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Abstract: Sticker model is imitated by using set, variable length vector and biochemistryoperator instead of tube, memory strand and
biochemistry experiment for the first time. Batch separation operator and electrophoresis operator are first put forward based on DNA
algorithm of Set Covering Problem (SCP) based on sticker model. Expression way, calculation method and basic properties of variable
length vector and the two biochemistry operators are analyzed in detail according to the characteristics of sticker model. Simulation
DNA algorithm (SDA) of SCP, which can find out all optimization set coverings, is designed, where all feasible set coverings are
extracted by using batch separation operator and all optimization set coverings are extracted by using electrophoresis operator. Minimal
element and deriving element are first introduced. And minimal element contains a large amount of deriving elements, so the set of
batch separation operator can be simplified. Less-than relation is established to simplify the set of electrophoresis operator. Therefore
the use of ’minimal element’ and ’less-than’ makes SDA of SCP more effective and practical. Time complexity of SDA of SCP is
proved, and it shows that SDA of SCP is an effective algorithm to solve SCP.
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1 Introduction

The application range of Set Covering Problem (SCP) is
wide [1], articularly, SCP has an important application in
the field of optimalization of traffic network [2,3] and the
Vehicle Routing Problem (VRP) [4,5,6]. SCP is a famous
NP-complete problem. Domestic and foreign scholars put
forward heuristic search for solving SCP, such as genetic
algorithm [7], ant colony algorithm [8], simulated
annealing algorithm [9], evolutionary search algorithm
[10] and so on. These algorithms can only obtain the
suboptimal solution of SCP. In 2010, Zhou K designed
closed circle DNA algorithm [11] of SCP to obtain all the
optimization solutions of SCP by using high parallelism
and huge storage capacity of DNA computing, and
operating times of the DNA algorithm is linear. However,
the calculation scale of DNA computing is limited
because of DNA encoding problem, therefore, it is a
significant subject to solve SCP by borrowing thought of
DNA computing.

In 2009, Zhou K first put forward simulation DNA
algorithm (SDA) [12] based on thought of DNA
computing by using the properties of solutions of Eight
Queens Problem(EQP) to obtain all solutions of EQP.
Therefore, in order to study SCP, SDA based on sticker
model [13,14] is used in the paper, and the method of

solving SCP is found out to obtain all solutions of SCP.
Meanwhile, in the SDA, batch separation operator and
electrophoresis operator are first put forward, and
simplification algorithms for the two operators are given.

2 DNA Algorithm of SCP

2.1 Introduction of Sticker Model

Computing subjects of sticker model [13,14] are
composed of two types of substances, which are memory
strand and separation glass.

(1) Memory strand is single strand DNA molecular.
DNA encoding on positioni (i = 1,2, · · · ,n) of memory
strand isci or bi, whereci is composed ofdi andei, and
|ci|= |diei|= |di||ei|,|di|= |bi|.

(2) Separation glassi stores single strand DNAd′
i

which is the Watson-Crick complementary sequences of
DNA encodingdi.

Biochemistry experiments of sticker model are merge
experiment, separation experiment, batch separation
experiment, electrophoresis experiment and detection
experiment.

(1) Merge experiment: combine memory strands of
tubeS1 and tubeS2 into tubeS.
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(2) Separation experiment fordi: separate tubeS into
tube +(S,di) and tube−(S,di), where tube+(S,di) is
mixture composed of all memory strands of tubeS whose
substrandi is di, and tube−(S,di) is mixture composed of
all memory strands of tube S whose substrandi is bi.

(3) Let substrand setF be composed of several kinds
of substrand di( j), where F = {di(1),di(2), · · · ,di(p)}.
Batch separation experiment for Substrand setF : separate
for tubeS into tube+(S,F) and tube−(S,F), where tube
+(S,F) is mixture composed of all memory strands of
tubeS which contain at least an arbitrary substranddi( j)

of F , and tube−(S,F) is mixture composed of all
memory strands of tubeS which do not contain any
substranddi( j) of F .

(4) Detection experiment: a method to determine
memory strand sequence by electrophoresis experiment
and separation experiment.

2.2 SCP and DNA Algorithm

To consider two sets given, where set of element is
M = {1,2, · · · ,m} and set of subsets of setM is
V = {v1,v2, · · · ,vn}, andM =

⋃

1≤ j≤n v j(setV is called as
a set covering of M). Weight set of set V is
C = {c1,c2, · · · ,cn}. SCP is to find a subsetV ∗ of setV ,
which satisfies

⋃

v j∈V ∗ v j = M(setV ∗ is a set covering of
M), and whose sum of weight is minimum(namely,
min∑v j∈V ∗ c j). DNA algorithm of SCP is as follows:

Step1 Encode DNA encoding corresponding to each
subsetvi, and synthesize memory strand to produce all
nonempty subsets of setV .

Step2Extract all feasible set coverings.
(1) Let i = 1.
(2) Let Fi = {v j|i ∈ v j}.Do batch separation

experiment of tubeS for Substrand setFi to obtain tube
−(S,Fi) and tube+(S,Fi). Let S =+(S,Fi).

(3) If i = m, then turn to step 3. Otherwise, leti = i+1,
and turn to (2) of Step2.

Step3Extract all optimization set coverings from all
feasible set coverings by doing gel electrophoresis
experiment of tubeS.

Step4Detect experiment results.�

3 Biochemical Operator of SDA

If each DNA in tube is considered as an element in a set,
where the element only considers major memory strand in
the tube, and does not consider residual impurity in the
tube, then a tube can be considered as a set. Doing a
biochemistry experiment in a tube can be considered as
calculating a biochemistry operator in a set, and the
calculating object and calculated results of the
biochemistry operator are sets. So according to the
corresponding relation, DNA algorithm can be mapped
into SDA. Main biochemical experiments in DNA

algorithm of SCP are batch separation experiment and
electrophoresis experiment, so batch separation operator
and electrophoresis operator are studied as follows.

3.1 Variable Length Vector

Definition 3.1. For set M = {1,2, · · · ,m}, set
V = {v1,v2, · · · ,vn}, weight setC = {c1,c2, · · · ,cn} and
V ′ = {vk(1),vk(2), · · · ,vk(p)} ⊆V .

(1) Variable length vectora′ = (k(1),k(2), · · · ,k(p))
is called as a simulation memory strand. Soa′ ⇔ V ′, and
(a′ , ())⇔ (V ′ = /0).

(2) For variable length vector
a = (l(1), l(2), · · · , l(q)),
(a′,a) , (k(1),k(2), · · · ,k(p), l(1), l(2), · · · , l(q)).
Particularly, for j (1 ≤ j ≤ n),
(a′, j), (k(1),k(2), · · · ,k(p), j).

(3) SetL = {a′} is called as a simulation tube.
(4) For ∀M′ ⊆ M, if M′ ⊆

⋃p
j=1 vk( j), then V ′ is a

feasible set covering ofM′, denoted byV ′ ∈ cover(M′).
(5) For ∀M′ ⊆ M,

((k(1),k(2), · · · ,k(p)) ∈ cover(M′))⇔ (M′ ⊆
⋃p

j=1 vk( j)).

(6) Fora′ = (k(1),k(2), · · · ,k(p)), ∑p
i=1 ck(i) is denoted

by Sum(a′). SoSum(a′), ∑v j∈V ′ c j.�
According to Definition 1, the following conclusions

are established:
For∀M′ ⊆ M, a = (k(1),k(2), · · · ,k(p))),
(1) ((k(1), · · · ,k(i),k(i + 1), · · · ,k(p)) ∈ cover(M′))

↔ ((k(1), · · · ,k(i+1),k(i), · · · ,k(p)) ∈ cover(M′)).
(2) If ∀ j∃i((1 ≤ j ≤ n)∧ (1 ≤ i ≤ p) → ( j = k(i))),

then(a ∈ cover(M′))↔ ((a, j) ∈ cover(M′)).�

Definition 3.2.For a = (k(1),k(2), · · · ,k(p)).
(1) (k(1), · · · ,k(i),k(i + 1), · · · ,k(p)) ,

(k(1), · · · ,k(i+1),k(i), · · · ,k(p)).
(2) If ∀ j∃i((1 ≤ j ≤ n)∧ (1 ≤ i ≤ p) → ( j = k(i))),

thena , (a, j).�
For example,(1,3,7,8) = (1,7,3,8) = (1,3,3,7,8).

3.2 Batch Separation Operator and
Electrophoresis Operator

Definition 3.3. For i ∈ M, let set
V (i) = {v|i ∈ v∧v ∈V}= {vl(1),vl(2), · · · ,vl( j)}, andV (i)
is represented asKi = {l(1), l(2), · · · , l( j)}. Batch
separation operatorfor simulation tubeL is as follows:

Separate(L,Ki), {(a, l(q))|(a ∈ L)∧ (l(q) ∈ Ki)}

�

For example,Separate((1,3),(2,3),(4),{3,5,8}) =
{(1,3,3),(2,3,3),(4,3),(1,3,5),(2,3,5),(4,5),(1,3,8),
(2,3,8),(4,8)}.
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Theorem 3.1. Let L = {a|a ∈ cover(M′)}, where
M′ ⊆ M. If
L(ã) = {(ã,k(l(1)), · · · ,k(l(q)))|{k(l(1)), · · · ,k(l(q))} ⊆
{k(p + 1), · · · ,k(n)}}

⋃

{ã}, where ˜a = (k(1),k(2), · · · ,
k(p)) ∈ L, then

(1) L(ã)⊆ L; |L(ã)|= 2n−p.
(2) ∀a((a ∈ L(ã)−{ã})→ (Sum(ã)< Sum(a))).
So for ∀a ∈ L(ã)− {ã}, vector a does not be the

optimal solution of SCP.

Proof. (1) ã ∈ L ⇒ (k(1),k(2), · · · ,k(p)) ∈ cover(M′).
For l(i) ((p+1≤ l(i)≤ n)∧ (1≤ i ≤ q)),
M′ ⊆

⋃p
j=1 vk( j) ⊆

⋃p
j=1 vk( j)

⋃

vk(l(i)) ⇒ (ã,k(l(i))) ∈
cover(M′).

So (ã,k(l(1)), · · · ,k(l(q))) ∈ cover(M′) ⇒
(ã,k(l(1)), · · · ,k(l(q))) ∈ L.

SoL(ã)⊆ L.
A combination of{k(p + 1), · · · ,k(n)} and ã merge

into a vector ofL(ã).
The number of combinations of{k(p+1), · · · ,k(n)} is

equal to|L(ã)|.
So |L(ã)|= 2n−p.
(2) The number of components of ˜a is the fewest in

L(ã),soSum(ã)< Sum(a).�
For example, setV = {v1,v2,v3,v4,v5} and set

M = {1,2,3,4}. If (1,3,4) ∈ cover(M), then
(1,3,4,2),(1,3,4,5)),(1,3,4,2,5) ∈ cover(M).

Definition 3.4. Let L(ã) = {(ã,k(l(1)), · · · ,k(l(q)))|
{k(l(1)), · · · ,k(l(q))} ⊆ {k(p + 1), · · · ,k(n)}}

⋃

{ã},
where ˜a = (k(1),k(2), · · · ,k(p)).

(1) Vectorã is called as minimal element of setL(ã).
(2) Vector ã is representative of setL(ã), denoted by

[ã], L(ã).
(3) For∀a ∈ L(ã)−{ã}, vectora is called as deriving

element of vector ˜a.�
According to Theorem 1 and Definition 4, the

following conclusions are established:
(1) ((l(1), l(2), · · · , l(t)) is deriving element of

(k(1),k(2), · · · ,k(p))) ↔ ({k(1),k(2), · · · ,k(p)} ⊆
{l(1), l(2), · · · , l(t)}) ↔ ([l(1), l(2), · · · , l(t)] ⊆
[k(1),k(2), · · · ,k(p)]).

(2) (minimal elements of setL are a1,a2, · · · ,aq) →
(L =

⋃q
i=1[ai]).

(So setL can be represented as{a1,a2, · · · ,aq}).
(3) For M′ ⊆ M,

∀a∃b((a ∈ L)∧ (b ∈ L)→ (b ∈ cover(M′))).
(For example,b is deriving element ofa).�
The calculating process ofSimpli f y(L) (algorithm 1)

is as follows:
Step1 For ∀a = (k(1),k(2), · · · ,k(p)) ∈ L, sort a

according to the ascending order of components ofa.
Namely,∀ j((1≤ j ≤ p−1)→ (k( j)≤ k( j+1))).

Step2 For
∀a = (k(1),k(2), · · · ,k(i−1),k(i),k(i+1), · · · ,k(p)) ∈ L,
eliminate component of the same value ofa:

f or i = p, to,2 do
i f k(i) = k(i−1) then a = (k(1),k(2), · · · ,k(i−

1),k(i+1), · · · ,k(p))

end
Step3Eliminate all deriving elements ofL:
(1) SortL according to length|a| of vectora ∈ L,
(2) For∀a∀b((a ∈ L)∧ (b ∈ L)∧ (|a|= |b|)), if a = b,

thenL = L−{b}.
(3)For∀a∀b((a∈ L)∧(b∈ L)∧(|a|< |b|)), if [b]⊆ [a],

thenL = L−{b}.
(4) Output Simpli f y(L) = L (set of all minimal

elements ofL).�
For example,Separate({(1,3),(2,3),(4)},{3,5,8})

= {(1,3,3),(2,3,3),(4,3),(1,3,5),(2,3,5),(4,5),
(1,3,8),(2,3,8),(4,8)} = {(1,3),(2,3),(4,3),(4,5),
(4,8),(1,3,5),(2,3,5),(1,3,8),(2,3,8)}
= {(1,3),(2,3),(4,3),(4,5),(4,8)}.

Theorem 3.2.
Separate(L,Ki) = {a|(a ∈ cover(i))∧ (a ∈ L)} ⊆ L.

Proof. Let L1 = {(a, l(q))|(a ∈ L)∧ (l(q) ∈ Ki)} andL2 =
{a|(a ∈ cover(i))∧ (a ∈ L)}.

For∀(a, l(q))∈ L1 ⇒ a ∈ L. And (a, l(q)) is a deriving
element ofa.

So(a, l(q)) ∈ L andSeparate(L,Ki) = L1 ⊆ L.
l(q) ∈ Ki ⇔ (l(q)) ∈ cover(i) ⇒ (a, l(q)) ∈ cover(i).

SoL1 ⊆ L2.
For ∀a = (k(1),k(2), · · · ,k(p)) ∈ L2 ⇒ (a ∈

cover(i))∧ (a ∈ L).
So ∃ j((1 ≤ j ≤ q) → (k( j)) ∈ cover(i)), namely,

k( j) ∈ Ki and(a,k( j)) = a ∈ L1. SoL2 ⊆ L1.�

Definition 3.5. Let weight set C = {c1,c2, · · · ,cn},
electrophoresis operatorfor setL is as follows:

Electrophoresis(L,C), {a′|Sum(a′) = min
a∈L

Sum(a)}

�

For example, Electrophoresis({(1,3),(2,3),(4,3),
(4,5),(4,8)},(2,1,3,2,4,6,3,1)) = {(i, j)|min{5(1,3),
4(2,3),5(4,3),6(4,5),3(4,8)}}= {(4,8)}.

Reducing vector of setL can reduce the calculation
amount to calculate electrophoresis operator. So sorting
weight setC, setV and setL according to weightci of C,
then less-than relation is established in setL.

We can sortX = (x1,x2, · · · ,xn)
T, Y = (y1,y2, · · · ,yn)

T

and L = (ai j)n×m according toxi of X . The calculating
process ofSort(X ,Y,L) (algorithm 2) is as follows:

Step1MergeX , Y , L to obtain matrixB = (X ,Y,L).
Step2 Sort B according to xi by elementary row

transformation of matrix B to obtain matrix
B′ = (X ′,Y ′,L′), which satisfiesx′i ≤ x′i+1 (1≤ i ≤ n−1).

Step3OutputSort(X ,Y,L) = (X ′,Y ′,L′).�
For example, for C = (c1,c2, · · · ,cn)

T and
V = (1,2, · · · ,n)T, let X = C andY = V to call algorithm
2 to obtain Sort(C,V,L) = (C′,V ′,L′), where
C′ = (c′1,c

′
2, · · · ,c

′
n)
T satisfiesc′i ≤ c′i+1 (1 ≤ i ≤ n− 1).

Then letX = V ′, Y = C′ andL = L′ to call algorithm 2 to
obtain Sort(V ′,C′,L′) = (V,C,L). So the conclusion is:
Sort(V ′,C′,L′) is the inverse operation ofSort(C,V,L).

Definition 3.6. Let set C = {c1,c2, · · · ,cn} satisfy
ci ≤ ci+1 (1≤ i ≤ n−1). Let a1 = (k(1),k(2), · · · ,k(p))
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and a2 = (l(1), l(2), · · · , l(q)) ∈ L satisfy
k(i) < k(i + 1) (1 ≤ i ≤ p − 1) and
l(i)< l(i+1) (1≤ i ≤ q−1).

(1) If (p = q) ∧ (∀i(1 ≤ i ≤ p) →
(k(i) ≤ l(i))) ∧ (∃ j(1 ≤ j ≤ p) →
((k( j)< l( j))∧ (ck( j) < cl( j)))), then calleda1 ≺ a2.

(2) If (p < q)∧ (∀i((1 ≤ i ≤ p) → (k(i) ≤ l(i+ q−
p)))), then calleda1 ≺ a2. �

According to Definition 5 and Definition 6, the
following conclusion is established: ifa1 ≺ a2, then
Sum(a1)< Sum(a2).

Calculation of electrophoresis operator can be
simplified. For C = {c1,c2, · · · ,cn} satisfy
ci ≤ ci+1 (1 ≤ i ≤ n − 1), the calculating process of
Electrophoresis(L,C) (algorithm 3) is as follows:

Step1For ∀i (1 ≤ i ≤ n), for ∀a1,a2 ∈ L and |a1| =
|a2|= i, if a1 ≺ a2, thenL = L−{a2}.

Step2For ∀i, j (1 ≤ i < j ≤ n), if ai ≺ a j, thenL =
L−{a j}.

Step3ComputeSum(a∗) = mina∈L Sum(a). For ∀a ∈
L, if Sum(a∗)< Sum(a), thenL = L−{a}.

Step4OutputElectrophoresis(L,C) = L.�
For example, C = (1,1,2,2,4,5,6,6),

Electrophoresis({(4),(1,3),(2,3),(3,4),(4,5),(4,8),
(1,2,3),(1,3,5)},C)
= Electrophoresis({(4),(1,3),(2,3),(1,2,3)},C)
= Electrophoresis({(4),(1,3),(2,3)},C) = {(4)}.

4 SDA of SCP

Referring to DNA algorithm of SCP, the calculation
process of SDA is as follows: first batch separation
operator is used to obtain all feasible set coverings from
all possible set coverings, then electrophoresis operatoris
used to obtain all optimization set coverings from all
feasible set coverings.

4.1 SDA

To consider SCP, where setM = {1,2, · · · ,m}, set
V = {v1,v2, · · · ,vn} and weight setC = {c1,c2, · · · ,cn}.
For i = 1,2, · · · ,m, Ki = {i(1), i(2), · · · , i(ri)} satisfies
vi( j) ∈ cover(i) (1≤ j ≤ ri). SDA of SCPis as follows:

Step1Generate matrixA = (ai j)n×m by setKi.
(1) For∀i∀ j (1≤ i ≤ n∧1≤ j ≤ m), let ai j = 0.
(2) For∀ j (1 ≤ j ≤ m) to computerr = r j from set

K j = {i(1), i(2), · · · , i(r j)}, for∀i (1≤ i≤ r), leta j(i) j = 1.
(3) Let An×m = (ai j).
Step2According to weightci of C to sort weight setC,

setV and matrixA.
(1) LetC = (c1,c2, · · · ,cn)

T andV = (1,2, · · · ,n)T.
(2) LetX =C,Y =V,L=A to call algorithm 2 to obtain

Sort(C,V,L) = (C′,V ′,A′), whereA′ = (K′
1,K

′
2, · · · ,K

′
m),

C′ = (c′1,c
′
2, · · · ,c

′
n)
T satisfiesc′i ≤ c′i+1 (1≤ i ≤ n−1).

Step3Check set covering beginning with set{()} for
each element of setM, which is set of all possible solutions
of SCP, till to extract all feasible set coverings ofM.

(1) Let i = 1,Li = {()}.
(2) Compute batch separation operator

Separate(Li,K′
i ) = L̃.

(3) Let L = L̃ to call algorithm 1 to obtain
Simpli f y(L) = L. Let Li+1 = L.

(4) If i = m, then setLm+1 is set of all feasible set
coverings ofM, return to step 4; otherwise, leti = i+ 1,
return to (2) of step 3.

Step4 Compute electrophoresis operator forLm+1 to
extract all optimization set coverings ofM.

(1) Let L = Lm+1,C = C′ to call algorithm 3 to obtain
Electrophoresis(L,C) = L.

(2) Let L∗ = L = {a1,a2, · · · ,at} (set L∗ is set of all
optimization set coverings ofM).

Step5 Restore the original order ofL∗ to obtain all
optimization set coverings ofM.

(1) For∀i∀ j (1≤ i ≤ n∧1≤ j ≤ t), let ai j = 0.
(2) For∀ j (1 ≤ j ≤ t), a j = ( j(1), j(2), · · · , j(s j)) ∈

L∗. For∀i (1≤ i ≤ s j), let a j(i) j = 1.
(3) Let Ln×t = (ai j), X =V ′ andY =C′.
(4) Call algorithm 2 to obtain

Sort(V ′,C′,L) = (V,C,L′), where V = (1,2, · · · ,n)T,
C = (c1,c2, · · · ,cn)

T andL′ = (a′i j)n×t .
(5) For∀ j (1 ≤ j ≤ t), let a j = (), and to add again

component ofa j.
f or j = 1, to, t do

f or i = 1, to,n do
i f a′i j = 1 then let a j = (a j, i)

end
end
(6) Let L∗ = {a1,a2, · · · ,at} (all optimal solutions of

SCP), and to outputL∗.�

4.2 Analysis on Complexity of SDA

To consider SCP, where setM = {1,2, · · · ,m}, set
V = {v1,v2, · · · ,vn} and weight setC = {c1,c2, · · · ,cn}.
For i = 1,2, · · · ,m, Ki = {i(1), i(2), · · · , i(ri)} satisfies
vi( j) ∈ cover(i) (1≤ j ≤ ri).

Theorem 4.1. Time complexity of SDA of SCP is
O(|L|2nm+ |L|n2m).

Proof. In algorithm 1, time complexity of Step1 is
O(|L|n2); time complexity of Step2 isO(|L|n); time
complexity of Step3 isO(|L|2n), so time complexity of
algorithm 1 is O(|L|2n + |L|n2). Time complexity of
algorithm 2 isO(n2). In algorithm 3, time complexity of
Step1 and Step2 isO(|L|2n); time complexity of Step3 is
O(|L|n2), so time complexity of algorithm 3 is
O(|L|2n+ |L|n2).

In SDA of SCP, time complexity of Step2 isO(n2);
time complexity of Step3 isO(|L|2nm + |L|n2m); time
complexity of Step4 isO(|L|2n+ |L|n2); time complexity
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of Step5 isO(n2); so time complexity of SDA of SCP is
O(|L|2nm+ |L|n2m).�

Time complexity of SDA of SCP is decided by the size
of setL of subsets of setM. The proposed algorithm 1 can
simplify maximum and effectively setL to make the size of
setL minimum, which can reduce effectively computation
of SDA. Therefore, SDA of SCP is an effective algorithm
to solve SCP.

4.3 Analysis on Validity and Feasibility of SDA

We do an example of SCP to verify validity and
feasibility of SDA of SCP. SetM = {1,2, · · · ,9}, set
V = {v1,v2, · · · ,v7}. The data of SCP sees Table 1.

Table 1: the data of SCP
subset v1 v2 v3 v4 v5 v6 v7
weight 4 3 2 5 2 3 1

1 1 0 0 1 0 1 0
2 0 1 0 1 1 0 1
3 1 0 1 0 0 1 1
4 1 1 1 0 0 0 1
5 0 1 1 1 0 1 0
6 1 0 1 1 1 0 0
7 1 0 0 1 1 0 1
8 0 1 0 1 0 1 0
9 1 1 1 0 1 0 1

Step1SortC, V andA. Calculated results see Table 2.

Table 2: results of sortingC, V andA
subset v7 v3 v5 v2 v6 v1 v4
weight 1 2 2 3 3 4 5

1 0 0 0 0 1 1 1
2 1 0 1 1 0 0 1
3 1 1 0 0 1 1 0
4 1 1 0 1 0 1 0
5 0 1 0 1 1 0 1
6 0 1 1 0 0 1 1
7 1 0 1 0 0 1 1
8 0 0 0 1 1 0 1
9 1 1 1 1 0 1 0

So calculated results are:
C′ = (1,2,2,3,3,4,5); V ′ = (7,3,5,2,6,1,4);

K′
1 = {5,6,7}; K′

2 = {1,3,4,7}; K′
3 = {1,2,5,6};

K′
4 = {1,2,4,6}; K′

5 = {2,4,5,7}; K′
6 = {2,3,6,7};

K′
7 = {1,3,6,7}; K′

8 = {4,5,7}; K′
9 = {1,2,3,4,6}.

Step2Compute batch separation operator.
(1) Separate({()},{5,6,7}) = {(5),(6),(7)};
(2) Separate({(5),(6),(7)},{1,3,4,7}) = {(5,1),

(6,1),(7,1),(5,3),(6,3),(7,3),(5,4),(6,4),(7,4),(5,7),

(6,7),(7)} = {(7),(1,5),(1,6),(3,5),(3,6),(4,5),
(4,6)};

(3) Separate({(7),(1,5),(1,6),(3,5),(3,6),(4,5),
(4,6)},{1,2,5,6}) = {(1,7),(1,5),(1,6),(1,3,5),
(1,3,6),(1,4,5),(1,4,6),(2,7),(1,2,5),(1,2,6),(2,3,5),
(2,3,6),(2,4,5),(2,4,6),(5,7),(1,5),(1,5,6),(3,5),
(3,5,6),(4,5),(4,5,6),(6,7),(1,5,6),(1,6),(3,5,6),(3,6),
(4,5,6),(4,6)} = {(1,5),(1,6),(1,7),(2,7),(3,5),
(3,6),(4,5),(4,6),(5,7),(6,7)};

(4) Separate({(1,5),(1,6),(1,7),(2,7),(3,5),(3,6),
(4,5),(4,6),(5,7),(6,7)},{1,2,4,6}) = {(1,5),(1,6),
(1,7),(2,7),(2,3,5),(2,3,6),(2,4,5),(2,4,6),(3,4,5),
(3,4,6),(4,5),(4,6),(4,5,7),(4,6,7),(3,5,6),(3,6),(4,6),
(5,6,7),(6,7)} = {(1,5),(1,6),(1,7),(2,7),(3,6),(4,5),
(4,6),(6,7),(2,3,5)};

(5) Separate({(1,5),(1,6),(1,7),(2,7),(3,6),(4,5),
(4,6),(6,7),(2,3,5)},{2,4,5,7}) = {(1,2,5),(1,2,6),
(2,7),(2,3,6),(2,4,5),(2,4,6),(2,3,5),(1,4,7),(4,5),
(4,6),(1,5),(3,5,6),(5,6,7),(1,7),(3,6,7),(6,7)} =
{(1,5),(1,7),(2,7),(4,5),(4,6),(6,7),(1,2,6),(2,3,6),
(2,3,5),(3,5,6)};

(6) Separate({(1,5),(1,7),(2,7),(4,5),(4,6),(6,7),
(1,2,6),(2,3,6),(2,3,5),(3,5,6)},{2,3,6,7}) =
{(1,2,5),(2,7),(2,4,5),(2,4,6),(1,2,6),(2,3,6),(2,3,5),
(1,3,5),(1,3,7),(3,4,5),(3,4,6),(3,6,7),(3,5,6),(1,5,6),
(4,6),(6,7),(1,7),(4,5,7)} = {(1,7),(2,7),(4,6),(6,7),
(1,2,5),(1,2,6),(1,3,5),(1,5,6),(2,3,5),(2,3,6),(2,4,5),
(3,4,5),(3,5,6),(4,5,7)};

(7) Separate({(1,7),(2,7),(4,6),(6,7),(1,2,5),
(1,2,6),(1,3,5),(1,5,6),(2,3,5),(2,3,6),(2,4,5),(3,4,5),
(3,5,6),(4,5,7)},{1,3,6,7}) = {(1,7),(1,4,6),(1,2,5),
(1,2,6),(1,3,5),(1,5,6),(2,3,7),(3,4,6),(3,6,7),(2,3,5),
(2,3,6),(3,4,5),(3,5,6),(4,6),(6,7),(2,7),(4,5,7)} =
{(1,7),(2,7),(4,6),(6,7),(1,2,5),(1,2,6),(1,3,5),
(1,5,6),(2,3,5),(2,3,6),(3,4,5),(3,5,6),(4,5,7)};

(8) Separate({(1,7),(2,7),(4,6),(6,7),(1,2,5),
(1,2,6),(1,3,5),(1,5,6),(2,3,5),(2,3,6),(3,4,5),(3,5,6),
(4,5,7)},{4,5,7}) = {(1,4,7),(2,4,7),(4,6),(1,2,4,5),
(3,4,5),(4,5,7),(1,5,7),(2,5,7),(5,6,7),(1,2,5),(1,3,5),
(1,5,6),(2,3,5),(2,3,5,6),(3,5,6),(1,7),(2,7),(6,7)}=
{(1,7),(2,7),(4,6),(6,7),(1,2,5),(1,3,5),(1,5,6),(2,3,5),
(3,4,5),(3,5,6),(4,5,7)};

(9) Separate({(1,7),(2,7),(4,6),(6,7),(1,2,5),
(1,3,5),(1,5,6),(2,3,5),(3,4,5),(3,5,6),(4,5,7)},
{1,2,3,4,6}) = {(1,7),(1,4,6),(1,2,5),(1,3,5),
(1,5,6),(2,7),(2,4,6),(2,3,5),(3,4,6),(3,6,7),(3,4,5),
(3,5,6),(4,6),(4,5,7),(6,7)} = {(1,7),(2,7),(4,6),
(6,7),(1,2,5),(1,3,5),(1,5,6),(2,3,5),(3,4,5),(3,5,6),
(4,5,7)}.

Step3Compute electrophoresis operator.

Electrophoresis({(1,7),(2,7),(4,6),(6,7),(1,2,5),
(1,3,5),(1,5,6),(2,3,5),(3,4,5),(3,5,6),(4,5,7)},
(1,2,2,3,3,4,5)) = Electrophoresis({(1,7),(4,6),
(1,2,5),(1,3,5)},(1,2,2,3,3,4,5)) = {6(1,7),7(4,6),
6(1,2,5),6(1,3,5)}= {(1,7),(1,2,5),(1,3,5)}.

c© 2014 NSP
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Step4Obtain all optimization set coverings ofM.

(V ′
,C′

,L) =



















7 1 1 1 1
3 2 0 1 0
5 2 0 0 1
2 3 0 0 0
6 3 0 1 1
1 4 0 0 0
4 5 1 0 0



















∼



















1 4 0 0 0
2 3 0 0 0
3 2 0 1 0
4 5 1 0 0
5 2 0 0 1
6 3 0 1 1
7 1 1 1 1



















So all optimal solutions of SCP
L∗ = {(4,7),(3,6,7),(5,6,7)}, the optimal solution value
is 6.

And all optimization set coverings ofM are:
{v4,v7},{v3,v6,v7},{v5,v6,v7}.

5 Conclusion

This paper solves SCP first by using SDA, where batch
separation operator and electrophoresis operator are for
the first time put forward. SDA of SCP has the following
characteristics:

(1) Algorithm can obtain all exact optimal solutions of
SCP.

(2) Minimal element and deriving element are
introduced in batch separation operator to simplify
calculation and to reduce elements of set.

(3) The binary relation of less-than on setL is
established in electrophoresis operator to reduce
calculation scale of the algorithm and to improve
calculation efficiency of the algorithm.

Therefore, SDA of SCP is an effective and practical
algorithm methods for SCP.
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