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Abstract: This paper deals with the topic of numerical integration on scattered data inR
d , d ≤ 10, by a class of spline functions, called

Lobachevsky splines. Precisely, we propose new integration formulasbased on Lobachevsky spline interpolants, which take advantage
of being expressible in the multivariate setting as a product of univariate integrals. Theoretically, Lobachevsky spline integration
formulas have meaning for anyd ∈ N, but numerical results appear quite satisfactory ford ≤ 10, showing good accuracy and stability.
Some comparisons are given with radial Gaussian integration formulas and a quasi-Monte Carlo method using Halton data points sets.
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1 Introduction

The topic of numerical integration on multivariate
scattered data has recently gained popularity and interest
in various areas of applied mathematics and scientific
computing, such as multivariate interpolation,
approximation theory, and computer physics (see [7,13,
14,15,19,20,23,24]), although it has been much less
developed with respect to the construction of integration
formulas on data with a prefixed distribution (see, e.g.,
[12]).

In particular, we consider the problem of constructing
new integration formulas for high-dimensional scattered
data by a class of spline functions, calledLobachevsky
splines, arisen in probability theory [17,21] and then also
proposed in multivariate interpolation on scattered data
[4] and landmark-based image registration [1,3,6].
Lobachevsky splines consist in an infinite sequence of
univariate spline functions depending on a shape
parameter, which are compactly supported, strictly
positive definite, and enjoy noteworthy theoretical and
computational properties, such as the convergence to the
Gaussian function and the convergence of the sequence of
their integrals and derivatives to integrals and derivatives
of the Gaussian, respectively (see [4]).

Now, starting from the previous work [5], where we
investigate the integration problem on scattered data in

R
d , for d = 1,2, in this paper we focus on the use of

Lobachevsky spline integration formulas for 3≤ d ≤ 10.
The idea of using Lobachevsky splines to construct
integration formulas on scattered data turns out to be
quite natural, not only for the recent interest inmeshfree
numerical integration, but also for the performance and
computation easiness of Lobachevsky spline integrals. In
fact, Lobachevsky spline interpolation formulas take
advantage of being expressible in the multivariate setting
as a product of univariate functions. This makes simple
the computation of d-dimensional integrals on
hypercubes: at first, the integrand function is
approximated by a Lobachevsky spline interpolation
formula; then, thed-variate integral is evaluated as a
product ofd univariate integrals. The proposed formulas
may be interesting because other effective techniques for
multidimensional integration on scattered data such as
Monte Carlo methods, which are usually used in high
dimensions, have poor convergence rates (see e.g. [18,
22]).

Moreover, we remark that Lobachevsky spline
interpolation formulas are neither mesh-based formulas
(no grid is here considered) nor radial ones, but they
asymptotically behave like Gaussian interpolants (see
[4]). This feature, together with the uniform convergence
of Lobachevsky splines to the Gaussians, allows us to
give error estimates for Lobachevsky splines integration
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formulas. Numerical experiments point out that
Lobachevsky spline interpolants are comparable in
accuracy with Gaussian interpolants, but they are usually
much better conditioned than the Gaussians.

The paper is organized as follows. In Section2 we
consider the problem of scattered data interpolation by
Lobachevsky splines, recalling their analytic expressions
and some properties. In Section3 we firstly describe the
resulting integration formulas obtained by Lobachevsky
spline interpolants, then we analyze conditioning and
errors of Lobachevsky spline integration formulas,
discussing the role of two essential quantities: the spectral
norm of the inverse of the interpolation matrix and the
1-norm of the weight vector. Section4 summarizes
several numerical experiments in order to verify
performances of Lobachevsky spline integration
formulas, focusing on both accuracy (integration errors)
and stability (condition numbers) and comparing
Lobachevsky spline results with those of radial Gaussian
integration formulas and a quasi-Monte Carlo considering
Halton point sets. Finally, Section5 deals with
conclusions and future works.

2 Lobachevsky spline interpolation

Let us consider a continuous functiong : Ω → R on a
compact domain Ω ⊂ R

d , d ≥ 1, a set
X = {xi = (x1i,x2i, . . . ,xdi), i = 1,2, . . . ,N} ⊂ Ω of
scattered data points, and the vector
g = {g(xi), i = 1,2, . . . ,N} of the corresponding function
values.

For evenn ≥ 2, we construct the Lobachevsky spline
interpolant ofg at the nodesxi in the form

Fn(x) =
N

∑
j=1

c jφn j(x), x ∈ Ω , (1)

requiring Fn(xi) = g(xi), i = 1,2, . . . ,N. The interpolant
Fn is a linear combination of products of univariate shifted
and rescaled functionsf ∗n

φn j(x)≡ φn j(x;α) =
d

∏
h=1

f ∗n (α(xh − xh j)), (2)

where for j = 1,2, . . . ,N

f ∗n (α(xh − xh j)) =

√

n
3

1
2n(n−1)!

n

∑
k=0

(−1)k
(n

k

)

×

[
√

n
3

α(xh − xh j)+(n−2k)

]n−1

+

, (3)

andα ∈R
+ is a shape parameter. The coefficientsc= {c j}

are computed by solving the linear system

Ac = g, (4)

where the interpolation matrix

A = {ai j}= {φn j(xi)}, i, j = 1,2, . . . ,N, (5)

is symmetric and depends on the choice ofn andα in (2).
Since Lobachevsky splines are strictly positive definite for
any evenn ≥ 2, the interpolation matrixA in (5) is positive
definite for any set of distinct nodes.

From the central limit theorem (see [17,21]), we
remark that thed-variate Lobachevsky spline converges
for n → ∞ to thed-variate Gaussian, i.e.

lim
n→∞

d

∏
i=1

f ∗n (αxi) =
1

(2π)d/2
exp

(−α2(∑d
i=1 x2

i )

2

)

.

Hence, Lobachevsky splines asymptotically behave like
radial functions, though they are not radial in themselves.

Finally, we observe that, since Lobachevsky splines are
(univariate) strictly positive definite functions for evenn ≥
2, we can construct multivariate strictly positive definite
functions from univariate ones (see, e.g., [25]), expressing
them as products of Lobachevsky splines [4].

3 Lobachevsky spline integration

3.1 Approximation of d-variate integrals

Let us now consider the problem of computing an
approximate value of the integral

I(g) =
∫

Ω
g(x) dx, x ∈ Ω ⊂ R

d ,

whereg(x) is an integrable function, which is generally
known only on a scattered data set.

Solving this problem consists in integrating a formula
of type (1), which interpolates the given data, that is,

I(g)≈ I(Fn) =
∫

Ω

N

∑
j=1

c jφn j(x)dx

=
N

∑
j=1

c j

∫

Ω
φn j(x)dx

=
N

∑
j=1

c jI(φn j). (6)

Since we consider numerical integration on the unit
hypercubeΩ = [0,1]d ⊂ R

d , d ≥ 1, we have

I(φn j) =
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
φn j(x1,x2, . . . ,xd) dx1dx2 · · ·dxd

=
∫ 1

0
f ∗n (α(x1− x1 j)) dx1

×
∫ 1

0
f ∗n (α(x2− x2 j)) dx2

· · ·

×
∫ 1

0
f ∗n (α(xd − xd j)) dxd .

Thus, the problem consists in evaluating thed integrals
∫ 1

0
f ∗n (α(x1− x1 j)) dx1,

∫ 1

0
f ∗n (α(x2− x2 j)) dx2,

· · ·
∫ 1

0
f ∗n (α(xd − xd j)) dxd ,
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and theh-th integral,h = 1,2, . . . ,d, is computed by the
relation

∫ 1

0
f ∗n (α(xh − xh j)) dxh

=
1
α
[

Φ∗
n (α(1− xh j)−Φ∗

n (α(−xh j))
]

, (7)

where the explicit form ofΦ∗
n (x) is

Φ∗
n (x) =

1
2nn!

n

∑
k=0

(−1)k
(n

k

)

[x+(n−2k)]n+.

Hence, we can approximate a multiple integral by
evaluatingd simple integrals, whose integrands are given
by polynomial functions of degreen − 1. Note that a
numerically equivalent technique, despite
computationally less efficient, to evaluate Lobachevsky
spline integrals is given in [5].

3.2 Conditioning and errors

In this subsection, referring to the error analysis in [5], we
focus on stability and accuracy of Lobachevsky spline
integration formulas, firstly considering the uniform
convergence of Lobachevsky spline to the Gaussian and
then discussing the role of two important parameters.

Taking into account the convergence results of
Gaussian interpolation (see, e.g., [25]), we can deduce
that, for sufficiently regularg, the error|I(g)− I(Fn)| may
decrease exponentially asn → ∞ and h → 0, whereh
denotes the so-calledfill distance, i.e.

h = sup
x∈Ω

min
xi∈X

‖x−xi‖2 .

Moreover, we note that the convergence rate depends on
the functiong, the Lobachevsky spline regularity degree
and the form of the domainΩ .

In order to get useful information for numerical
implementation, we want to develop a further analysis of
the error of the integration formula (6), which can be
written by (4) in the form

I(g)≈ I(Fn) = 〈c,I〉=
〈

A−1g,I
〉

= 〈g,w〉=
N

∑
j=1

w jg j, (8)

with

Aw = I, (9)

where 〈·, ·〉 denotes the scalar product inRd , and
I = {I(φn, j)}1≤ j≤N is the vector of integrals of
Lobachevsky splines. It is clear from (8) that the
quantities

∣

∣w j
∣

∣ play a central role both in the study of the
integration error and in the effect of perturbations in the
data valuesg j [23]. Moreover, the computational trouble
caused by the Gaussian ill-conditioning is significantly
reduced for Lobachevsky splines, because for small
values of n Lobachevsky splines are much better
conditioned than Gaussians [4]. As a consequence, the

errors obtained by approximating the vector of integrals
I = {I(φn, j)}1≤ j≤N are less influenced than for the
Gaussians by the weightsc j computed solving the linear
system (4).

Now, referring to integration formulas in (8) and (9),
we can take into account the presence of errors in the
evaluation of the integrals of Lobachevsky splines, i.e.

{Ĩ(φn, j)}= Ĩ ≈ I,

which generates a vector̃w of approximate weights and
from (8) the perturbed integration formula

Ĩ(Fn) = 〈c, Ĩ〉= 〈g, w̃〉=
N

∑
j=1

w̃ jg j,

wherew̃ = A−1Ĩ.
In error investigation it must also be considered the

parameter‖A−1‖2, which measures the sensitivity to
perturbations of the interpolation processes based on the
Gaussian or Lobachevsky splines. Now, in the literature
lower bounds for the smallest eigenvalue of the
interpolation matrix A of the Gaussian have been
extensively studied (see, e.g., [25]), providing upper
bounds for‖A−1‖2 in terms of the so-calledseparation
distanceof the nodes

q =
1
2

min
i 6= j

∥

∥xi −x j
∥

∥

2 .

When q tends to zero, it happens that‖A−1‖2 diverges
exponentially andA tends to become singular due to
collapsing of two rows. Considering the convergence
property of the Lobachevsky splines to the Gaussian, we
can reasonably expect that the upper bounds for‖A−1‖2
relating to Lobachevsky splines are closed to Gaussian
ones; in fact, numerical tests show that in the case of
Lobachevsky splines the values assumed by‖A−1‖2 are
quite acceptable and, generally, considerably smaller than
those of the Gaussian.

Then, an error estimate of the Lobachevsky spline
integration formula (8) may be expressed as follows

|I(g)−〈w̃,g〉| ≤ meas(Ω)‖g−Fn‖∞

+ ‖A−1‖2‖I− Ĩ‖2‖g‖2.

Finally, taking into account the effect of perturbations on
the data values, that is, considering the perturbed data

{g̃(x j)}= g̃ ≈ g,

we obtain the error estimate

|I(g)−〈w̃, g̃〉| ≤ (meas(Ω)+‖w‖1)EX ,φn(g)

+ ‖g− g̃‖∞‖w‖1+‖A−1‖2‖I− Ĩ‖2‖g̃‖2,

whereEX ,φn(g) = infz∈span(φn, j) ‖g− z‖∞ (see [5]).
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4 Numerical experiments

In order to test accuracy and stability of thed-variate
integration formulas obtained by Lobachevsky spline
interpolants, we investigate their performances
considering some scattered data setsX ⊆ Ω =
[0,1]d ⊂ R

d , 3 ≤ d ≤ 10, which are given by Halton
points and generated by using the MATLAB program
haltonseq.m [16]. Precisely, we firstly consider some
sets of Halton points whose sizeN depend on the
dimensiond, i.e. we takeN = 4d , for 3≤ d ≤ 6. Then, we
keep fixed the point number takingN = 1024, but varying
the dimensiond, for 6≤ d ≤ 10. The choice of takingN
depending ond is done to analyze the behavior of
integration rules maintaining a strict connection between
N andd. However, since we need to solve a linear system
N ×N, which (for largeN) turns out to be quite expensive
from a computational standpoint, we fixN for 6≤ d ≤ 10.

Thus, we focus on Lobachevsky spline integration
formulas forn = 2,4,6, that are denoted by L2, L4, L6,
respectively, also considering the Gaussian (G)
integration formula for comparison. In Figure1 we show
the convergence property of Lobachevsky splines to the
Gaussian.
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0.2
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0.35
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0.45

x

y

 

 
G
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Fig. 1 Example of convergence of Lobachevsky splines to the
Gaussian ford = 1 andα = 1.

All the results reported below are obtained by using the
following d-variate test function (see, e.g., [16])

gd(x) = 4d
d

∏
h=1

xh(1− xh), x = (x1,x2, . . . ,xd) ∈ Ω ,

whose exact integral onΩ is I(gd) = (2/3)d . Obviously,
other integrands have been tested obtaining a uniform
behavior as regard to accuracy and stability.

In Table 1 we show the behavior of Lobachevsky
spline integration errors for 3≤ d ≤ 6 by varying the
value of the shape parameterα ∈ [1,9]. Numerical results
highlight that the variation ofα may greatly influence the
quality of approximation results, though the behavior of
such errors turns out to be uniform for anyd. In
particular, we remark that the best level of accuracy is
reached whenα ∈ [1,4]. Moreover, as already remarked
in [5] for d = 1,2, these tests point out reliability and
robustness of Lobachevsky spline integration formulas in
high dimensions as well.

Using thenorm function of MATLAB, in Figures2-3
we report the values of two crucial quantities considered
in Subsection3.2: the spectral norm‖A−1‖2 and the
1-norm ‖w̃‖1. The former gives us a measure of the
absolute conditioning of the considered linear systems,
whereas the latter provides useful information on the
conditioning of the integration formula.

Thus, for each of the Lobachevsky splines we observe
that increasing the shape parameter produces more
peaked (or localized) basis functions with the effect of
better conditioning, but losing accuracy (and vice versa).
Note that, the values of quantities‖A−1‖2 and ‖w̃‖1
strongly depend on the distribution of nodes, while they
are independent of function values.

Furthermore, analyzing all the taken tests, we remark
that the Lobachevsky splines are comparable in accuracy
with the Gaussians, though they are usually much better
conditioned than the Gaussians (see Figures2-3); it holds
above all whenα ∈ [1,4] where we have the hightest level
of accuracy. Note that there is an exact correspondence
between the Lobachevsky and Gaussian shape parameter
α.
Then, in order to strengthen the effectiveness of the
Lobachevsky spline integration formulas, in Table2 we
report the obtained errors by applying a quasi-Monte
Carlo method, which in literature is considered as the
most practical integration technique in high dimensions.
These results confirm once more the goodness of our
approach, because for suitable values of the shape
parameterα we are able to obtain errors which are lower
of one or even two orders of magnitude than those of the
quasi-Monte Carlo method.

Finally, in Table 3 we report Lobachevsky spline
integration errors withN = 1024 for 6≤ d ≤ 10, obtained
by varying the value ofα ∈ [1,5] and, for comparison,
also considering the results obtained by applying a
quasi-Monte Carlo method. These tests (and other ones
not reported here for shortness) show that, for a suitable
choice of the shape parameterα, the Lobachevsky spline
integration formulas turn out to be effective for any
d ≤ 10. Conversely, by further increasingd, i.e. for
d > 10, we observe a gradual loss of accuracy due to the
particular feature of this type of integration formulas,
which are expressed as a product of univariate integrals.
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Table 1 Integration errors for 3≤ d ≤ 6.

d N α L2 L4 L6 G

1 5.14E−3 9.12E−3 2.13E−3 9.74E−4
2 1.15E−3 2.85E−3 3.67E−3 3.97E−3
3 1.21E−4 1.47E−3 3.10E−3 2.73E−3
4 3.11E−3 3.71E−4 3.00E−4 3.22E−4

3 64 5 7.85E−3 3.32E−4 9.84E−4 2.29E−3
6 2.15E−2 8.44E−3 9.60E−3 1.27E−2
7 4.72E−2 2.52E−2 2.69E−2 3.18E−2
8 7.26E−2 4.84E−2 5.05E−2 5.70E−2
9 9.86E−2 7.49E−2 7.76E−2 8.53E−2

1 3.24E−3 2.30E−3 1.52E−3 2.75E−4
2 2.61E−3 1.14E−3 1.14E−3 9.49E−5
3 1.36E−3 1.26E−3 5.95E−4 2.60E−4
4 1.37E−3 1.40E−4 1.26E−3 1.19E−3

4 256 5 3.91E−3 7.16E−4 1.02E−3 1.14E−4
6 1.20E−2 3.67E−3 4.21E−3 6.51E−3
7 2.88E−2 1.53E−2 1.67E−2 2.06E−2
8 4.99E−2 3.37E−2 3.57E−2 4.10E−2
9 7.27E−2 5.61E−2 5.84E−2 6.45E−2

1 2.45E−4 1.72E−3 1.05E−4 1.35E−5
2 2.84E−5 3.54E−4 1.78E−5 1.02E−4
3 4.59E−5 3.13E−4 2.94E−4 2.90E−4
4 3.93E−4 1.10E−5 1.80E−4 3.73E−4

5 1024 5 1.40E−4 1.05E−3 1.25E−3 1.24E−3
6 3.09E−3 6.94E−4 5.04E−4 3.48E−4
7 1.18E−2 4.24E−3 5.02E−3 7.27E−3
8 2.64E−2 1.54E−2 1.68E−2 2.06E−2
9 4.53E−2 3.19E−2 3.38E−2 3.88E−2

1 2.76E−4 3.79E−4 4.33E−4 4.51E−5
2 9.40E−5 1.12E−4 1.24E−4 1.48E−5
3 1.05E−6 7.73E−5 5.36E−5 1.25E−4
4 2.64E−4 2.16E−5 3.24E−5 8.33E−5

6 4096 5 5.38E−4 5.81E−4 6.50E−4 7.15E−4
6 7.41E−4 9.81E−4 9.73E−4 7.41E−4
7 5.18E−3 5.63E−4 9.05E−4 2.07E−3
8 1.46E−2 6.60E−3 7.54E−3 1.02E−2
9 2.86E−2 1.83E−2 1.99E−2 2.39E−2
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(ii) d = 4
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(iii) d = 5
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(iv) d = 6

Fig. 2 Spectral norm ofA−1 for 3≤ d ≤ 6.
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(iv) d = 6

Fig. 3 1-norm ofw̃ for 3≤ d ≤ 6.

Table 2 Integration errors of quasi-Monte Carlo for 3≤ d ≤ 6.

d N quasi-Monte Carlo

3 64 1.91E−3

4 256 3.43E−3

5 1024 5.27E−4

6 4096 3.37E−4

5 Conclusions

In this paper, thinking of the problem of the curse of
dimensionality, we investigated the performance of
Lobachevsky spline integration formulas on scattered data
in R

d , 3 ≤ d ≤ 10, thus extending the work [5]. In
particular, we used the remarkable property of these
formulas of being defined in thed-variate setting as a
product of univariate functions. Moreover, we analyzed
accuracy (errors) and stability (conditioning) of such
integration formulas as well as those of the Gaussian ones
for comparison, referring to two crucial parameters: the
spectral norm of the inverses of interpolation matrices and
the 1-norm of the computed weight vectors. Numerical
experiments confirmed the good performances of
Lobachevsky spline integration formulas for 3≤ d ≤ 10,
as already observed in [5] for d = 1,2. To further check
our integration technique, we reported results obtained on
the same data point sets by applying a quasi-Monte Carlo
method, a standard procedure in multidimensional
integration.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


150 G. Allasia et al: Multidimensional Lobachevsky Spline Integration...

Table 3 Integration errors withN = 1024 for 6≤ d ≤ 10.

d α L2 L4 L6 quasi-Monte Carlo

1 5.60E−4 2.85E−2 3.73E−2
2 3.34E−3 7.18E−3 2.98E−3

6 3 1.27E−4 8.84E−4 5.06E−3 2.07E−3
4 7.12E−3 1.31E−2 1.26E−2
5 1.40E−2 1.39E−2 1.20E−2

1 1.33E−4 2.65E−2 1.04E−1
2 1.05E−3 1.40E−3 1.53E−2

7 3 1.80E−2 4.43E−3 4.90E−3 8.97E−3
4 1.71E−2 3.03E−2 3.04E−2
5 9.46E−2 1.59E−2 2.48E−2

1 8.09E−4 2.57E−2 1.22E−1
2 5.64E−3 5.33E−2 1.55E−2

8 3 5.61E−2 4.12E−3 1.11E−2 1.40E−2
4 1.50E−2 4.68E−2 4.59E−2
5 2.75E−1 1.19E−1 1.38E−1

1 3.95E−3 7.89E−2 1.41E−2
2 2.52E−2 1.05E−1 8.57E−2

9 3 1.18E−1 3.53E−2 4.36E−2 1.81E−2
4 4.81E−2 5.13E−2 4.12E−2
5 5.27E−1 3.33E−1 3.64E−1

1 1.05E−2 1.87E−1 2.55E−1
2 5.19E−2 1.74E−1 1.95E−1

10 3 1.74E−1 7.69E−2 8.26E−2 2.55E−2
4 2.07E−1 3.32E−2 5.83E−2
5 7.40E−1 5.85E−1 6.14E−1

In a work still in progress, we are going to apply
Lobachevsky splines in local methods for fast
computation in multivariate and spherical interpolation
(see, e.g., [2,9,10,11]).
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