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Abstract: In this paper a new model of multichoice games with a coalition structure is proposed, which can be seen as an extension of
the Owen coalition structure. A coalitional value on the given model is defined, which can be seen as an extension of the Owen value.
Three axiomatic systems are studied. The first one is enlightened by Owen’s characterization for the Owen value and Faigle and Kern’s
characterization for the Shapley value on games under precedence constraints. The second one is inspired by Bilbao’s characterization
for the Shapley value on games on convex geometries. The last one is anextension of Young’s characterization for the Shapley value on
traditional games. Furthermore, the relationship between the given coalitional value and the core of multichoice games with a coalition
structure is discussed.
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1 Introduction

A multichoice game is a generalization of a traditional
TU game in which each player has several activity levels.
The reward that a group of players can obtain depends on
the efforts of the cooperating players. Hsiao and
Raghavan [1] introduced multichoice games in which
players have the same number of activity levels, and with
each level of activity a weight is associated in order to
discriminate between those levels. van den Nouweland et
al. [2] considered a more general case with different
numbers of activity levels, and extended the notions of
core, dominant core and Weber set. They also proposed
an alternative extension for the Shapley value based on an
extension of the probabilistic formula by orders, but they
did not give additional support for this extension. Calvo
and Santos [3] studied another value for multichoice
games, which is focused on total payoff instead of payoff
per level. Klijn et al. [4] have studied a new solution to
multichoice games, which is based on the work of Derks
and Peters [5]. Calvo and Santos [6] researched a value
for multichoice games by restricting the Aumann-Shapley
value for continuum games in framework of multichoice
games. Peters and Zank [7] proposed the egalitarian
solution for multichoice games with each player having

the same number of activity levels, which is an extension
of the egalitarian solution proposed by Dutta and Ray [8]
for traditional games. Recently, Hwang and Liao [9]
investigated the weighted associated consistent value, and
characterized it by means of the weighted balanced
contributions and the associated consistency. More
researches can be seen in [4,6,9,10].

As we know, in some cooperative games, such as
Economic Community and Military Alliance, the players
are joined in coalitions that form a partition or coalitional
structure of the set of players. Aumann and Drze [11] first
researched in this area and proposed a model of games
with a coalition structure, where the players in a union are
independent to other players. Different to Aumann and
Drze [11], Owen [12] gave another model for games with
a coalition structure, where the probability of cooperation
among coalitions is considered, and provided the Owen
value, which is an extension of the Shapley value. Later,
many experts and scholars have studied deeply [13,14,15,
16,17,18,19].

All above researches are about multichoice games and
traditional games with a coalition structure. Both
contexts, TU games with a priori system of unions and
multichoice games are unified by Albizuri [20] who
introduced the concept of a coalition structure for
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multichoice games and defined a multichoice coalition
value in this framework. This value is an extension of the
Shapley value [21] for traditional games. Based on the
coalition structure introduced by Albizuri [20], Jones and
Wilson [22] defined another coalitional value in a similar
way as the Owen value. Based on the building axiomatic
system, the authors showed its existence and uniqueness.
From the analysis [22], it shows that the calculation of the
introduced coalitional value is complex in the setting of
the given model [20] when each player has several
participation levels. Further, the coalitional value gives
the same weight with respect to the different participation
levels. In this paper we introduce another coalition
structure for multichoice games, which is an extension of
the coalition structure proposed by Owen [12]. According
to the works of van den Nouweland et al. [2] and Owen
[12], a coalitional value for multichoice games with a
coalition structure is proposed, and three axiomatic
systems for the given coalitional value are discussed, by
which its existence and uniqueness can be proved. When
multichoice games are convex, the relationship between
the introduced coalitional value and the core is examined,
which coincides with the classical case.

This paper is organized as follows. In Section 2, some
basic concepts and notions for multichoice games are
briefly reviewed. In Section 3, the model of multichoice
games with a coalition structure is presented, and a
coalitional value is defined. In Section 4, three axiomatic
systems for the given coalitional value are discussed. In
Section 5, the relationship between the given coalitional
value and the core of multichoice games with a coalition
structure is examined. The conclusion is made in the last
section.

2 Preliminaries

Let N = {1,2, ...,n} be a set of players, and suppose each
player i ∈ N hasmi + 1 activity levels at which he can
play. We setMi = {0,1, ...,mi} as the action space of
player i ∈ N, where the action 0 means no participating,
and M+

i = {1, ...,mi} for any i ∈ N. A function
v : Πi∈NMi → ℜ+ with v( /0) = 0 gives each coalition
s = (s1,s2, ...,sn) ∈ M = Πi∈NMi the worth that the
players can obtain when each playeri plays at level
si ∈ Mi . Let m= (m1,m2, ...,mn), and a multichoice game
be denoted by a triple(N,m,v), if there is not confusion
we will simply denote a multichoice game(N,m,v) by v.
The set of all multichoice games with the player setN is
denoted by MCN. For all coalitions s, t ∈ M, let
s∧ t = (si ∧ ti)i∈N ands∨ t = (si ∨ ti)i∈N. Furthermore, we
denotes≤ t for all s, t ∈ M if and only if si ≤ ti for each
i ∈ N. For anys= (s1, ...,sn) ∈ M, let S= {i ∈ N|si > 0}.
eS denotes the vector inN satisfying eS

i = 1 for i ∈ S,
otherwise,eS

i = 0, whereS⊆ N. Especially,e/0 denotes
the vector inN satisfyingeS

i = 0 for all i ∈ N.

van den Nouweland et al. [2] gave a value for
multichoice games as follows:

Φ (N,m,v) =
Πi∈N(mi !)
(∑i∈N mi)!

∑σ vσ , (1)

whereσ is an admissible order forv, vσ means the value
of v with respect to the admissible orderσ .

It is not difficult to know that Eq.(1) is equivalent to
the following equation.

Φi j (N,m,v) = ∑
s∈M,si= j

hi j (s)(v(s)−v(s−ei))

∀i ∈ N, j ∈ M+
i , (2)

where

hi j (s) =

(

(∑k:(s|si−1)k 6=0 sk)!

Πk:(s|si−1)k 6=0(sk!)
(∑k∈N (mk−sk))!
Πk∈N((mk−sk)!)

)/

(∑k∈N mk)!
Πk∈N(mk!) ,

ands|si −1= (s1, ...,si−1,si −1,si+1, ...,sn).

(∑k:(s|si−1)k 6=0 sk)!

Πk:(s|si−1)k 6=0(sk!) is the number of admissible orders

from coalitione/0 to coalitions, wheresi is the last step,
and (∑k∈N (mk−sk))!

Πk∈N((mk−sk)!)
is the number of admissible orders

from coalitions to coalitionm.

3 A coalitional value for multichoice games
with a coalition structure

A coalition structure on(N,m,v), given by Albizuri [20],
is a familyB = {B1, ...,Bw} of coalitions onM such that
Bk = (xk

1,x
k
2, ...,x

k
n) with ∑w

k=1Bk = (m1,m2, ...,mn), where
xk

i denotes the activity level of the playeri in coalitionBk.
The author further supposed that the same players do not
form two coalitions with different activity levels. However,
the author does not give the explanation for this restriction.

Based on the coalition structure introduced by
Albizuri [20], Jones and Wilson [22] introduced the
following coalitional value, for anyi ∈ N, expressed by

Ωi(N,v,B) = ∑
Bk∈Ai

∑
R⊆Bk\i

∑
S⊆W\k

|S|!(|W|− |S|−1)!
|W|!

×
|R|!(|Bk|− |R|−1)!

|Bk|!

×
[

v
(

z+
(

x−i ,x
j
i

))

−v(z+(x−i ,0))
]

, (3)

where |S|, |W|, |R| and |Bk| respectively denote the
cardinalities of S, W, R and Bk, W = {1,2, ...,w},
Bk = {i ∈ N|xk

i ∈ M+
i }, Ai = {Bk|i ∈ Bk}, z= ∑l∈SBl , and

x−i = (ε1x j
1, ...,εi−1x j

i−1,εi+1x j
i+1, ...,εnx j

n) with

εp =

{

1 p∈ R
0 otherwise .

It is easy to see that the coalitional value degenerates
to be the Owen value when each player has only two
participation levels 0 and 1. From Eq.(3), we know it is
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focused on total payoff instead of payoff per level. Since
the weights given by Eq.(3) only consider the number of
active players, it gives the same weight with respect to the
different participation levels.

From the coalition structure [20], we know the author
considers the player participation levels satisfy addtitivity,
e.g., let M+

i = {1,2}, then the playeri’s participation
level 2 is equal to the sum of his two participation levels
1. This point seems to be unreasonable in some situations.
In above example, if these two participation levels of the
player i respectively denote a number of money, and the
participation levels 1 and 2 respectively denote one
million dollars and five million dollars. It is obvious that
the participation level 2 is not equal to the sum of two
participation levels 1. In the setting of Albizuri’s model,
the total money of the playeri used for cooperation is two
million dollars rather than five million dollars.

Different to the coalition structure given by Albizuri
[20], we introduce another coalition structure on
multichoice games. Owen [12] gave a coalition structure
for traditional games as follows:

Definition 3.1. [12] Γ = {B1,B2, ...,Bh} is said to be a
coalition structure on player setN, if it satisfies
∪1≤k≤hBk = N and Bk ∩ Bl = /0 for all k 6= l , where
k, l ∈ P= {1,2, ...,h}.

Here, we apply the coalition structure introduced by
Owen [12] in the framework of multichoice games. For
any given Bk ∈ Γ , let bk ∈ M denote the ”maximum
coalition” on Bk, namely,(bk)i = mi for all i ∈ Bk, and
(bk)i = 0, otherwise. Then{b1,b2, ...,bh} is a partition of
m. Let (N,m,Γ ) denote a coalition structure on(N,m).

Definition 3.2. s∈ M is said to be a feasible coalition for
(N,m,Γ ), if there existBk ∈ Γ and∪l∈R⊆P\kBl such that
s= t1∨ t2, wheret1 ≤ bk andt2 = ∨l∈R⊆P\kbl .

Let Fe(N,m,Γ ) be the set of all feasible coalitions in
(N,m,Γ ). From Definition 3.2, it is easy to see when the
coalition structure(N,m,Γ ) is restricted in the setting of
the model given in [12], thenFe(N,m,Γ ) degenerates to
be the set of feasible coalitions forΓ onN.

Example 3.1. Let the player setN = {1,2,3,4},
m= (2,2,2,1) andΓ = {B1,B2}, whereB1 = {1,2} and
B2 = {3,4}. For B1 and s = (1,2,0,0) ≤ b1, when the
players 1 and 2 cooperate with the players 3 and 4, then
s′ = (1,2,2,1) is the only feasible coalition with respect
to s.

Example 3.2. Let the player set N = {1,2,3},
m = (2,2,1) and Γ = {B1,B2}, where B1 = {1} and
B2 = {2,3}, then Fe(N,m,Γ ) = {(1,0,0),(0,1,0),(0,
0,1),(2,0,0)(0,2,0),(0,1,1),(0,2,1),(2,1,0),(2,2,0),
(2,0,1),(1,2,1),(2,1,1),(2,2,1)}.

Definition 3.3. Let v∈ MCN, t ∈ M is said to be a carrier
for v in M if v(s) = v(s∧ t) for all s∈ M.

Definition 3.4. Let v∈ MCN andΓ = {B1,B2, ...,Bh}. vB

is said to be a quotient game onΓ , if it satisfiesvB(R) =
v(∨l∈Rbl ) for all R⊆ P= {1,2, ...,h}.

Definition 3.3 is an extension of the carrier proposed
by Shapley [21], and Definition 3.4 is an extension of the
quotient game introduced by Owen [12].

Let (N,m,v,Γ ) be a multichoice game with the
coalition structureΓ , and MCCN be the set of all
multichoice games with a coalition structure. Following
the works of van den Nouweland et al. [2] and Owen [12],
we introduce a coalitional value onMCCN as follows:

ψi j (N,m,v,Γ ) = ∑
R⊆H\k

∑
s≤bk,si= j

r!(h− r −1)!
h!

hBk
i j (s)

(v(s∨ t)−v(s∨ t −ei)) ∀i ∈ N, j ∈ M+
i , (4)

where p and r respectively denote the cardinalities ofP
andR , andt = ∨w∈Rbw. hBk

i j (s) is the coefficient for the

coalition s restricted on Bk. Namely, hBk
i j (s) =

(

(∑g:(s|si−1)g 6=0 sg)!

Πg:(s|si−1)g 6=0(sg!)

(∑g∈Bk
(mg−sg))!

Πg∈Bk
((mg−sg)!)

)/

(∑g∈Bk
mg)!

Πg∈Bk
(mg!) with

s|si −1= (sk1, ...,si −1, ...,skt ) and{k1, ..., i, ...,kt} ⊆ Bk.
Obviously, Eq.(4) degenerates to be the Owen value

[12] when v is restricted in the setting of games with a
coalition structure, namely, every player has only two
activity levels 0 and 1. Furthermore, Eq.(4) degenerates to
be the Shapley value for multichoice games [2] whenh is
equal to 1, namely, there is only one coalition inΓ , that is
N. In other words, Eq.(4) can be seen as an extension both
of them.

As we know, when a coalition structure for traditional
games hasn coalitions, the Owen value degenerates to be
the Shapley value for traditional games. But this point
does not hold any more when it turns to multichoice
games. Namely, when a coalition structureΓ for a
multichoice game hasn coalitions, it can not guarantee
the given coalitional value is equal to the Shapley value
introduced by van den Nouweland et al. [2].
Example 3.3. Let N = {1,2}, m = (2,2) and
Γ = {B1,B2}, where B1 = {1} and B2 = {2}. If the
values for coalitions are given as follows:v(1,0) = v(0,1)
= 1, v(2,0) = v(0,2) = 3, v(1,1) = 5, v(1,2) = 8,
v(2,1) = 10,v(2,2) = 15.
From Eq.(4), it has

ψ11(N,m,v,Γ ) = 3,

ψ12(N,m,v,Γ ) = 4.5,

ψ21(N,m,v,Γ ) = 4,

ψ22(N,m,v,Γ ) = 3.5.

From Eq.(2), it gets

φ11(N,m,v) = 2.67,

φ12(N,m,v) = 5.5,

φ21(N,m,v) = 3,

φ22(N,m,v) = 3.83.

From above, we knowψ 6= φ .
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4 Characterizations of the given coalitional
value

In this section, we mainly discuss the axiomatic systems
of the given coalitional value. Letϕ be a coalitional value
onMCCN.

The analogue of unanimity games for multichoice
games are minimal effort games(N,m,us) ∈ MCN, for
anys∈ M\{e/0}, defined by

us(t) =

{

1 s≤ t
0 otherwise

for all t ∈ M\{e/0}.
The identity games for multichoice games are games

(N,m,δs) ∈ MCN, for anys∈ M \{e/0}, defined by

us(t) =

{

1 s= t
0 otherwise

for all t ∈ M\{e/0}.
According to the literature [12,23], we give the

following properties for the coalitional valueϕ.
additivity (ADD). Let v,w∈ MCCN, then

ϕ(N,m,v+w,Γ ) = ϕ(N,m,v,Γ )+ϕ(N,m,w,Γ ).

efficiency(EFF). Let v∈ MCCN, then

∑
i∈N

mi

∑
j=1

ϕi j (N,m,v,Γ ) = v(m).

null property (NP). Let v ∈ MCCN and i ∈ N, if
j ∈ Mi\{e/0} is a ”null level”, then ϕi j (N,m,v,Γ ) = 0.
Here, j ∈ Mi\{e/0} is said to be a ”null level” if
v(s∨ ( j −1)ei) = v(s∨ jei) for all s∈ Πk∈N\{i}Mk.
hierarchical strength within coalition (HST). Let
v∈ MCCN. ForBk ∈ Γ and alli, j ∈ Bk, it has

∑
s∧bk≤x≤bk,

x j=sj

hBk
js j
(x)ϕisi (N,m,us,Γ )

= ∑
s∧bk≤x≤bk,

xi=si

hBk
isi
(x)ϕ js j (N,m,us,Γ )

for anys∈ Fe(N,m,Γ ) with si ∈ M+
i andsj ∈ M+

j .

symmetry in quotient game(SQ). Let v ∈ MCCN. For all
Bk,Bs ∈ Γ , if vB(R∪k) = vB(R∪s) for anyR⊆ P\{k,s},
then

∑
i∈Bk

mi

∑
l=1

ϕil (N,m,v,Γ ) = ∑
j∈Bs

mj

∑
h=1

ϕ jh(N,m,v,Γ ).

Remark 4.1. The propertiesADD, EFF, NP and SQ
degenerate to be the properties introduced by Owen [12]
when we restrict the domain ofCMCN in the setting of
traditional games with a coalition structure. Furthermore,
the propertyHST degenerates to be the property proposed

by Faigle and Kern [23] when the domain ofCMCN is
limited to traditional games.
Theorem 4.1. A coalitional value satisfiesADD, EFF,
NP, HST andSQ if, and only if, it is equal to Eq.(4),i.e.,
ϕi j (N,m,v,Γ ) = ψi j (N,m,v,Γ ) for all i ∈ N and all
j ∈ M+

i , wherev∈ MCCN.
Proof. First we show thatψ satisfies these properties.ψ
satisfiesADD andNPas is easily seen with Eq.(4).
In the following, we shallψ show satisfies the rest
characterizations.
From Eq.(4), it has

N

∑
i=1

mi

∑
j=1

ψi j (N,m,v,Γ )

=
N

∑
i=1

mi

∑
j=1

∑
R⊆P\k

∑
s≤bk,si= j

r!(p− r −1)!
p!

×hBk
i j (s)(v(s∨ t)−v(s∨ t −ei)).

For anys≤ bk, let vt(s) = v(s)−v(t). It gets

N

∑
i=1

mi

∑
j=1

ψi j (N,m,v,Γ )

=
N

∑
i=1

mi

∑
j=1

∑
R⊆P\k

∑
s≤bk,si= j

r!(p− r −1)!
p!

×hBk
i j (s)(v(s∨ t)−v(s∨ t −ei))

= ∑
k∈P

∑
R⊆P\k

r!(p− r −1)!
p!

vt(bk)

= ∑
k∈P

∑
R⊆P\k

r!(p− r −1)!
p!

(v(bk∨ t)−v(t))

= ∑
k∈P

∑
R⊆P\k

r!(p− r −1)!
p!

(vB(R∪k)−vB(R))

= vB(P)

= v(∨k∈Pbk)

= v(m).

From above, it showsEFF holds.
From Eq.(4) and the conditions inHST, it gets

ψisi (N,m,us,Γ )

= ∑
R⊆P\k

∑
x≤bk,xi=si

r!(p− r −1)!
p!

hBk
isi
(x)

× (us(x∨ t)−us(x∨ t −ei))

= ∑
P′\k⊆R⊆P\k

∑
s∧bk≤x≤bk,xi=si

r!(p− r −1)!
p!

hBk
isi
(x)
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= ∑
P′\k⊆R⊆P\k

r!(p− r −1)!
p! ∑

s∧bk≤x≤bk,xi=si

hBk
isi
(x)

=
1
p′ ∑

s∧bk≤x≤bk,xi=si

hBk
isi
(x),

where 1
p′ = ∑

P′\k⊆R⊆P\k

r!(p−r−1)!
p! andp′ is the cardinality of

P′ = {l ∈ P|bl ∧s 6= e/0}.
For the same reason, it has

ψ js j (N,m,us,Γ ) =
1
p′ ∑s∧bk≤x≤bk,x j=sj

hBk
js j
(x).

Now one can easily verify thatψ indeed satisfies the
property ofHST.
From the proof ofEFF, it has

∑
i∈Bk

mi

∑
l=1

ψil (N,m,v,Γ )

= ∑
R⊆P\k

r!(p− r −1)!
p!

(vB(R∪k)−vB(R))

and

∑
j∈Bs

mi

∑
h=1

ψ jh(N,m,v,Γ )

= ∑
R⊆P\s

r!(p− r −1)!
p!

(vB(R∪s)−vB(R)).

Since,vB(R∪ k) = vB(R∪ s) for all R⊆ P\{k,s}, it gets
SQ.
Uniqueness. Letϕ be a coalitional value onMCCN, and
satisfy the above mentioned properties. In the following,
we shall showϕi j (N,m,v,Γ ) = {ψi j }(N,m,v,Γ ) for all i ∈
N and all j ∈ M+

i .
From Lemma 3.1 in Derks and Peters [5] and ADD, it is
sufficient to show thatϕ andψ coincides on the class of
the analogue of unanimity games. For anys∈Fe(N,m,Γ ),
let P′ = {l ∈P|bl ∧s 6= e/0} andB′

l =Bl ∩S. Define quotient
game(P,uP

s ) as follows:

uB
s (R) =

{

1 P′ ⊆ R
0 otherwise

for all R⊆ P.
Since,ϕ satisfiesNP, we getϕi j (N,m,us,Γ ) = 0 for all
i ∈ N\Swith j ∈ M+

i , and alli ∈ Swith j ∈ M+
i and j 6= si .

FromEFF, NP andSQ, it gets

∑
i∈B́k

ϕisi (N,m,us,Γ ) =

{ 1
p′ k∈ P′

0 k /∈ P′

for all i ∈ Swith j = si ∈ M+
i .

FromEFF andHST, it has

ϕi j (N,m,us,Γ ) =

{

1
p′ ∑

s∧bk≤x≤bk,xi=si

hBk
isi
(x) j = si ∈ M+

i

0 otherwise
.

On the other hand, from Eq.(4) it gets

ψi j (N,m,us,Γ ) =

{

1
p′ ∑

s∧bk≤x≤bk,xi=si

hBk
isi
(x) j = si ∈ M+

i

0 otherwise
.

Hence, ϕ(N,m,us,Γ ) = ψ(N,m,us,Γ ). From the
randomicity of s ∈ Fe(N,m,Γ ), the desired result is
obtained.�
linearity (L). Let v,w∈ MCCN andα,β ∈ ℜ, then

ϕ(N,m,αv+βw,Γ ) = αϕ(N,m,v,Γ )+βϕ(N,m,w,Γ ).

carrier (C). If t ∈ M is a carrier for the multichoice game
v∈ MCCN, then

∑
i∈T

ti

∑
j=1

ϕi j (N,m,v,Γ ) = v(t),

whereT = {k|tk 6= 0,k∈ N}.
When we restrict the domain ofMCCN in the setting

of traditional games, the propertyC degenerates to be the
property proposed by Shapley [21].
Remark 4.2. From Theorem 4.1, we know Eq.(4) is the
unique coalitional value onMCCNthat satisfiesADD, C,
HST and SQ, as well as the unique coalitional value on
MCCN that satisfiesL, C, HST andSQ.

Bilbao [24] gave a characterization of the Shapley
value for games on convex geometries by using chain
axiom. Here, we define it in the setting of multichoice
games with a coalition structure and give the following
property.
chain axiom(CA). Let v ∈ MCCN. For all Bk ∈ Γ and all
i, j ∈ Bk with si ∈ M+

i andsj ∈ M+
j , then

cBk[0,s|si −1]ϕ js j (N,m,δs,Γ )

= cBk[0,s|sj −1]ϕisi (N,m,δs,Γ )

and
((

p′+ l −1
)

!(p− p′− l)!
)

ϕisi (N,m,δs,Γ )

=
(

(p′−1)!(p− p′)!
)

ϕisi (N,m,δs′ ,Γ ),

where s,s′ ∈ Fe(N,m,Γ ) such thats∨l
r=0 br = s′ and

s∧ (∨l
r=0br) = e/0. s|si −1 ands|sj −1 as shown in Eq.(4).

cBk[0,s|si − 1] =
(∑g:(s|si−1)g 6=0 sg)!

Πg:(s|si−1)g 6=0(sg!) and cBk[0,s|sj − 1]

=
(∑g:(s|sj−1)

g
6=0 sg)!

Πg:(s|sj−1)
g
6=0(sg!) . p′ is the cardinality ofP′ = {l ∈ P|

bl ∧s 6= e/0}.
It is obviously that the chain axiom onMCCN

degenerates to be the property introduced by Bilbao [24]
when we restrict the domain ofMCCN in the setting of
traditional games on convex geometries.
Theorem 4.2. There is a unique solutionϕ defined on
MCCN that satisfiesL, EFF, NP, CA and SQ, i.e.,
ϕi j (N,m,v,Γ ) = ψi j (N,m,v,Γ ) for all i ∈ N and all
j ∈ M+

i .
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Proof. From Theorem 4.1 and Eq.(4), we knowψ
satisfiesL, EFF, NP and SQ. In the following, we will
showψ satisfiesCA. From the definition ofδs, it gets

ψisi (N,m,δs,Γ ) =
(p′−1)!(p− p′)!

p!
hBk

isi
(s∧bk)

= γ
(p′−1)!(p− p′)!

p!
cBk[0,s|si −1],

whereγ=
(∑g∈Bk

(mg−sg))!

Πg∈Bk
((mg−sg)!)

/

(∑g∈Bk
mg)!

Πg∈Bk
(mg!) .

Similarly, it has

ψ js j (N,m,δs,Γ ) = γ
(p′−1)!(p− p′)!

p!
cBk[0,s|sj −1].

Thus,

cBk[0,s|si −1]ϕ js j (N,m,δs,Γ )

= cBk[0,s|sj −1]ϕisi (N,m,δs,Γ ).

From above, it shows

ψisi (N,m,δs,Γ ) =
(p′−1)!(p− p′)!

p!
hBk

isi
(s∧bk)

and

ψisi (N,m,δs′ ,Γ ) =
(p′+ l −1)!(p− p′− l)!

p!
hBk

isi
(s′∧bk).

SincehBk
isi
(s′∧bk) = hBk

isi
(s∧bk), it gets

((

p′+ l −1
)

!(p− p′− l)!
)

ϕisi (N,m,δs,Γ )

=
(

(p′−1)!(p− p′)!
)

ϕisi (N,m,δs′ ,Γ ).

Uniqueness. Letϕ be a coalitional value onMCCN, and
satisfy the above mentioned properties. For any
v ∈ MCCN, there exists an unique set of coefficients
{v(s) : s∈ Fe(N,m,Γ )} such thatv= ∑s∈Fe(N,m,Γ ) v(s)δs.
From L, we only need to proveϕ and ψ coincides on
(N,m,δt ,Γ ) for any t ∈ Fe(N,m,Γ ). Similar to Theorem
4.1, for anys∈ Fe(N,m,Γ ), let P′ = {l ∈ P|bl ∧ s 6= e/0}
andB′

l = Bl ∩S. Define quotient game(P,uB
s ) as follows:

uB
s (R) =

{

1 P′ ⊆ R
0 otherwise

for all R⊆ P.
From Theorem 4.1, it gets

∑
i∈B́k

ϕisi (N,m,us,Γ ) =

{ 1
p′ k∈ P′

0 k /∈ P′ (5)

Sinceus = ∑s≤t δt for all s∈ Fe(N,m,Γ ), it has

ϕ(N,m,us,Γ ) = ϕ(N,m,∑s≤t δt ,Γ )

= ∑
s≤t

ϕ(N,m,δt ,Γ )

and

ϕisi (N,m,us,Γ ) = ∑
s≤t,ti=si

ϕisi (N,m,δt ,Γ ).

FromCA, it gets

ϕisi (N,m,us,Γ )

= ∑
s∧bk≤t∧bk,

ti=si , t−bk=s−bk

(

∑
0≤l≤p−p′

(p′+ l −1)!(p− p′− l)!
(p′−1)!(p− p′)!

)

×ϕisi (N,m,δt ,Γ )

=

(

∑
0≤l≤p−p′

(p′+ l −1)!(p− p′− l)!
(p′−1)!(p− p′)!

)

∑
s∧bk≤t∧bk,

ti=si , t−bk=s−bk

×ϕisi (N,m,δt ,Γ )

=
1
p′

p!
(p′−1)!(p− p′)! ∑

s∧bk≤t∧bk,
ti=si , t−bk=s−bk

ϕisi (N,m,δt ,Γ ).

From above, we knowP′ = {l ∈ P|bl ∧ s 6= e/0} = {l ∈
P|bl ∧ t 6= e/0}.
FromCA, it has

hBk
it i
(t)ϕ jt j (N,m,δt ,Γ ) = hBk

jt j
(t)ϕit i (N,m,δt ,Γ ),

which is equal to

hBk
it i
(t ∧bk)ϕ jt j (N,m,δt ,Γ ) = hBk

jt j
(t ∧bk)ϕit i (N,m,δt ,Γ ).

Namely,

ϕit i (N,m,δt ,Γ ) =
hBk

it i
(t ∧bk)

hBk
jt j
(t ∧bk)

ϕ jt j (N,m,δt ,Γ ). (6)

By Eq.(6), it has

1
p′

=
1
p′

p!
(p′−1)!(p− p′)!

× ∑
i∈B́k

∑
s∧bk≤t∧bk,

ti=si , t−bk=s−bk

ϕisi (N,m,δt ,Γ ) (7)

and

(p′−1)!(p− p′)!
p!

= ∑
i∈B́k

∑
s∧bk≤t∧bk,

ti=si , t−bk=s−bk

ϕisi (N,m,δt ,Γ ). (8)

When∑i∈S∩Bk
si = ∑i∈Bk

(bk)i , by Eqs.(6) and (7), it gets

(p′−1)!(p− p′)!
p!
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= ∑
i∈Bk

∑
s∧bk=t∧bk=
bk,t j=sj=mj

ϕisi (N,m,δt ,Γ )

= ϕ jm j (N,m,δt ,Γ )+ ∑
i∈Bk\ j

hBk
imi

(bk)

hBk
jm j

(bk)
ϕ jm j (N,m,δt ,Γ )

=
∑i∈Bk

hBk
imi

(bk)

hBk
jm j

(bk)
ϕ jm j (N,m,δt ,Γ ).

Since∑i∈Bk
hBk

imi
(bk) = 1, it has

ϕ jm j (N,m,δt ,Γ ) =
(p′−1)!(p− p′)!

p!
hBk

jm j
(bk)

for all j ∈ Bk.
When ∑i∈S∩Bk

si = ∑i∈Bk
(bk)i −1, without loss of

generality, letsj = mj −1.
By Eqs.(6) and (8), it gets

(p′−1)!(p− p′)!
p!

= ∑
i∈B́k

∑
s∧bk=bk−ej≤t∧bk,
ti=si ,t−bk=s−bk

ϕisi (N,m,δt ,Γ )

= ∑
i∈B

′
k\ j

(

ϕimi (N,m,δt=s,Γ )+ϕimi (N,m,δt=s∨mj ej ,Γ )
)

+ϕ j(mj−1)(N,m,δt=s,Γ )

= ∑
i∈Bk

ϕisi (N,m,δt=s,Γ )+ ∑
i∈B

′
k\ j

ϕimi (N,m,δt=s∨mj ej ,Γ )

=
∑i∈Bk

hBk
isi
(t ∧bk)

hBk
j(mj−1)(t ∧bk)

ϕ j(mj−1)(N,m,δt=s,Γ )

+
(p′−1)!(p− p′)!

p! ∑
i∈B

′
k\ j

hBk
imi

(bk)

=

(p′−1)!(p−p′)!
p! ∑i∈Bk

hBk
isi
(t ∧bk)

(p′−1)!(p−p′)!
p! hBk

j(mj−1)(t ∧bk)
ϕ j(mj−1)(N,m,δt=s,Γ )

+
(p′−1)!(p− p′)!

p! ∑
i∈B

′
k\ j

hBk
imi

(bk).

Since

∑
i∈B́k

hBk
isi
(t ∧bk)+ ∑

i∈B́k

∑
s∧bk≤t∧bk,s∧bk 6=t∧bk

ti=si , t−bk=s−bk

hBk
isi
(t ∧bk)

= ∑
i∈B́k

∑
s∧bk≤t∧bk,

ti=si ,t−bk=s−bk

hBk
isi
(t ∧bk)

= 1,
it has

ϕ js j (N,m,δt ,Γ ) =
(p′−1)!(p− p′)!

p!
hBk

js j
(t ∧bk).

From induction andti = si , it gets

ϕ jt j (N,m,δt ,Γ )=

{

(p′−1)!(p−p′)!
p! hBk

jt j
(t ∧bk) t j ∈ M+

j

0 otherwise
.

On the other hand, by Eq.(4) it has

ψ jt j (N,m,δt ,Γ )=

{

(p′−1)!(p−p′)!
p! hBk

jt j
(t ∧bk) t j ∈ M+

j

0 otherwise
.

Namely,ϕ andψ coincides on(N,m,δT ,Γ ). The proof is
finished.�
Remark 4.3. From Theorem 4.2, we know Eq.(4) is the
unique coalitional value onMCCN that satisfiesADD, C,
CA and SQ, as well as the unique coalitional value on
MCCN that satisfiesL, C, CA andSQ.

Young [25] proposed a characterization of the Shapley
value by using strongly monotonicity. According to the
literature [25], we propose strongly monotonicity on
MCCN as follows:
strongly monotonicity(SMON). Let v,w ∈ MCCN and
i ∈ N. If

v(s∨ jei)−v(s∨ ( j −1)ei)≥ w(s∨ jei)−w(s∨ ( j −1)ei)

for all s∈ Fe(N,m,Γ ) with si = 0 and j ∈ M+
i , then

ϕi j (N,m,v,Γ )≥ ϕi j (N,m,w,Γ ).

Similar to the property of symmetry given by Shapley
[21] and the property of symmetric in the unions
introduced by Owen [12], we introduce the veto property
onMCCN as follows:
veto property(VP). Let v ∈ MCCN. For Bk ∈ Γ and all
i1, i2 ∈ T ∩Bk, if j1 = ti1 ∈ M+

i1
and j2 = ti2 ∈ M+

i2
, then

∑
xi2= j2,

t∧bk≤x≤bk,

hBk
i2 j2

(x)ϕi1 j1(N,m,v,Γ )

= ∑
xi1= j1,

t∧bk≤x≤bk,

hBk
i1 j1

(x)ϕi2 j2(N,m,v,Γ ),

where t ∈ Fe(N,m,Γ ) is a veto coalition, and
T = {i ∈ N|ti 6= 0}. Here,t ∈ Fe(N,m,Γ ) is said to be a
veto coalition if it satisfies

v(s) =

{

v(t) s∈ Fe(N,m,Γ ) s.t. t ≤ s
0 otherwise .

Theorem 4.3. A coalitional value ϕ satisfies EFF,
SMON, VP andSQ if, and only if, it is equal to Eq.(4),
i.e., ϕi j (N,m,v,Γ ) = ψi j (N,m,v,Γ ) for all i ∈ N and all
j ∈ M+

i , wherev∈ MCCN.
Proof. From Theorem 4.1 and Eq.(4), It is known thatψ
satisfiesEFF, SMON andSQ.
In the following, we shall show Eq.(4) satisfiesVP. For
any t ∈ Fe(N,m,Γ ), without loss of generality, let
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t = ∨l∈Pt\kbl ∨ s such that s ≤ bk, where
Pt = {l ∈ P|t ∧bl 6= 0}. Then,

ψi1 j1(N,m,v,Γ )

= ∑
R⊆P\k

∑
x≤bk,xi1= j1

r!(p− r −1)!
p!

hBk
i1 j1

(x)

×v((x∨y)−v(x∨y−ei1))

= ∑
Pt\k⊆R
⊆P\k

∑
s≤x≤bk,
xi1= j1

r!(p− r −1)!
p!

hBk
i1 j1

(x)v(s∨ (∨l∈R⊆P\kbl ))

= ∑
Pt\k⊆R
⊆P\k

r!(p− r −1)!
p! ∑

s≤x≤bk,
xi1= j1

hBk
i1 j1

(x)v(s∨ (∨l∈R⊆P\kbl ))

=
1
pt

∑
s≤x≤bk,
xi1= j1

hBk
i1 j1

(x)v(t).

wherey= ∨w∈Rbw, andpt is the cardinality ofPt .
For the same reason, it has

ψi2 j2(N,m,v,Γ ) =
1
pt

∑
s≤x≤bk,xi2= j2

hBk
i2 j2

(x)v(t).

Now one easily verifies thatψ indeed satisfies the property
of VP.
We now prove the uniqueness part. FormSMON, it gets if
v(s∨ jei)−v(s∨ ( j −1)ei) = w(s∨ jei)−w(s∨ ( j −1)ei)
for all s∈ Fe(N,m,Γ ), and all i ∈ N, wheresi = 0 and
j ∈ M+

i , then

ϕi j (N,m,v,Γ ) = ϕi j (N,m,w,Γ ). (9)

Next consider the symmetric gamew on (N,m,Γ ) which
is identically zero on Fe(N,m,Γ ). Thus
w(s∨ jei)−w(s∨ ( j − 1)ei) = 0 for all s∈ Fe(N,m,Γ ),
all i ∈ N and all j ∈ M+

i , where si = 0. Since, any
t ∈ Fe(N,m,Γ ) is a veto coalition, fromEFF, VP and
SQ, it hasϕi j (N,m,w,Γ ) = 0 for all i ∈ N and all j ∈ M+

i .
From Eq.(9), it hasϕi j (N,m,w,Γ ) = 0 for all i ∈ N and
all j ∈ M+

i . Namely,ϕ satisfiesNP.
According to the proof of Lemma 3.1 in Derks and Peters
[5], we know for allv∈ MCCN, v can be expressed by

v= ∑
t∈Fe(N,m,Γ )

αtut , (10)

wheret is an analogue of unanimity game as given above.
By Eq.(4), it gets

ψi j (N,m,us,Γ ) =







1
pt

∑
t∧bk≤x≤bk,

xi=ti= j

hBk
i j (x) j = ti ∈ M+

i

0 otherwise

for any Bk ∈ Γ , wherept is the cardinality ofPt = {l ∈
P|t ∧bl 6= 0}.
Define the indexI of v to be the minimum number of non-
zero terms in some expression forv of form (10). As in

Young [25], the theorem is proved by induction onI .
Case (i). If I = 0, every j ∈ M+

i is a ”null level” for all
i ∈ N, from above, it has

ϕi j (N,m,w,Γ ) = 0.

Case (ii). If I = 1, without loss of generality, letv= αtut
for somet ∈ Fe(N,m,Γ ) whereαt 6= 0. From above, it has
ϕi j (N,m,w,Γ ) = 0 for all i ∈ N and all j ∈ M+

i with j 6= ti .
When i ∈ T = {i ∈ N|ti 6= 0}, sincet is a veto coalition,
from EFF, VP andSQ, it has

ϕi j (N,m,v,Γ ) =
αt

pt
∑

t∧bk≤x≤bk,
xi=ti= j

hBk
i j (x),

wherei ∈ Bk ∈ Γ .
Thereforeψ = ϕ, whenever the index ofv is 0 or 1.
Assume now thatψ = ϕ, whenever the index ofv is at
mostI , and letv have indexI +1 with expression

v=
I+1

∑
r=1

αtr utr ,

whereαtr 6= 0, tr ∈ Fe(N,m,Γ ) and ptr is the cardinality
of Ptr = {l ∈ P|tr ∧bl 6= 0} for all r = 1,2, ..., I +1.
Let t = ∧I+1

r=1tr , for any i ∈ N\T or any i ∈ T with (tr)i =
ti 6= j ∈ M+

i for all r = 1,2, ..., I +1.
Construct the game

w= ∑
r:(tr )i 6=0

αtr utr ,

whereT = {i ∈ N|ti 6= 0}.
The index ofw is at mostI , sincev(s∨ jei)− v(s∨ ( j −
1)ei) =w(s∨ jei)−w(s∨( j−1)ei) for all s∈Fe(N,m,Γ ),
wheresi = 0. By induction andSMON, it has

ϕi j (N,m,w,Γ ) = ϕi j (N,m,v,Γ )

= ∑
r:(tr )i 6=0

αtr

ptr
∑

tr∧bk≤x≤bk,xi=(tr )i= j

hBk
i j (x)

= ψi j (N,m,v,Γ ).

For any i ∈ T with (tr)i = ti = j ∈ M+
i and all

r = 1,2, ..., I + 1, tr is a veto coalition forαtr utr , where
r = 1,2, ..., I +1.
FromEFF, VP andSQ, it gets

ϕi j (N,m,v,Γ ) =
I+1

∑
r=1

αtr

ptr
∑

tr∧bk≤x≤bk,xi=(tr )i= j

hBk
i j (x)

= ψi j (N,m,v,Γ ).

�

Remark 4.4. As Young [25] pointed, strongly
monotonicity can be replaced by independence condition,
namely, a player’s value depends only on the vector of his
marginal contributions. Khmelnitskaya and Yanovskaya
[18] proposed a characterization of the Owen coalition
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value by extending Owen’s original axioms and replacing
additivity with marginilist (M) (i.e. independence
condition). From Theorem 4.3, we know Eq.(4) is the
unique coalitional value onMCCN that satisfiesEFF, M,
VP andSQ.
Property 4.1. Let v ∈ MCCN. If v(s)− v(s− ( j − 1)ei)
= v( jei) for all i ∈ N and all s ∈ Fe(N,m,Γ ) with
j = si ∈ M+

i , thenψi j (N,m,v,Γ ) = v( jei).
Proof. By Eq.(4), it has

ψi j (N,m,v,Γ )

= ∑
R⊆P\k

∑
s≤bk,si= j

r!(p− r −1)!
p!

hBk
i j (s)

× (v(s∨ t)−v(s∨ t −ei))

= ∑
R⊆P\k

∑
s≤bk,si= j

r!(p− r −1)!
p!

hBk
i j (s)v( je j)

= ∑
R⊆P\k

r!(p− r −1)!
p! ∑

s≤bk,si= j

hBk
i j (s)v( je j)

= ∑
R⊆P\k

r!(p− r −1)!
p!

v( je j)

= v( je j).

�

Player i ∈ N is called adummy player, if for all
j ∈ M+

i and all s ∈ Fe(N,m,Γ ) with si = 0, it has
v(s∨ jei)− v(s− ( j1)ei) = v( jei). If i ∈ N is a dummy
player, thenψi j (N,m,v,Γ ) = v( jei) for all j ∈ M+

i .
Property 4.2. Let v ∈ MCCN and anys ∈ Fe(N,m,Γ )
with si = j ∈ M+

i . If v(s) − v(s − ei) = v( jei)−
v(( j −1)ei), thenψi j (N,m,v) = v( jei)−v(( j −1)ei).
Proof. The proof of Property 4.2 is similar to that of
Property 4.1.�

From Property 4.2, we know ifv(s) − v(s− ei)
= v( jei)− v(( j − 1)ei) holds for alls∈ Fe(N,m,Γ ) and

all j ∈ M+
i with si = j, then

mi

∑
j=1

ψi j (N,m,v,Γ ) = v(miei).

5 The relationship between the given
coalitional value and the core

Definition 5.1. The multichoice game(N,m,v) is called
convex if it satisfies

v(s∨ t)+v(s∧ t)≥ v(s)+v(t)

for all s, t ∈ M.
When we restrict the multichoice game(N,m,v) in

the setting of traditional games, Definition 5.1 reduces to
be the concept of convexity for traditional case. Similar to
the definition of the core of games with a coalition
structure, we define the core of multichoice games with a

coalition structure as follows:
Definition 5.2. The coreC(N,m,v,Γ ) of v ∈ MCCN is
denoted by

C(N,m,v,Γ ) =

{

x|∑
i∈S

si

∑
j=1

xi j ≥ v(s) ,∀ s∈ Fe(N,m,Γ ),

∑
i∈N

mi

∑
j=1

xi j = v(m)

}

,

whereS= {i|si 6= 0, i ∈ N}.
Theorem 5.1. Let v ∈ MCCN be convex, then
C(N,m,v,Γ ) 6= /0.
Proof. Let Γ = {B1,B2, ...,Bh}, we rearrange the order of
the players in(N,m,Γ ), and getπΓ = {πB1,πB2, ...,
πBh} such that πB1 = {i1, i2, ..., id1}, πB2 = {id1+1,
id1+2, ..., id1+d2},...,πBm = {i∑h−1

l=1 dl+1, i∑h−1
l=1 dl+2, ..., in},

where di denotes the cardinality ofBi for all
i ∈ {1,2, ...,h}. Let

xi11 = v(ei1), ...,xi1mi1
= v(mi1ei1)−v((mi1 −1)ei1), ...,

xid1
1 = v(∨d1−1

l=i1
ml e

l ∨ed1)−v(∨d1−1
l=i1

ml e
l ), ...,

xid1
md1

= v(∨d1
l=i1

ml e
l )−v(∨d1−1

l=i1
ml e

l ∨ (md1 −1)ed1), ...,

xid1
+1 = v(∨d1

l=i1
ml e

l ∨ed1+1)−v(∨d1
l=i1

ml e
l ), ...,

xin1 = v(m− (min −1)ein)−v(m−minein), ...,

xinmin
= v(m)−v(m−en).

It is obvious that∑i∈N∑mi
j=1xi j = v(m) holds.

For anys∈ Fe(N,m,Γ ), without loss of generality, lets=
∨l∈R⊆P\kbl ∨ t with t ≤ bk. If t ≤ bk andt 6= bk, then it has

m− t = ∨l∈P\(R∪k)bl ∨bk− t ∧bk.

Let { j1, j2, ..., jd}= Bk such thatj1 ≤ j2 ≤ ...≤ jd. From
t ≤ bk and t 6= bk, without loss of generality, let
{ jt , jt+1, ..., jt+a} ⊆ Bk, where t jc 6= mjc for all
c ∈ {t, t + 1, ..., t + a}. According to above, we rearrange
the order of the players in(N,m,Γ ) such that
s = ∨l∈{1,2,...k−1}⊆P\kπbl ∨ t, where
πbl = {mi

∑l
x=1dx−1+1

,mi
∑l

x=1dx−1+2
, ...mi

∑l+1
x=1dx−1

} for all

l ∈ {1,2, ...,k−1}. Let

r = ∨l∈{1,2,...k−1}⊆P\kπbl ∨
t−1
a=1 mjaeja ∨ (sjt +1)ejt ,

then it gets

r ∨s= s∨ (sjt +1)ejt , r ∧s= r −ejt .

From the convexity ofv, it gets

v(s∨ (sjt +1)ejt )+v(r −ejt )≥ v(s)+v(r)

and

x jt (sjt +1) = v(r)−v(r −ejt )

≤ v(s∨ (sjt +1)ejt )−v(s).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


202 F. Meng, Q. Zhang: A Coalitional Value for Multichoice Games with...

Namely,

( ∑
i∈S

si

∑
j=1

xi j +x jt (sjt +1))−∑
i∈S

si

∑
j=1

xi j

≤ v(s∨ (sjt +1)ejt )−v(s),

whereS= {k|sk 6= 0,k∈ N}. Thus,

(∑
i∈S

si

∑
j=1

xi j +x jt (sjt +1))−v(s∨ (sjt +1)ejt )

≤ ∑
i∈S

si

∑
j=1

xi j −v(s).

Repeat the above process∑i∈N mi −∑i∈N si times, it has

∑
i∈S

si

∑
j=1

xi j −v(s)≥ ∑
i∈N

mi

∑
j=1

xi j −v(m) = 0.

From Definition 5.1, it showsx∈C(N,m,v,Γ ).
If t = bk, then let r = ∨l∈{1,2,...k−1,k}⊆Pπbl ∨ ej , where
j ∈ Bk+1 and k+ 1 ∈ P. Repeat the above process, one
can also getx∈C(N,m,v,Γ ). �
Theorem 5.2. Let v ∈ MCCN be convex, then
ψ(N,m,v,Γ ) ∈C(N,m,v,Γ ).
Proof. From Eq.(4) and Theorem 5.1, we know the
function ψ(N,m,v,Γ ) is a convex combination of

h∑k∈P (∑i∈Bk
mi)!

/

Π
i∈Bk

mi ! elements in C(N,m,v,Γ ).

Thus, ψ(N,m,v,Γ ) ∈ C(N,m,v,Γ ) for C(N,m,v,Γ )
being a convex set.�

Remark 5.1. The relationship between the given
coalitional value and the core coincides with that of the
Shapley value and the core of traditional case. The proof
of Theorem 5.1 is an extension of the classical case [26].
Example 5.1. Let N = {1,2,3,4}, m = (2,3,2,1) and
Γ = {B1,B2}, whereB1 = {1,2} and B2 = {3,4}. The
coalition values forv∈ MCCN are given by Table 1.

Table 1: Values for coalitions
S0 v0(S0) S0 v0(S0) S0 v0(S0)

(1,0,0,0) 1 (2,1,0,0) 8 (2,3,1,0) 18
(0,1,0,0) 1 (2,1,0,0) 8 (2,3,2,0) 20
(0,0,1,0) 1 (2,2,0,0) 10 (1,1,2,1) 15
(0,0,0,1) 1 (1,3,0,0) 10 (1,2,2,1) 20
(2,0,0,0) 2 (2,3,0,0) 15 (1,3,2,1) 25
(0,2,0,0) 2 (1,0,2,1) 10 (2,1,2,1) 20
(0,0,2,0) 2 (2,0,2,1) 12 (2,3,1,1) 20
(0,3,0,0) 3 (0,1,2,1) 12 (2,2,2,1) 30
(1,1,0,0) 5 (0,2,2,1) 15 (2,3,2,1) 40
(0,0,1,1) 5 (0,3,2,1) 18
(1,2,0,0) 8 (2,3,0,1) 15

By Eq.(4), it has

ψ11(N,m,v,Γ ) = 3.45,

ψ12(N,m,v,Γ ) = 6.75,

ψ21(N,m,v,Γ ) = 3.55,

ψ22(N,m,v,Γ ) = 4,

ψ23(N,m,v,Γ ) = 5.75,

ψ31(N,m,v,Γ ) = 2.83,

ψ32(N,m,v,Γ ) = 8.17,

ψ41(N,m,v,Γ ) = 5.5

and
∑4

i=1∑
mi

j=1 ψi j (N,m,v,Γ ) = 40= v(m).

From Definition 5.1, we know the gamev∈ MCCN, given
in example 5.1, is convex. Thus,ψ(N,m,v,Γ ) is an
element in the core.

6 Conclusion

We have introduced and researched a coalitional value for
multichoice games with a coalition structure, which can
be regarded as an extension of the Owen value [12] and
the Shapley value [2]. Furthermore, we discuss three
characterizations of the given coalitional value, which
will help us better understand it. Like other solutions, we
can have other axiomatic systems to define the given
coalitional value. The introduced model for multichoice
games is different to any existing one. Because of the
advantages of the value proposed by van den Nouweland
et al. [2], the given coalitional value considers the player
participation levels, and endows the different weights
with respect to the different participation levels.

However, we mainly study one coalitional value for
multichoice games with a coalition strucutre, and it will
be interesting to discuss other payoff indices.
Furthermore, we shall study the payoff indices of
multichoice games under precedence constraints by using
graph theory [27,28,29,30,31,32].
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