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Abstract: We propose a new heuristic for vertex ordering and a method that splits thevertex ordering into clusters. We apply them to
the graph partitioning problem. The application of these ideas incorporatesreordering in genetic algorithms and the identification of
clustered structures in graphs. Experimental tests on benchmark graphs showed that the new vertex-ordering scheme performed better
than existing methods in terms of genetic algorithms, and that the clusters were successfully captured.
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1 Introduction

Assume thatG = (V,E) is an undirected unweighted
graph, whereV and E are the sets ofn vertices ande
edges, respectively. A bipartition{C1,C2} of G satisfying
C1,C2 ⊂ V , C1 ∪ C2 = V , C1 ∩ C2 = φ , and
||C1|− |C2|| ≤ 1 is called a bisection. The cut size of a
bipartition {C1,C2} is the cardinality of the edge set
|{(v,w) ∈ E : v ∈C1,w ∈C2}|. The graph bisection
problem is to find a bisection with the minimum cut size.

Genetic algorithms (GAs) are a kind of bio-inspired
meta-heuristics, and they have been applied to various
optimization problems [13,16]. They have also been
successfully used to solve the graph partitioning problem
[3,5,8,9,10,11,12]. Kim et al. [6] presents a deep survey
of genetic approaches for graph partitioning.

In GAs for solving graph bisection, each individual is
usually represented by ann-bit binary linear string. Each
individual is called a chromosome; i.e., a chromosome
corresponds to a bisection of the given graph. Each gene
corresponds to a vertex in the given graph. It has the value
zero if the corresponding vertex belongs toC1 and has the
value one otherwise.

A GA for this problem evolves a group of individuals
(n-bit linear strings) under a genetic process. A schema is

a pattern of bit strings that can be described by a template
consisting of ones, zeros, and asterisks; here, ones and
zeros represent the pattern and the asterisks represent
“don’t care.” GAs start with a set of randomly-generated
initial individuals. Of course, the qualities of the
individuals are quite low in the early stages of the GA.
However, most low-quality individuals include some
schemata common to high-quality individuals. The
crossover operators of GAs generate larger schemata by
juxta-position of smaller schemata. It is crucial to
preserve valuable schemata. However, they are easy to be
destroyed by crossovers if the positions related to the
schema are scattered.

Vertex ordering in GAs is used as a schema
preprocessing technique in order to preserve perceived
valuable schemata. Some studies on vertex ordering have
been conducted [1]. There have also been several studies
for gene rearrangement in GAs. They reported superior
results to GAs without gene reordering. Bui and Moon [3]
first used BFS ordering as a technique of schema
preprocessing in GAs. Kimet al. [7] presented
problem-independent gene reordering using a constructed
gene interaction graph. Hwanget al. [5] significantly
improved the results of Bui and Moon [3]. In this paper,
we propose a novel vertex ordering that detects the
clustered structure of graphs. We use this vertex ordering
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as a schema preprocessing technique and apply it to the
identification of clusters in graphs.

2 Vertex Ordering

If the set of verticesV = {v1,v2, . . . ,vn} is given, a vertex
ordering {vσ(1),vσ(2), . . . ,vσ(n)} is represented by the
permutation mapσ : {1,2, . . . ,n} → {1,2, . . . ,n}. If
σ( j) = i, vertexv j is thei-th vertex in the vertex ordering.
The objective of a vertex ordering is to preserve the
clustered structure of the graph as well as possible.

BFS ordering conducts a breadth-first search (BFS)
on the given graph starting at a randomly-chosen vertex.
The visiting order of vertices in which the vertices are
visited by the BFS is used to order the vertices of the
given graph. Max-Adjacency ordering starts at a
randomly-chosen vertex, and it iteratively adds the vertex
vr with the most edges incident to previous added vertices
to the ordering.

Figure1 shows our ordering method. As in previous
approaches [1], our method starts at randomly-chosen
vertices, and it iteratively adds a new vertex to the
ordering based on already added vertices. The main
difference is that the already added vertices are classified.
Two classes (A andB) are used. One (A) and the other (B)
are the former-half added vertices and the latter-half ones,
respectively. Balancing two classes, un-added vertices are
added to the ordering iteratively. AssumeE(v,S) is the
number of vertices adjacent to the vertexv in a vertex set
S. The vertex vr with the maximal value of
E(vr,A)−E(vr,B) is added to the former-half order and
the setA. Analogously, the vertexvr with the minimal
value of E(vr,A)− E(vr,B) is added to the latter-half
order and the setB. In the following, we denote our
vertex-ordering heuristic by Bi-Constructive ordering.
When we use a bucket data structure as in FM [4], our
vertex-ordering heuristic takesΘ(n+ e) time.

Choose two different random numbersa,b ∈ {1,2, . . . ,n};
σ(1)← a,σ(n/2+1)← b;
A←{va},B←{vb};
for i← 2 to n/2 {

Find an unordered vertexvr ∈V − (A∪B)
such thatE(vr,A)−E(vr,B) is maximal;

σ(i)← r;
A← A∪{vr};
Find an unordered vertexvr ∈V − (A∪B)

such thatE(vr,A)−E(vr,B) is minimal;
σ(n/2+ i)← r;
B← B∪{vr};

}
Order the vertices using the permutation mapσ ;

Fig. 1: Bi-constructive vertex ordering

53333333328α 42 1
n1 m-1 m m+1 m+2 m+3 m+4

a cluster

1

0

0

01

1 1 1 1 1 01

1 1 1 1

1

0 0

0 0 0 0 0

Soln 1

Soln 2

Soln k

Summation

Reordered
solutions

Fig. 2: Clustering derived from vertex ordering

3 Clustering

Clustering [14,16] of graphs has been used to reduce the
search space of graph partitioning instances. For example,
clustering improves Fiduccia-Mattheyses (FM) bisection
[4] through two-phase methodology [2]. In this section,
we describe our clustering method.

In graph bisection, we represent each solution by an
n-bit linear code. Each bit corresponds to a vertex in the
graph, and it has the value 0 or 1. Our clustering method
is as follows. After ordering, we get a number of local
optimum solutions and get ann-integer linear code
through bit-wise summation of them. If two positions
have the same integer value in the linear code, we regard
it as a strong symptom of cluster. We pull out a
contiguous subset of vertices with the same integer value
in the linear code. In our experiments, we used fifty local
optimum solutions. Figure2 illustrates an example case
of a cluster in the linear code. In the figure, a cluster is
composed of a reordered vertex subset{vσ(m),vσ(m+1),
vσ(m+2),vσ(m+3)}.

4 Experimental Results

We made experiments on the six graphs that have been
used in many studies [3,5,8,9,10,11,12,15]. The different
classes of graphs are briefly described below.

– Gn.d: Random graph withn vertices, in which an edge
is made between any two vertices with probabilityp
independently. The probabilityp is selected so that the
expected vertex degree isd = p(n−1).

– Un.d: Random geometric graph withn vertices.
Vertices lie in the unit square[0,1]× [0,1] and their
coordinates are uniformly selected from the unit
interval [0,1]. An edge is made between two vertices
if their Euclidean distance is less than or equal tot,
where the expected vertex degree isd = πnt2.

– cat.n: Caterpillar graph withn vertices. Each vertex
has six legs. Starting with a straight line, each vertex
has degree 2 except the outermost ones. Then, each
vertex on the straight line is connected to six new

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1, 135-138 (2014) /www.naturalspublishing.com/Journals.asp 137

ones called the legs of the caterpillar. rcat.n means
caterpillar graph withn vertices, in which each vertex
on the straight line has

√
n legs. The optimal cut size

of two classes of caterpillar graphs becomes 1.

Table 1 shows the performance of genetic bisection
algorithms (GBA) preprocessed by BFS [3],
Max-Adjacency, and Bi-Constructive vertex-ordering.
The column “None” shows the performance of GBA
without schema preprocessing. GBA has the same
framework as the GA of [8,10]. All the algorithms
expended a comparable amount of time; however, the
Bi-Constructive vertex-ordering algorithm considerably
outperformed the others.

Table 1: Comparison of Schema Preprocessing Methods in a GA
Graph None† BFS [3]† Max-Adj‡ Bi-Cons‡

G1000.05 452.75 453.00 453.63 452.16
G1000.20 3386.21 3386.05 3386.27 3384.63
U2000.05 43.85 8.89 9.01 4.38
U5000.10 319.37 140.85 129.40 80.33
cat.5252 119.32 2.90 3.00 2.08
rcat.5114 21.03 2.75 2.92 2.20

† Data from [8].

‡ Average over 100 runs.

The next experiment examines the effect of clustering
in a hierarchical partitioning. Here we chose the
two-phase methodology in the FM algorithm as a sample
case. The FM method [4] is considered as a representative
traditional iterative improvement partitioning method, and
the two-phase approach [2] would be a traditional
paradigm for hierarchical partitioning. In general, the
two-phase FM method is processed as follows. FM is first
run on the clustered graph, and the resultant bipartition is
a starting point of a second FM run on the given graph
which is the unclustered graph. Table2 shows the
performance. Two-phase FM significantly outperformed
FM. The experimental results showed that the proposed
clustering algorithm effectively detects the clustered
structure.

Table 2: Effect of Clustering in a Hierarchical Partitioning
Graph FM Two-Phase FM
G1000.05 501.64 495.04
G1000.20 3482.53 3471.01
U2000.05 160.95 12.31
U5000.10 961.25 248.19
cat.5252 252.44 6.69
rcat.5114 187.59 6.65

Average over 1,000 runs.

5 Concluding Remarks

We described a bi-constructive vertex-ordering method
for graph partitioning and explored its application to

clustering. We improved the Max-Adjacency
vertex-ordering by considering the attraction power of the
partitions and captured the clusters through the common
properties of local optimum solutions. It would be
interesting to extend it to the vertex-ordering method with
generalk classes and find an optimalk. More efficient
utilization of clusters and application to the multi-way
partitioning problem are left for future study.

Acknowledgment

The present research has been conducted by the Research
Grant of Kwangwoon University in 2014. This research
was supported by Basic Science Research Program
through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education,
Science and Technology(2012-0001855). This work was
also partly supported by the Advanced Research on
Meteorological Sciences through the National Institute of
Meteorological Research of Korea in 2013
(NIMR-2012-B-1).

References

[1] C. Alpert and A. B. Kahng. A general framework for
vertex orderings, with applications to netlist clustering. In
Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pages 63–67, (1994).

[2] T. N. Bui, C. Heigham, C. Jones, and T. Leighton.
Improving the performance of the kernighan-lin and
simulated annealing graph bisection algorithms. In
Proceedings of the 26th ACM/IEEE Design Automation
Conference, pages 775–778, (1989).

[3] T. N. Bui and B. R. Moon. Genetic algorithm and graph
partitioning. IEEE Transactions on Computers, 45(7):841–
855, (1996).

[4] C. Fiduccia and R. Mattheyses. A linear time heuristics for
improving network partitions. InProceedings of the 19th
ACM/IEEE Design Automation Conference, pages 175–181,
(1982).

[5] I. Hwang, Y.-H. Kim, and B.-R. Moon. Multi-attractor
gene reordering for graph bisection. InProceedings of the
Genetic and Evolutionary Computation Conference, pages
1209–1215, (2006).

[6] J. Kim, I. Hwang, Y.-H. Kim, and B.-R. Moon. Genetic
approaches for graph partitioning: A survey. InProceedings
of the Genetic and Evolutionary Computation Conference,
pages 473–480, (2011).

[7] Y.-H. Kim, Y.-K. Kwon, and B.-R. Moon. Problem-
independent schema synthesis for genetic algorithms. In
Proceedings of the Genetic and Evolutionary Computation
Conference - Lecture Notes in Computer Science,
volume2723, pages 1112–1122, (2003).

[8] Y.-H. Kim and B.-R. Moon. A hybrid genetic search for
graph partitioning based on lock gain. InProceedings of the
Genetic and Evolutionary Computation Conference, pages
167–174, (2000).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


138 Y. Yoon, Y. H. Kim: Vertex ordering, clustering, and their...

[9] Y.-H. Kim and B.-R. Moon. Investigation of the
fitness landscapes and multi-parent crossover for graph
bipartitioning. In Proceedings of the Genetic and
Evolutionary Computation Conference - Lecture Notes in
Computer Science, volume2723, pages 1123–1135, (2003).

[10] Y.-H. Kim and B.-R. Moon. Lock-gain based graph
partitioning.Journal of Heuristics, 10(1):37–57, (2004).

[11] Y.-H. Kim, Y. Yoon, A. Moraglio, and B.-R. Moon.
Geometric crossover for multiway graph partitioning. In
Proceedings of the Genetic and Evolutionary Computation
Conference, pages 1217–1224, (2006).

[12] A. Moraglio, Y.-H. Kim, Y. Yoon, and B.-R. Moon.
Geometric crossover for multiway graph partitioning.
Evolutionary Computation, 15(4):445–474, (2007).

[13] M. Thangamani and P. Thangaraj. Fuzzy ontology for
distributed document clustering based on genetic algorithm.
Applied Mathematics & Information Sciences, 7(4):1563–
1574, (2013).

[14] M. Wang, X. Shang, X. Li, Z. Li, and W. Liu.
Efficient mining of differential co-expression constant
row bicluster in real-valued gene expression datasets.
Applied Mathematics & Information Sciences, 7(2):587–
598, (2013).

[15] Y. Yoon and Y.-H. Kim. New bucket managements in
iterative improvement partitioning algorithms.Applied
Mathematics & Information Sciences, 7(2):529–532,
(2013).

[16] L. Zhang, X. Zou, and Z. Su. Ga optimization model
for time/cost trade-off problem in repetitive projects
considering resource continuity.Applied Mathematics &
Information Sciences, 7(2):611–617, (2013).

Yourim Yoon received
the B.E. degree in computer
engineering and the Ph.D.
degree in computer science
and engineering from Seoul
National University, Seoul,
Korea, in 2003 and 2012,
respectively. Since March
2012, she has been a senior
research engineer at Future IT
R&D Lab. in LG Electronics,

Seoul, Korea. Her research interests include optimization
theory, machine learning, combinatorial optimization,
evolutionary computation, discrete mathematics,
operations research, smart grid, and sensor networks. She
served as a reviewer for BIC-TA 2007, BMIC 2011, IEEE
TEVC, and TIIS.

Yong-Hyuk Kim received
the B.S. degree in computer
science and the M.S. and
Ph.D. degrees in computer
science and engineering from
Seoul National University
(SNU), Seoul, Korea,
in 1999, 2001, and 2005,
respectively. From March
2005 to February 2007, he

was a Postdoctoral Scholar in SNU and also a research
staff member at the Inter-University Semiconductor
Research Center in SNU. Since March 2007, he has been
a professor at Department of Computer Science and
Engineering in Kwangwoon University, Seoul, Korea. His
research interests include algorithm design/analysis,
discrete mathematics, optimization theory, combinatorial
optimization, evolutionary computation, operations
research, and data/web mining. Dr. Kim has served as an
Editor of TIIS journal in 2010-2013, a Committee
Member of GECCO 2005-2006,2013 & IEEE CEC
2009-2011, and a reviewer for journals (CIM, IS, TC,
TEVC, TKDE, TPDS, TSE, TVT) of IEEE since 2003.
He is a member of the IEEE SMC Society and the IEEE
Communications Society.

c© 2014 NSP
Natural Sciences Publishing Cor.


	Introduction
	Vertex Ordering
	Clustering
	Experimental Results
	Concluding Remarks

