=0.5,
d = 0.3, η = 1.4 , Br=0.5 and x=0.

Fig. 4: (a and b) Effect of Sc onθ when Du=0.5, Sr=0.5, M=0.5,
d = 0.3, η = 1.4 , Br=0.5 and x=0.

Fig. 5: (a and b) Effect of Br onθ when Du=0.5, Sr=0.5, M=0.5,
d = 0.3, η = 1.4 , Sc=0.5 and x=0.

Fig. 6: (a and b) Effect of M onφ when Du=0.5, Sr=0.5, Sc=0.5,
d = 0.3, η = 1.4 , Br=0.5 and x=0.
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Fig. 7: (a and b) Effect of Du onφ when M=0.5, Sr=0.5, Sc=0.5,
d = 0.3, η = 1.4 , Br=0.5 and x=0.

Fig. 8: (a and b) Effect of Sr onφ when Du=0.5, M=0.5, Sc=0.5,
φ = 0.3, η = 1.4 , Br=0.5 and x=0.

Fig. 9: (a and b) Effect of Sc onφ when Du=0.5, Sr=0.5, M=0.5,
d = 0.3, η = 1.4 , Br=0.5 and x=0.

Fig. 10: (a and b) Effect of Br onφ when Du=0.5, Sr=0.5, M=0.5,
d = 0.3, η = 1.4 , Sc=0.5 and x=0.
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Fig. 11: (a and b) Effect of M onZ when Du=0.5, Sr=0.5, M=0.5,
d = 0.3, η = 1.4 and Br=0.5.

Fig. 12: (a and b) Effect of Du onZ when Sc=0.5, Sr=0.5, M=0.5,
d = 0.3, η = 1.4 and Br=0.5.

Fig. 13: (a and b) Effect of Sr onZ when Sc=0.5, Du=0.5, M=0.5,
d = 0.3, η = 1.4 and Br=0.5.

Fig. 14: (a and b) Effect of Sc onZ when Du=0.5, Sr=0.5, M=0.5,
d = 0.3, η = 1.4 and Br=0.5.
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Fig. 15: (a and b) Effect of Br onZ when Sc=0.5, Sr=0.5, M=0.5,
d = 0.3, η = 1.4 and Du = 0.5.
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Appendix

A1=
FMycosh(hM)+ysinh(hM)−(F+h)sinh(My)

hM cosh(hM)−sinh(hM) , A2 = yA3+
(

hMycosh(hM)+
(

h3M2
− y
)

sinh(hM)
)

2sinh(My), A3 =−1+2h2M2+cosh(2hM)+2Mycosh(My)(−hM cosh(hM)+sinh(hM))

−2hM sinh(2hM), B1 =−8F −2h(4+h)−2F +h2 (F +2h)M2
−2h2 (F +h)2 M4+2

(1+F(F+2h)M2+(F+h)2M4)y2+

(F2(1+M2)+2F(4+h+hM2)−2y2+h(8+h(3+M2(1+2h2
−2y2))))

cosh(2hM)−(F+h)2(1+M2)cosh(2My)−4hM(2F+h(2+h)−y2)sinh(2hM)+

16h(F+h)M cosh(hM)(M(h−y)+sinh(My))−16(F+h)sinh(hM)(M(h−y)+sinh(My)),

B2=−8h3(F+h)(h−y)sinh(2hM)M4
−

1
2 (F+h)B9 cosh(hM)−16h4(F+h)M4 cosh(hM)3

+8h3(F+h)M4(h−y)cosh(2hM), B3 =
1
2 (F +h)

(

3(F +h)+3
(

F +h−8h2
)

M2+8h4M4
)

cosh(3hM)+16h2(F+h)M4y2 cosh(hM)2 cosh(My)−2h(F+h)2M2(1+M2)ycosh(hM)

cosh(2My), B4 = (F +h)MB10sinh(hM) , B5 = 64F1h2M3cosh(hM)2 sinh(hM)+2h3

(F+h)2M3(1+M2)cosh(2My)sinh(hM)+2(F+h)2M(1+M2)ycosh(2My)sinh(hM)+

16(F+h)M2y2 cosh(My)sinh(hM)2
−8h4(F+h)M5(h−y)sinh(2hM), B6 = hMB11cosh(hM)

sinh(2hM), B7 = hM
(

−4F +F2
−4h+2Fh+h2+(F +h)2

(

1+h2
)

M2+h2 (F +h)2 M4
)

sinh(3hM)−16h2(F+h)M3ycosh(hM)2 sinh(My)+16h3(F+h)M3 sinh(hM)2 sinh(My)−

16(F+h)Mysinh(hM)2 sinh(My)−8h4(F+h)M4 sinh(2hM)sinh(My),B8=16h(F+h)

M2ysinh(2hM)sinh(My)+(F+h)2(1+M2)(−3+2M2y2)sinh(hM)sinh(2My)−h(F+h)M cosh

(hM)B12,

B9=F(1+M2)(3+4hM2(−3h+2h3M2+2y−2M2y3))+h

(3+M2(3+4h(h(−3+M2(−3+2h(1+h+hM2)))+2(−3+y)+2M2y−2M2(1+M2)y3))),
B10=−3h(4+F+h)+h(F(−3+5h2)+h(−3+h(16+5h)))M2+h3(F+h)(5+4h2)M4+

4h5(F+h)M6+4(F+h)(1+M2)y−4h3(F+h)M4(1+M2)y2
−4(F+h)M2(1+M2)y3,

B11=−3(F+h)2+(−3F2
−6Fh+32f 1h+(−3+2F(8+F))h2+4(4+F)h3+2h4)M2+2h2

(F+h)2M4, B12 = 16M2y2 sinh(M (h− y))+(F +h)
(

1+M2
)(

−3+2M2y2
)

sinh(2My)+16M2y2

sinh(M(h+y)), C1 = 2C14−16h(F +h)M2 (h− y)cosh(hM)−
(F2(1+M2)+2F(4+h+hM2)−2y2+h(8+h(3+M2(1+2h2

−2y2))))cosh(2hM),

C2=8F cosh(M(h−y))−8hcosh(M(h−y))+F2 cosh(2My)+2Fhcosh(2My)+h2 cosh(2My)

+F2M2 cosh(2My)+2FhM2 cosh(2My)+h2M2 cosh(2My)+8(F+h)cosh(M(h+y))+

16FhM sinh(hM)+16h2M sinh(hM)−16FMysinh(hM)−16hMysinh(hM),

C3=8FhM sinh(2hM)+8h2M sinh(2hM)+4h3M sinh(2hM)−4hMy2 sinh(2hM)+

8FhM sinh(M(h−y))+8h2M sinh(M(h−y))−8h(F+h)M sinh(M(h+y)),

C4=(3(F+h)2+(3F2+6F(1−4h)h+h(64f 1+3(1−8h)h))M2)cosh(3hM),

C5=2M cosh(hM)2C15, C6=−8h3(F+h)M4(h−y)+2(F+h)2M(1+M2)(h3M2+y)

cosh(My), C7 = 2Mysinh(hM)+16(F +h)M2y2 cosh(My)sinh(hM)2 , C8 = 64F1hM
cosh(hM)+32h3(F+h)M3(h−y)cosh(2hM)−64F1hM cosh(3hM),

C9=C16sinh(hM), C10=32h4(F+h)M4(h−y)sinh(2hM)+

(−h(F+h)(−8+5F+5h+(5F+(5−16h)h)M2)+8F1(4+F+h+(F+h−4h2)M2))
sinh(3hM),C11=4MF1(4−4h2M2)+4M(F+h)(−3y+h2M2(3h+y))+4M

(F1(4−4h2M2)+4M(F+h)(y+h2M2(−h+y)))cosh(2hM)+4M2h(F+h)M(h3M2
−2y)

sinh(2hM)sinh(My)+4M(F+h)2(1+M2)(−3+2M2y2)sinh(hM)sinh(2My),

C12=cosh(hM)(F+h)(F(1+M2)(3+4hM2(−3h+2h3M2+2y−2M2y3))

+cosh(hM)h

(

3+M2

(

3+4h2

(

−3+M2
(

−3+2h
(

4+h+hM2
))

+2cosh(hM)(−3+ y)
+2M2y−2M2

(

1+M2
)

y3

)))

,

C13=64F1hM2 cosh(2hM)+4h(F+h)2M2(1+M2)ycosh(2My)+2hM

(−32F1hM2 sinh(2hM)+(F+h)C18), C14 = h
(

4+h+h3M4
)

−

(

1+h2M4
)

y2

+F2M2(1+M2)(h−y)(h+y)+2F(2+hM2(1+M2)(h−y)(h+y)), C15 =
16h2(F+h)M3y2 cosh(My)−

(h(F+h)(−8+5F+5h+(5F+(5−16h)h)M2)+8F1(4+F+h+(F+h+4h2)M2))
sinh(hM)−8(4 f 1(−1+h2M2)+(F+h)(y+h2M2(−h+y)))sinh(My),C16=8F1

(4+F+h+(F+h−4h2)M2)+(F+h)C17,

C17=−56h+Fh(1+M2)(−13+24h2M2+16h4M4)+
h2(−13+M2(−13+8h(10+h(1+M2)(3+2h2M2))))
+16(F+h)(1+M2)y−16h3(F+h)M4(1+M2)y2

−16(F+h)M2(1+M2)y3,

C18=16M2y2 sinh(M(h−y))+(F+h)(1+M2)(−3+2M2y2)sinh(2My)+

16M2y2 sinh(M(h+y)).
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