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Abstract: In this paper a new model of multichoice games with a coalition structure ppeal, which can be seen as an extension of
the Owen coalition structure. A coalitional value on the given model is difimbich can be seen as an extension of the Owen value.
Three axiomatic systems are studied. The first one is enlightened by ©atranacterization for the Owen value and Faigle and Kern’s
characterization for the Shapley value on games under precedemsteants. The second one is inspired by Bilbao’s characterization
for the Shapley value on games on convex geometries. The last onexteasion of Young’s characterization for the Shapley value on
traditional games. Furthermore, the relationship between the given coalitialue and the core of multichoice games with a coalition

structure is discussed.
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1 Introduction the same number of activity levels, which is an extension
of the egalitarian solution proposed by Dutta and Raly [
for traditional games. Recently, Hwang and Lia@] [
investigated the weighted associated consistent valak, an
characterized it by means of the weighted balanced
Qontributions and the associated consistency. More
researches can be seen4g,9,10].

A multichoice game is a generalization of a traditional
TU game in which each player has several activity levels.
The reward that a group of players can obtain depends o
the efforts of the cooperating players. Hsiao and
Raghavan 1] introduced multichoice games in which i .
players have the same number of activity levels, and with_ AS We know, in some cooperative games, such as
each level of activity a weight is associated in order to Economic Community and Military Alliance, the players
discriminate between those levels. van den Nouweland e&r€ joined in coalitions that form a partition or coalitibna

al. [2] considered a more general case with differentStructure of the set of players. Aumann and Dre4 first
numbers of activity levels, and extended the notions offesearched in this area and proposed a model of games
core, dominant core and Weber set. They also proposelﬂ”th a coalition structure, where the players in a union are
an alternative extension for the Shapley value based on affdependent to other players. Different to Aumann and
extension of the probabilistic formula by orders, but they Prze [L1], Owen [L2] gave another model for games with
did not give additional support for this extension. Calvo & coalition structure, where the probability of cooperatio
and Santos 3 studied another value for multichoice @meng coalitions is considered, and provided the Owen
games, which is focused on total payoff instead of payoffvalue, which is an extension of the S_hapley value. Later,
per level. Klijn et al. ] have studied a new solution to Many experts and scholars have studied deef@ylf, 15,
multichoice games, which is based on the work of Derks16.17,18,19].

and Petersq]. Calvo and Santosf] researched a value All above researches are about multichoice games and
for multichoice games by restricting the Aumann-Shapleytraditional games with a coalition structure. Both
value for continuum games in framework of multichoice contexts, TU games with a priori system of unions and
games. Peters and ZanK][proposed the egalitarian multichoice games are unified by Albizur2(] who
solution for multichoice games with each player havingintroduced the concept of a coalition structure for
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multichoice games and defined a multichoice coalition van den Nouweland et al.2] gave a value for
value in this framework. This value is an extension of the multichoice games as follows:

Shapley value 1] for traditional games. Based on the

coalition structure introduced by Albizur2(], Jones and @ (N,mv) = Mien(m!) z v 1)
Wilson [22] defined another coalitional value in a similar Y (Tienm)! &0 7

way as the Owen value. Based on the building axiomatic

system, the authors showed its existence and uniquenesgherea is an admissible order for, v¢ means the value
From the analysis??], it shows that the calculation of the Of v with respect to the admissible order

introduced coalitional value is complex in the setting of It is not difficult to know that Eq.(1) is equivalent to
the given model 20 when each player has several the following equation.

participation _Ievels_. Further, the coa_litional valu_e_ giv_e @ (N,mv) = ,\; hij(s)(v(s)fv(sfei))

the same weight with respect to the different participation M3

levels. In this paper we introduce another coalition

structure for multichoice games, which is an extension of VieN, jeM’, 2)
the coalition structure proposed by Owei2]. According  \yhere

to the works of van den Nouweland et &) pnd Owen hi(s) — (Fks5-120%)" (Sen (Me—50)! (Skenmy)!
[12], a coalitional value for multichoice games with a i (s -1y 20(5) Mken (M—S01) Meen(md)

coalition structure is pro_p_osed, and threg axiomaticands|s —1=(S1,.,S-1,5 — LS4, ).
systems for the given coalitional value are discussed, by
which its existence and uniqueness can be proved. When  (Sk(ss-1),0%)!
multichoice games are convex, the relationship between Mg -1),40(!)
the introduced coalitional value and the core is examinedfrom coalition€® to coalitions, wheres is the last step,
Which.coincide.s with thg classical case. . and %ZkkeNN(gn”:((:zl:;?)! is the number of admissible orders
ThIS paper is orgamze_d as follows. _In S_ect|on 2, SOMef o m coalitions to coalitionm.
basic concepts and notions for multichoice games are
briefly reviewed. In Section 3, the model of multichoice
ames with a coalition structure is presented, and - . .
goalitional value is defined. In Section Al? three axiomatic83 A coallthqal value for multichoice games
systems for the given coalitional value are discussed. IWith a coalition structure
Section 5, the relationship between the given coalitional N ) o
value and the core of multichoice games with a coalitionA coalition structure or{N,m.v), given by Albizuri 20,
structure is examined. The conclusion is made in the lasts @ family % = {Ba, ..., By} of coalitions onM such that
section. Bl = (X%, ....x5) with 3} ) B = (M, mp, ...,my), where
x,!‘ denotes the activity level of the playkiin coalition By.
The author further supposed that the same players do not
form two coalitions with different activity levels. Howexe
2 Preliminaries the author does not give the explanation for this restrictio
Based on the coalition structure introduced by
Albizuri [20], Jones and Wilson 2] introduced the

LetN ={1,2,...,n} be a set of players, and suppose eachyo|iqwing coalitional value, for any € N, expressed by
playeri € N hasm + 1 activity levels at which he can

play. We setM; = {0,1,...m} as the action space of o\ \ 5 — ISHW[ = |§ = 1)!
playeri € N, where the action 0 means no participating, "+ Wi
and M" = {1,..,m} for any i € N. A function

is the number of admissible orders

BkEA RCBy\i SCW\K

Vv MienMi — OF with v(0) = 0 gives each coalition o RM(B — [R—1)!

s = (s1,%,...,%) € M = [MieyM; the worth that the [By|!

players can obtain when each playieplays at level .

s € Mj. Letm= (my,mp, ...,m,), and a multichoice game X {V (Z+ (X—i,)(ij)) —Vv(z+ (Xfi,O))} )]

be denoted by a tripléN, m,v), if there is not confusion )

we will simply denote a multichoice gani®l,m,v) byv. ~ Where |§, [W]|, |R| and |By| respectively denote the
The set of all multichoice games with the player keis ~ cardinalities kOf S W, Rand B, W= {12,..,w},
denoted by MCN. For all coalitons st € M, let  Bc={i € NIX‘€ M}, Ay = {By|i € Bk}, 2= J|sBi, and

SAt= (S Ati)ien andsVt = (S Vt)ien. Furthermore, we  X_i = (&1Xd, ..., 6-1X_1, 641X 4, ..., EnXh) with
denotes <t for all s;t € M if and only if 5 <t; for each 1 peR

i€ N.Foranys= (s1,....5) €M, letS={ieN|s >0}. € =) 0 otherwise"

e denotes the vector il satisfyinge® = 1 fori € S It is easy to see that the coalitional value degenerates
otherwise,e® = 0, whereS C N. Especially,e® denotes  to be the Owen value when each player has only two
the vector inN satisfyinge® = 0 for alli € N. participation levels 0 and 1. From Eq.(3), we know it is
@© 2014 NSP
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focused on total payoff instead of payoff per level. Since  Definition 3.3 is an extension of the carrier proposed
the weights given by Eq.(3) only consider the number ofby Shapley 21], and Definition 3.4 is an extension of the
active players, it gives the same weight with respect to thequotient game introduced by Oweh?].

different participation levels. Let (N,mv,[) be a multichoice game with the

" iti CN
From the coalition structure2p], we know the author ~ €oalition structurel”, ‘and MC~" be the set of all
considers the player participation levels satisfy addtyj ~ Multichoice games with a coalition structure. Following

e.g., letM = {1,2}, then the player’s participation ~ the works of van den Nouweland et egglbnd Owen 12],
level 2 is equal to the sum of his two participation levels W& introduce a coalitional value MC~" as follows:

1. This point seems to be unreasonable in some situations, N My — rith—r—1)! B

In above example, if these two participation levels of the Ui (N, mv, M) = T h ij (9)
playeri respectively denote a number of money, and the

pa}r'gicipation Ievels. 1 anq 2 respectivgly dgnote one (V(sVt) —v(sVt _ei)) VieN, jeM", (4)
million dollars and five million dollars. It is obvious that . L

the participation level 2 is not equal to the sum of two wherep andr respectlvelg denote the cardinalities Bf
participation levels 1. In the setting of Albizuri's model, andR, andt = Vyerbw. hjj(s) is the coefficient for the
the total money of the playeused for cooperation is two  coalition s restricted on B,. Namely, th(s) =

million dollars rather than five million dollars. ' a

_ N _ o (291(5\371)9#059)! (Sgey (Mg—sg))! (Tge, Mg)! with
Different to the coalition structure given by Albizuri Mg (s —1)g70(%9) Macy (Mg—S)1) Myes, (M)

[20], we introduce another coalition structure on gg_1— (Sis oS — 1,0, S¢) @NA{Ke, ..oy, .. ke C By

multich_o_ice games. Owerl®] gave a coalition structure Obviously, Eq.(4) degenerates to be the Owen value
for traditional games as follows: [12] when v is restricted in the setting of games with a
Definition 3.1. [12] " = {By,B,,...,By} is said to be a coalition structure, namely, every player has only two
coalition structure on player seN, if it satisfies activity levels 0 and 1. Furthermore, Eq.(4) degenerates to
Ui<k<hBk = N and By N B = 0 for all k # I, where  be the Shapley value for multichoice gam&pwWhenh is
kleP={12,...h}. equal to 1, namely, there is only one coalitioninthat is

Here, we apply the coalition structure introduced by N. In other words, Eq.(4) can be seen as an extension both

Owen [L7] in the framework of multichoice games. For ©f them. L .
any givenBy € I, let by € M denote the "maximum As we know, when a coalition structure for traditional

coalition” on By, namely, (b); = m for all i € By, and ~ 9ames has coalitions, the Owen value degenerates to be
(b)i = 0, otherwise. Thedby, by, ..., by} is a partition of the Shapley value for traditional games. But this point

m. Let (N,m, ") denote a coalition structure ¢, m). does not hold any more when_ .it turns to multichoice
games. Namely, when a coalition structufe for a

; _ multichoice game haa coalitions, it can not guarantee
(N.m,["), if there existB, € I" andUicrep\kBy such that o given coalitional value is equal to the Shapley value
$=11 Vo, wherety < by andt; = Vicrep\kDI- introduced by van den Nouweland et &].[

Let Fe(N,m,I") be the set of all feasible coalitions in Example 3.3. Let N = {1,2}, m = (2,2) and
(N,m,I"). From Definition 3.2, it is easy to see when the ' = {By,B,}, where B; = {1} and B, = {2}. If the
coalition structurgN,m, ") is restricted in the setting of values for coalitions are given as followg1,0) = v(0,1)
the model given in12], thenFe(N,m,I") degenerates to = 1, v(2,0) = v(0,2) = 3, v(1,1) = 5, v(1,2) = 8§,
be the set of feasible coalitions fbronN. v(2,1) =10,v(2,2) = 15.
Example 3.1. Let the player setN = {1,2,3,4}, FromEq.(4), ithas
m=(2,2,2,1) andl" = {B1,B,}, whereB; = {1,2} and

RCH\ks<by,5=]

Definition 3.2.s€ M is said to be a feasible coalition for

B, = {3,4}. For B; ands = (1,2,0,0) < by, when the Yu(N,mv.) =3,
players 1 and 2 cooperate with the players 3 and 4, then Yra(N,mv,[) = 4.5
s = (1,2,2,1) is the only feasible coalition with respect T ’
tos. Y21(N,mv, ") =4,
Example 3.2. Let the player setN = {1,2,3}, Woo(N,mv, ) = 3.5.

m= (2,2,1) and ' = {B1,By}, whereB; = {1} and
B, = {2,3}, then Fe(N,m,[") = {(1,0,0),(0,1,0), (0,
07 1)7 (27 O’ O) (07 27 0)7 (O’ 1’ 1)’ (O’ 27 1>7 (27 17 0)7 (27 27 0)7 2
(2,0,1),(1,2,1),(2,1,1),(2,2,1)}.
Definition 3.3. Letve MCN, t € M is said to be a carrier @12(N,m,v) = 5.5,
3
3

From Eq.(2), it gets

forvin M if v(s) = v(sAt) for all s M.

Definition 3.4. Letv e MCN andl" = {By,B,...,Bn}. VB
is said to be a quotient game én if it satisfiesvB(R) =
V(Vierby) forallRC P={1,2,...,h}. From above, we know) # ¢.
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4 Characterizations of the given coalitional
value

by Faigle and KernZ3] when the domain ofcM®N is
limited to traditional games.
Theorem 4.1. A coalitional value satisfies\DD, EFF,

In this section, we mainly discuss the axiomatic systemdNP, HST andSQ if, and only if, it is equal to Eq.(4)i.e.,

of the given coalitional value. Lefi be a coalitional value

on MCEN,

¢ij(N,myv, ") = wij(N,m,v,I') for all i € N and all
j € M;", wherev e MCEN

The analogue of unanimity games for multichoice Proof. First we show that,u satisfies these properties.

games are minimal effort gamésl, m,us) € MCN, for
anysec M\{€}, defined by

iy d 1 ss<t
s(t) = 0 otherwise

forallt € M\{€’}.

satisfiesADD andNP as is easily seen with Eq.(4).

In the following, we shally show satisfies the rest
characterizations.

From Eq.(4), it has

The identity games for multichoice games are games ==

(N,m, &) € MCN, for anys€ M\ {€’}, defined by

1 =t
Us(t) = { 0 otherwise

forallt € M\ {€’}.

According to the literature 12,23], we give the
following properties for the coalitional valug.
additivity (ADD). Letv,w € MC®N, then

d(IN.mv+w, ) =¢(N,mv,)+¢(N,mw, ).

efficiency(EFF). Letv e MC®N, then

m
Z (f)ij (N,m,v,l') :v(m)‘
eNj=1

null property (NP). Let v.€¢ MC®N and i € N, if
j € Mi\{€’} is a "null level’, then ¢;;(N,m,v,[") = 0.
Here, j € Mi\{€?} is said to be a "null level” if
V(sV(j—1)€) =v(sV je) forallse Myen iy Mk
hierarchical strength within coalition (HST). Let
ve MCEN. ForBy e I" and alli, j € By, it has

2 h?skj (x) ¢isi(N7m7 Us, ")

SAby <x<by,
Xj=Sj

= z |s|( )¢]S](N m, us, ")

sAby <x<by,
X=S

for anyse Fe(N,m,I") with s € M;" andsj € M]".
symmetry in quotient gam@&Q). Let v.e MCEN, For all
Bx,Bs € I, if VB(RUK) = VB(RUSs) for anyR C P\ {k,s},
then

%Z\%var %z:p,thvI’)
i€By i€

sh 1
Remark 4.1. The propertiesADD, EFF, NP and SQ

degenerate to be the properties introduced by Ovéh [
when we restrict the domain &MCN in the setting of
traditional games with a coalition structure. Furthermore

N m
Wi (N, mv, 1)
B NE ri(p—r—1)!
IS /SIREP\ ks<bhs =) p!

For anys < by, let\i(s) = v(s) — v(t). It gets
N m
lepij(N,m,v,l')
i=1j=
L ri(p—r—1)!
i= glpr\ks_bk,s:J pl
x hk(9)(v(sVt) —v(sVt—¢))
_ r(p—r—21)! (b
KEPREP\K p! 5
_ r'(p—r—21)! b
kEPRgP\k o (Vb V) —v(t))

From above, it showEFF holds.
From Eq.(4) and the conditions ST, it gets

l‘)UiSi (Nv mv uSv I_)

r'(p_pc_l)' h@: (X)

RCP\kx<by,xi=5
X (Us(xVt) —us(xVt —€))
r'(p—r—121)!

= h2(x)
P/\kCRCP\ks/\bk<X2!Jk =S p!

isi

the propertyH ST degenerates to be the property proposed

© 2014 NSP
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| _r— |
_ Z ri(p : 1)! Z} hiE;'i‘(x)
PAKERCP\K P sAb <Xy X =5
1 B
== h¢(x),
Fy%bkﬁxgbkxi:s °

ne—r=! andp is the cardinality of

wheret = 3

P'\kCRCP\k
P ={l ¢ P|oAs+#€’}.
For the same reason, it has

1 B
Yis; (N, M. Us, ") = o ZS/\kaXSbkvxj:Si hiSj (x).

Now one can easily verify thaty indeed satisfies the

property ofHST.
From the proof oEFF, it has

m
% zwﬂ(Namaer)
i€eByl=1

-3 “(p_pf “DNBRUK - B(R)
REP\k :
and
m

; > Win(N,mv,I")
j€Bsh=1

= Z r!(p_pr'_l)!(vB(RUs) —VB(R)).
REP\s :
Since,vB(RUK) = VB(RUs) for all R C P\{k,s}, it gets
Q.

Uniqueness. Let be a coalitional value oMCEN, and

On the other hand, from Eq.(4) it gets

1 By i +
= S hg(x) j=s eM,
'J—’ij (N7m7uS7,—) = { pl . I .

SAb<x<by,% =5
0 otherwise

Hence, ¢(N.mus,") = @(N,mus,"). From the
randomicity of s € Fe(N,m,I"), the desired result is
obtained [

linearity (L). Letv,w € MC®N anda, 8 € O, then

¢(N,mav+pw, ) =ad(N.mv,I)+Bo(N,mw,I").

carrier (C). If t € M is a carrier for the multichoice game
v e MCEN then

&
_Zzlfi’ij(N,m,V,l') =V(t),
icT =

whereT = {k|tx # 0,k € N}.

When we restrict the domain &fiCEN in the setting
of traditional games, the proper€ydegenerates to be the
property proposed by Shaplex]].
Remark 4.2. From Theorem 4.1, we know Eq.(4) is the
unique coalitional value oMCCNthat satisfiesADD, C,
HST and SQ, as well as the unique coalitional value on
MCEN that satisfies., C, HST andSQ.

Bilbao [24] gave a characterization of the Shapley

value for games on convex geometries by using chain

axiom. Here, we define it in the setting of multichoice
games with a coalition structure and give the following
property.

chain axiom(CA). Letv € MCEN. For allB, € I" and all

satisfy the above mentioned properties. In the following, i, j € Bk with s € M;" ands;j € Mf, then

we shall showpij (N,m,v, ") = {¢; }(N,m,v,[") for alli
Nandallj € M*.
From Lemma 3.1 in Derks and PeteB§ and ADD, it is

sufficient to show tha$ and ¢ coincides on the class of

the analogue of unanimity games. For aryFe(N,m, "),

letP’ = {I € P|bj As# €°} andB| = B, N'S. Define quotient

game(P,f) as follows:
8o [ 1 P CR
Us (R) = { 0  otherwise

forallRC P.

Since, ¢ satisfiesNP, we getg;; (N,m,us,/") = 0 for all
i € N\Swith j € M;", and alli € Swith j € M;" andj #5s.
FromEFF, NP andSQ, it gets

p/

Y $is(N.mus, ) = b kep

{ 1 ke P
iGBk
foralli € Swith j =s € M;".
FromEFF andHST, it has
v he(x) j=s €M}
01 (N,mUs, ) = {7 sabeexZyon=s s (%) ] |
0 otherwise

CBk[OaS|S _1]¢j5j(N7ma 55,1_)

= c*(0,slsj — L5, (N,m. &, )
and

((p/+| _1)'(p_ p/_ l)l) ¢IS|(N7m5557r)

= ((p/_l)l(p_ p/)l) ¢i5i(N7ma65'>r)>
where s,;§ € Fe(N,m,I") such thatsVv!_jb, = ¢ and
SA(VI_gbr) = €. §s — 1 andsls; — 1 as shown in Eq.(4).

(Zgi(sl5—1)g05)!
B . _ g9 B A

c*[0,9s — 1] = Mgt g0 and c[0,ssj — 1]

(Zg:(s\sj-—l)g#osg)! , . . ,
= W P’ is the cardinality of = {I € P|
b As# €P}.

It is obviously that the chain axiom omCEN

degenerates to be the property introduced by Biltsa® [
when we restrict the domain &C®N in the setting of
traditional games on convex geometries.
Theorem 4.2.There is a unique solutiop defined on
MCEN that satisfiesL, EFF, NP, CA and SQ, i.e.
¢ij(N,mv,I") = ¢ (N,m,v,[") for all i € N and all
jeM".
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Proof. From Theorem 4.1 and Eq.(4), we know
satisfiesL, EFF, NP and SQ. In the following, we will
show( satisfiesCA. From the definition obs, it gets

(B =DM P)! oy oy

lp'si(N7m7 5Sar) = p! I1Sj
—D)i(p—p)!
— V(p )p('p p() CBk[O,S|S _1]7
_ (Sgep, (Mg—sg))! /(S gep, Mg)!
wherey= ”geBk(("b—Sg)!)/”geBk(”b!)'

Similarly, it has
—Dl(p—p)!
Wis;(N,m, &, ") = VWch[O,sBj —1].
Thus,
c[0,sls — 1] @js; (N, m, &, ")
= c[0,3/sj — 1¢is; (N,m, &, ).
From above, it shows

(P =D (p— p’)!hsk

'J’isi (Nv m, 657 I_) = p| isj

(sAby)

and

[+l —-D!(p—p =)
s (N.m &, 1) = P PPl by,
Sincehizik(s’ Aby) = hiE;k(sA by), it gets

((P+1=2)(p—p —1)!) ¢is(N,m, &, 1)
= ((p/_l)l(p_p/)l) ¢isi(N7m?6S’7r)‘

Uniqueness. Lep be a coalitional value oMC®N, and

satisfy the above mentioned properties. For

v € MC®N, there exists an unique set of coefficients

{v(s) :s€ Fe(N,m,I")} such thav = ¥ ccrenmr) V(S) Os.

From L, we only need to prove and ¢ coincides on
(N,m, &, ) for anyt € Fe(N,m,I"). Similar to Theorem

4.1, for anys € Fe(N,m,I"), let P’ = {I € P|bj As # €}
andB| = B; NS Define quotient gaméP, ug) as follows:

Biow | 1 PPCR
US(R){O otherwise

forall RC P.
From Theorem 4.1, it gets
1 /
= keP
Z ¢i$i(N7m7 uS7I—) = p / (5)
. 0 k¢P
ieBy
Sinceus = S & forallse Fe(N,m,I"), it has
¢(N7m7usvr) = ¢(N7mvzs§td;r)

= ;fﬁ(N,m,d,/')

and

dis, (N, m s, ) = i (N,m, &, ).

s<tli=s

FromCA, it gets
¢iSi (Na m> uSa ,_)

P+ =D (p—p -1
(P =Di(p—p)

SAbE<tAby, <0<I<DP’
ti=5,t—bg=s—by

X ¢isi(N,m,d,r)

_ (P41 -=Dp—p D! 5
w5 p  (P-Dip-p) sAb STADy,

ti=s, t—bc=s—Dx

¢iSi (Ny ma dar)
sAb<tAby,

ti=s,t—bx=s—by
From above, we know?’ = {l € Plbj As# €} = {l €
Pl At # 60}.
FromCA, it has
Mk (€) Bie; (N, m, &, ) = hB (1) b (N, m, &, ),

which is equal to

R (t A @ty (N. M. &. ) = hB¥ (t Ay i, (N. M. &.1).

Namely,
hB<(t A by)
any LT N
¢|ti(N,m,5t7r)— hJBt';(t/\bk)¢JtJ(N7m76£;r) (6)
By Eq.(6), it has
r_ 1
PP E-D(p-p)
<Y S #s(Nma.r) )

jeB,  SAbk<tADby,
ti=s,t—by=s—by

and
(P -=D!(p—p)
p!
= Z Z dis, (N,m, &, 7). 8)

ieB,  SAb<tAby,
ti=s, t—bx=s-by

Whenycs g, S = Yics, (b, by Eqs.(6) and (7), it gets

(P-=1)!(p—p)
p!
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== % z ¢iSi(N7mvdar)
i€By sAb=tAb=

by ,tj=sj=m;

i (Bx)
:¢jm(N7m7d»,—)+ Sl
' iesz\ jhis, ()

_ ien, Nk ()
h% (by)

jmj

Sinceyicg, ImI(bk) =1, ithas

¢jmj(Namad7r)'

¢jmj(Nvm76tv,—): p|

forall j € By.

When ZIGSTBK
generality, letsj = m; — 1.

By Egs.(6) and (8), it gets
(P =D(p—p)!
p!
= Z z ¢iSi(Nam7dar)

i€By s/\bk:bkfej <tAb,
ti=s t—by=s—by

i€B\j

+¢ij (Nmét sT)

= ¢|s,(N m, &—s, ") + Z ¢|m, (N,m,&_ S\/mjelar)

1By i€B\j

ZIEBK isi (t A bk)

h%mlaAm)
pP-1'(p—p)
PO 5
' iEB\ |
%ZEBK |s( Aby)
- ! ji(m—1)
P—tp—p)!
+()$) h (by).
' i€B\j
Since
z hIS| (tAby) +
ieBy ieBy s/\bk<tAb;< SAby At Aby
=s,t—bx=s—by
|eBk S/\bk<t/\bk,
=s,t—bg=s—by
p— 1,
it has
—1)l(p—p)!
js, (N,m &, 1) = (P=DHP-pP)\ 5

p!

= Yies, (bk); —1, without

¢ mJ (Namvasz_)

¢imj(Nvm36(7r)

(¢imi<N>m?d:SJ—)+¢imi(N7m7 d:svmjeivr))

(Namv 6[:57,_)

(t Aby)

loss of

From induction andi = s, it gets

(P=D!(p=p)! h (A by)

ti € M-
it (N.m, &, M) = p! ! i
b1 ( a.r) { 0 othervvlse

On the other hand, by Eq.(4) it has

(F=1)!(p—p)! B . +
wy(Nma,ry=q e A e,
! 0 otherwise

Namely,¢ andy coincides on(N,m, dr,I"). The proof is
finished.[d

Remark 4.3. From Theorem 4.2, we know Eq.(4) is the
unique coalitional value oMCEN that satisfiesADD, C,
CA and SQ, as well as the unique coalitional value on
MCEN that satisfies., C, CA andSQ.

Young [25] proposed a characterization of the Shapley
value by using strongly monotonicity. According to the
literature PR5], we propose strongly monotonicity on
MCEN as follows:
strongly monotonicity(SMON). Let v,w € MC®N and
ieN.If
w(sV (j—1)€)

v(sV je') —v(sV (j—1)€) > w(sV je') —

for all s€ Fe(N,m, ") with 5 = 0 andj € M, then
Gij(N,mv, ") > ¢ (N,mw, ™).

Similar to the property of symmetry given by Shapley
[21] and the property of symmetric in the unions
introduced by Owen12], we introduce the veto property
onMCEN as follows:
veto property(VP). Let v e MCEN, For B, € I and all
i1,io € TNBy, if j1 =t € M-Jr andj,=tj, € Mi} then

Z |212( )¢|111(N mvl')
Xi2:j2
tAb<x<by,

X, =1,
tAb<x<by,

|111( )¢|212(N mvl')

where t € Fe(N,m/") is a veto coalition, and
T = {i € N|tj # O}. Here,t € Fe(N,m,I") is said to be a
veto coalition if it satisfies

v(s) = { V(g)

Theorem 4.3. A coalitional value ¢ satisfies EFF,
SMON, VP and SQ if, and only if, it is equal to Eq.(4),
i.e, ¢ij(N,mv,[") = (N, m,v,[") for all i € N and all
j € M;", wherev € MCCN.

Proof From Theorem 4.1 and Eq.(4), It is known thfat
satisfiesEFF, SMON andSQ.

In the following, we shall show Eq.(4) satisfi&&. For
any t € Fe(N,m,I"), without loss of generality, let

seFe(N,m[) st. t<s
otherwise :
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t = Viegkb Vs such that s < b, where
R = {l € P{tAb; #0}. Then,
wiljl(N’m’V7r)
| —r—1)!
5.5 Heor=Die o
‘ | 1)1
REP\kx<byXi; =1 P
X V((XVy) —V(xVy—€1))
r‘(p—r—1)!
_ (pi|)hi31kjl(x)v(s\/(\/|eRgP\kbl))
R\KCR s<xShy, P
CP\k Xi;=l1
rr(p—r—1)!
_ (pi') S h:slkjl(X)V(S\/(\/ngP\kbl))
&R p: s<x<hby,
gP\k Xi]_:jl
_1 > hB% (x)v(t)
pt SSXSbk, o
Xip=]1

wherey = Vyerbw, andp is the cardinality oR.
For the same reason, it has

Wop(Nmvr) == 5 R v,

S<X<By X, =]2

Young [25], the theorem is proved by induction on
Case (i). Ifl =0, everyj € M is a "null level” for all
i €N, from above, it has

¢ij(N7m,W,l_) =0.

Case (ii). Ifl = 1, without loss of generality, lat= a;u
for somet € Fe(N,m, ") wherea; # 0. From above, it has
¢ij(N,mw, ") =0 foralli e Nand allj € M{" with j #t;.
Wheni € T = {i € N[tj # 0}, sincet is a veto coalition,
from EFF, VP andSQ, it has

at
¢ij(N,m,v,I') = —
tAb<x<by,
X=ti=]

hi¥ (%),

wherei e By e l.

Thereforey = ¢, whenever the index ofis 0 or 1.
Assume now thaty = ¢, whenever the index of is at
mostl, and letv have indeX + 1 with expression

1+1
V= Zatr U, »
r=

wherea, # 0,t € Fe(N,m,I") and p, is the cardinality
of R, ={l e Pty Ay #0} forallr =1,2,...,1 +1.
Lett = ATt for anyi € N\T or anyi € T with (t;); =

Now one easily verifies tha indeed satisfies the property & 7 J € M forallr =121 +1.

of VP.

We now prove the uniqueness part. F&WON, it gets if
v(sVje')—v(sv(j—1)€)=w(sV je')—w(sV (j —1)¢)
for all se Fe(N,m,I"), and alli € N, wheres = 0 and
j €M7, then

¢ij(N7m7V7r):¢ij(N7ma\er)' (9)

Next consider the symmetric gameon (N, m,[") which
is identically zero on Fe(N,m[). Thus
w(sV je') —w(sVv (j—1)¢) =0 for all s€ Fe(N,m,I"),
all i e N and all j € M;", wheres = 0. Since, any
t € Fe(N,m,[") is a veto coalition, fromEFF, VP and
SQ, it hasgij (N,m,w,I") =0 foralli € N and allj € M;".

From Eq.(9), it hagpij(N,mw, ") =0 for alli € N and
all j e M*. Namely,¢ satisfiesNP.

Construct the game

W: atr utrv

r:(t);#0
whereT = {i € N[t # 0}. _
The index ofw is at mostl, sincev(sV je') —v(sV (j —
1)) =w(sVvje')—w(sv(j—1)¢)forallse Fe(N,m,I"),
wheres = 0. By induction andSMON, it has

¢ij(Nama\er) = ¢ij(N7m7V7l_)

at, B
= . z hij*(x)
ri(tr);#0 Pt tr Ab<x<by,xi=(tr ); =]
= (,Uij(N,m,v,I').

According to the proof of Lemma 3.1 in Derks and PetersFor any i € T with (t)i =t = j € M’ and all

[5], we know for allv € MCEN, v can be expressed by

V= o, (10)
teFe(N.m,[")

: - . I+1
wheret is an analogue of unanimity game as given above.¢__ (N,mv.l) = oy
1] s 1TV - T

By Eq.(4), it gets
a3 h¥m

P t/\bkgxgbkA 4
X=t=] )
0 otherwise

‘Mj(N7m7US>’_) =

r=212,..,1+1,t is a veto coalition fora, w,, where
r=12,...,.1+1
FromEFF, VP andSQ, it gets

=1 Pt ¢ Abex<Bioni =t )=
= l,Uij(N,m,V,l_).

O
Remark 4.4. As Young R5 pointed, strongly

for any B € I', wherep, is the cardinality ofR = {I €
Plt Ay # 0}.

Define the index of v to be the minimum number of non-
zero terms in some expression foof form (10). As in

monotonicity can be replaced by independence condition,
namely, a player’s value depends only on the vector of his
marginal contributions. Khmelnitskaya and Yanovskaya
[18] proposed a characterization of the Owen coalition
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value by extending Owen'’s original axioms and replacingcoalition structure as follows:

additivity with marginilist (M) (i.e. independence

Definition 5.2. The coreC(N,m,v,[") of v € MC®N is

condition). From Theorem 4.3, we know Eq.(4) is the denoted by

unique coalitional value oMCEN that satisfie€EFF, M,
VP andSQ. _
Property 4.1. Let v € MCEN. If v(s) —v(s— (j — 1)€)
= v(je') for all i € N and all s € Fe(N,m,[") with
j=s M, thenyij(N,myv, ") = v(je').
Proof. By Eq.(4), it has

L,Uij(N,m,V,l_)

| —r—1)!

_ ri(p : 1)! hﬁk(s)

RP\kstics= P

x (V(sVt) —v(sVt—¢))

_ r!(pfrfl)!h-B-k(s)v(jej)

REP\ks<bi§ =] ! !
r'(p—r—1)! .
_ oy MR s el
REP\K p: S<B =]
r'(p—r—10)! .
— 5 MR Do)
REP\K P
= v(je)
O

Playeri € N is called adummy player if for all
j € M" and all s € Fe(N,m,[") with s = 0, it has
v(sV je') —v(s— (j1)€) = v(je'). If i € N is a dummy
player, thenyj (N,m,v,I") = v(je') for all j € M;".
Property 4.2. Let v e MC®N and anys € Fe(N,m,")
with s = j e M. If v(s) —v(s—¢€) = v(je')—
V((j—1)€), thenyij (N, m,v) = v(je') —v((j —1)€).
Proof. The proof of Property 4.2 is similar to that of
Property 4.101 '

From Property 4.2, we know ifv(s) — v(s—¢€)
=v(je') —v((j —1)¢) holds for alls € Fe(N,m,[") and

my )
all j e Mj" with's = j, then S ¢4 (N,m,v,[") = v(mé€).
i1

5 The relationship between the given
coalitional value and the core

Definition 5.1. The multichoice gaméN,m,v) is called
convex if it satisfies

V(sSVt) +V(sAt) > v(s) +Vv(t)

forall s;t € M.
When we restrict the multichoice gani®l,m,v) in

S
CIN.mF) = 1X 3 3 %) = V(9) Y€ Fe(N.m. ),
i€Sj=1

m
> > % =V(m)},
ieNj=1

whereS= {i|s # 0,i € N}.

Theorem 5.1. Let v € MC®N be convex,
C(N,m,v,[") 0.

Proof. LetI" = {By,By,...,Bn}, we rearrange the order of
the players in(N,m,["), and getrl” = {mB;, 1By, ...,
mBp} such thatmB; = {i1,i2,~~7idl}, B, = {id1+1,
idy+2; s ldy+dp Jrees/Bm = {IZrz_lldl+1’IitlllerZ""’ln}’
where di denotes the cardinality ofB; for all
ie{1,2,..,hl. Let

X1 =V(€1),... Xiym, = V(M €1) —v((my, — 1)), ..,
vV tmé), ..,

I=iy

then

Xigy1= vV tme velt) —

|:I1

d di—
Xig,mg, = V(VIE,me) = vVt tme v (my, — 1)eh), .,

Xig, +1= V(Y™ me Vet —y(vily mé), .
X1 =v(m—(m, —1)e") —v(m—m,éen),...,
Xigm,, = V(M) —v(m—¢").

Itis obvious thafy e 324 Xij = V(m) holds.

For anys € Fe(N, m, "), without loss of generality, let=
Viercp\kbr Vit with t < by. If t <y andt # by, then it has

m—t= \/|€p\(RUk)b| Vbg —t Aby.

Let{j1,])2,...,ja} = Bk such thatj; < j» < ... < jg. From
t < by and t # by, without loss of generality, let
{it;jt+1,- jtra} S Bk, where tj; # my. for all
ce {t,t+1,...,t+a}. According to above, we rearrange

the order of the players in(N,m/) such that

S = Vigaa.k-pcpk/m Vot where

my = for all
= M e ™ s M

l€{1,2,...k—1}. Let
F'=Vie{12,. k-1}cP\kTI Vi mj el v (s, + 1)ek,
then it gets
rvs=sv(sj, +1)e, ras=r—et.
From the convexity oY, it gets

V(SV (Sj, +1)elt) +v(r —et) > v(s) + v(r)

the setting of traditional games, Definition 5.1 reduces toand

be the concept of convexity for traditional case. Similar to
the definition of the core of games with a coalition
structure, we define the core of multichoice games with a

Xji(sjp +1) = V(r) —v(r — el

< V(SV (s, + 1)) —v(s).
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Namely,
S S

( ,;,le” + Xjy(s,+1)) — .gs,;x”

< V(sV (sj +1)el) —v(s),
whereS= {k|s¢ # 0,k € N}. Thus,
S

(3 Xij +Xjy(sy, +1) —V(SV (Sj, + 1)ek)
ieSj=1
S
< ZXij —V(S).
ieSj=1
Repeat the above procegg.ym — Sicn S times, it has
m

S
zszlxij —v(s) > . inj —v(m)=0.
€=

ieENj=1

From Definition 5.1, it showg € C(N,m,v,[").
If t = by, then letr = Vicq12 k—1kcpm V€, where

j € Bxy1 andk+1 € P. Repeat the above process, one

canalso gexe C(N,m,v,["). O
Theorem 5.2. Let v € MCEN be convex,
Y(N;myv, ) e C(N,m,v, 7).

Proof. From Eg.(4) and Theorem 5.1, we know the
function @(N,m,v,[") is a convex combination of

hZKEP(ZiEBkm)!/_Ig m! elements in C(N,mv,I").
1€Bg

Thus, ¢(N,mv,) € C(N,myv,[") for C(N,m,v,I")
being a convex sefl

then

P12(N,myv, ) = 6.75,
Yo1(N,myv,[") = 3.55
Yoo(N,myv, M) =4,

Yo3(N,mv,[) =5.75,
Y31 (N, mv, M) = 2.83
Y3a(N,myv, M) =8.17,
Ysa(N,myv,[[) =55

and 4
Zizlzjnzl Wij(N,mv,[") = 40=v(m).

From Definition 5.1, we know the ganves MC®N, given
in example 5.1, is convex. Thugp(N,m,v,[") is an
element in the core.

6 Conclusion

We have introduced and researched a coalitional value for
multichoice games with a coalition structure, which can
be regarded as an extension of the Owen vall# §nd

the Shapley value?2]. Furthermore, we discuss three
characterizations of the given coalitional value, which
will help us better understand it. Like other solutions, we
can have other axiomatic systems to define the given
coalitional value. The introduced model for multichoice
games is different to any existing one. Because of the
advantages of the value proposed by van den Nouweland

Remark 5.1. The relationship between the given gt g, pJ, the given coalitional value considers the player

coalitional value and the core coincides with that of the participation levels, and endows the different weights
Shapley value and the core of traditional case. The proojyiin respect to the different participation levels.

of Theorem 5.1 is an extension of the classical casg [
Example 5.1.Let N = {1,2,3,4}, m= (2,3,2,1) and
I = {B1,By}, whereB; = ’{\;1,2} and By = {3,4}. The
coalition values fov € MCCN are given by Table 1.

Table 1: Values for coalitions

S Vo(So) S Vo(So) S Vo(So)
1,000 1 (2100 8 (2310 18
(01,00 1 (21,000 8 (2320 20
0010 1 (2200 10 (1,121 15
0001 1 (1300 10 (1221 20
2,000 2 (2300 15 (1,321) 25
0,200 2 (1,021 10 (2121 20
0020 2 (2021 12 (2311 20
0300 3 (0121 12 (2221 30
(11,000 5 (0221 15 (2321 40
0011 5 (0321 18
(12,000 8 (2301 15

By Eq.(4), it has
Lpll(N,m,v, I_) =3.45,

However, we mainly study one coalitional value for
multichoice games with a coalition strucutre, and it will
be interesting to discuss other payoff indices.
Furthermore, we shall study the payoff indices of
multichoice games under precedence constraints by using
graph theory27,28,29,30,31,32].
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