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Abstract: This paper obtains the solitary wave, shock wave as well as singular solitonsolutions to the generalized Ostrovsky-
Benjamin-Bona-Mahoney (gO-BBM) equation. The ansatz method is applied to obtain the solutions. Several constraint conditions
for the parameters are derived that establish the existence of the soliton solutions.
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1 Introduction

The theory of solitons plays a dominant role in many
nonlinear dynamical systems [1,2,3,4,5]. Of particular
interest is in the field of nonlinear optical comminications
systems. Although the perfect material is currently not
available, optical nonlinear media with fast response
times and refractive indices that depend on intensity
would be ideally suited to modulate the power and phase
of optical waves for all-optical devices. These all-optical
devices include fibre optic sensors, routers and large-scale
optical integrated circuits [6,7].

For other example, they also appear in shallow water
wave flow, plasma physics, nuclear physics, oceanography,
theoretical physics and among others [8,9,10,11,12,13].

The dynamics of solitons are governed by several
nonlinear evolution equations (NLEEs) that are studied in
applied mathematics. This paper addresses one such
NLEE that descibes the soliton dynamics due to ocean
currents. It is the generalized Ostrovsky-
Benjamin-Bona-Mahoney (gO-BBM) equation. The
Ostrovsky equation arises in the study of geophysical
fluids while the Benjamin-Bona-Mahoney (BBM)

equation is studied in the context of shallow water wave
dynamics [3,14,15,16,17]. This equation models the
dynamics that is much closer to realistic situations.

The aim of this paper is to look for solitons and shock
wave solutions to this equation. This is accomplished by
using the ansatz method.

2 Governing Equation

The gO-BBM equation is given by [18,19]

[

ut +ux −α
(

u2)

x −βuxxt
]

x
= γ

(

u+u2)
, (1)

whereα, β andγ are constants. This is a model equation
for the motion of ocean currents. In this paper the
gO-BBM equation with full nonlinearity is studied,
namely

[(

ul
)

t
+ k2 (un)x +a

(

u2n)

x +b(un)xxt

]

x
= c1un + c2u2n

(2)
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wherek, a, b, c1 and c2 are all real constants, whilel,
n ∈ Z+. For the special case whenl = n = 1 the gO-BBM
equation collapses to the regular O-BBM (1).

Generally (2) is not integrable by the classical method
of Inverse Scattering Transform [9]. It is always useful
and desirable to construct exact analytical solutions (in
particular soliton solutions) for the understanding of
nonlinear physical phenomena. Based on the exact
solutions, we can directly and accurately analyze the
properties of propagating waves in nonlinear physical
systems. In view of the enormous success of the solitary
wave ansatz method for solving many NLEEs with
constant and variable coefficients, we use it in to find the
exact solitary waves, shock waves and singular soliton
solutions to (2), for any positive integersn andl.

3 Solitons and Shock Waves

This section will focus on extraction the soliton solutions
to the gO-BBM equation. There are three types of solitons
that will be studied in this section. They are solitary waves,
shock waves and singular solitons.

3.1 Solitary Waves

In order to solve (2), the starting hypothesis is given by
[18,19]

u(x, t) =
A

coshp τ
, p > 0, (3)

where
τ = B(x− vt). (4)

Here,A is the amplitude of the soliton whilev is the speed
andB is the inverse width. The exponentp is unknown at
this point and its value will be determined during the
process of deriving the solution of this equation.
Substituting (3) into (2) leads to

Al p2l2B2v

coshpl τ
−

AlB2vpl (pl +1)

coshpl+2 τ
+

bAn p4n4B4v
coshpn τ

−
k2p2n2AnB2

coshpn τ
+

k2pn(pn+1)AnB2

coshpn+2 τ

−
4an2p2A2nB2

cosh2np τ
+

2anp(2np+1)A2nB2

cosh2np+2 τ

−
bAnB4pn(pn+1)v

{

p2n2+(pn+2)2
}

coshpn+2 τ

+
bAnB4vpn(pn+1)(pn+2)(pn+3)

coshpn+4 τ

+
c1An

coshpn τ
+

c2A2n

cosh2np τ
= 0. (5)

From (5), equating the exponents 2np+2 andpn+4 gives

p =
2
n
, (6)

which is also obtained by equating the exponents 2np and
pn+2. Again, from (5), equating the exponent of coshpl τ
and coshpn τ leads tol = n. With this condition in place (2)
is modified to

[

(un)t + k2 (un)x +a
(

u2n)

x +b(un)xxt

]

x
= c1un + c2u2n

(7)
Next, equating the exponents and the coefficients of like
powers of cosh function leads to

4B2(k2− v−4bvB2)− c1 = 0, (8)

6B2(k2− v−20bvB2)+(c2−16aB2)An = 0, (9)

aAn +6bvB2 = 0. (10)

Solving this system yields

A =

(

−
3c1

2c2

)
1
n

(11)

B =
1
2

√

c1 (bc2+a)
b(k2c2−ac1)

(12)

v =
a(k2c2−ac1)

c2(bc2+a)
. (13)

Equation (11) shows that solitons will exist as long as

c1c2 < 0, (14)

if n is an even integer. However, ifn is an odd integer
there is no such restriction. Also, from (12) the following
restriction is obtained

c1b(bc2+a)
(

k2c2−ac1
)

> 0. (15)

Thus, the solitary wave solution (valid for any positive
integern) to the gO-BBM equation with full nonlinearity
(2) is given by

u(x, t) =

(

−
3c1

2c2

)
1
n

×

sech
2
n

[

1
2

√

c1 (bc2+a)
b(k2c2−ac1)

(

x−
a
(

k2c2−ac1
)

c2 (bc2+a)
t

)]

.

3.2 Shock waves

Let us now calculate the shock wave solution of the gO-
BBM equation with full nonlinearity (2). It is assumed that
the shock wave takes the form [12]

u(x, t) = A tanhp τ , p > 0, (16)

whereτ is defined above andv is the speed of the shock
wave. The only difference is that, in this case, the
parametersA and B are non-zero free parameters. For
shock waves,A is a dialation parameter (amplitude) while
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B is a measure of steepness of the shock waves.
Substituting (16) into (2) yields

vplAl B2
{

(pl −1) tanhpl−2 τ +2pl tanhpl τ
}

+vplAl B2(pl +1) tanhpl+2 τ − k2pnAnB2(pn+1) tanhpn+2 τ
−k2pnAnB2{(pn−1) tanhpn−2 τ −2pn tanhpn τ

}

−2apnA2nB2{(2pn−1) tanh2pn−2 τ −4pn tanh2pn τ
}

−2apnA2nB2(2pn+1) tanh2pn+2 τ
+bvpnAnB4{(pn−1)(pn−2)(pn−3) tanhpn−4 τ

−(pn+1)(pn+2)(pn+3) tanhpn+4 τ
+2
{

p2n2+(pn−2)2}{pn−1} tanhpn−2 τ

+2
{

p2n2+(pn+2)2}{pn+1} tanhpn+2 τ

−
{

4p3n3+(pn−1)2(pn−2)
}

tanhpn τ

−(pn+1)2(pn+2) tanhpn τ
}

+c1An tanhpn τ + c2A2n tanh2pn τ = 0. (17)

From (17), equating the exponents 2np + 2 and pn + 4
gives

p =
2
n
.

This is also arrrived at by equating the exponents of the
pairs(2np, pn+2) or (2np−2, pn). Further, equating the
exponent of tanhpl τ and tanhpn τ impliesl = n. Now from
(17) the linearly independent functions are tanhp+ j τ ( j =
0,±2,±4) and setting their respective coefficients to zero
leads to the following set of algebraic equations

k2− v+8bvB2 = 0, (18)

6B2(k2− v+40bvB2)− (c2+32aB2)An = 0, (19)

aAn −6bvB2 = 0, (20)

4B2(3aAn +2v−2k2−34bvB2)− c1 = 0. (21)

Solving this system gives

v =
k2

1−8bB2 (22)

A =

{

6bB2k2

a(1−8bB2)

}

1
n

(23)

c1 = 0, c2 = 0. (24)

It is clear that 8bB2 6= 1 and a 6= 0. On account that
c1 = c2 = 0 then (2) collapses, after simplification, to the
reduced gO-BBM equation with full nonlinearity

(un)t + k2 (un)x +a
(

u2n)

x +b(un)xxt = 0, (25)

where the integration constant is taken to be zero without
any loss of generality. The shock wave solution is

u(x, t) =

{

6bB2k2

a(1−8bB2)

}

1
n

tanh
2
n

[

B

(

x−
k2

1−8bB2 t

)]

.

3.3 Singular Solitons

In this section, the search is for a singular soliton solution
to the gO-BBM equation with full nonlinearity (2). For this
case, the ansatz is

u(x, t) = A cschp τ , p > 0. (26)

For the case of singular solitons too, the parametersA and
B are free non-zero parameters withv being the speed of
the soliton. Substituting (26) into (2) gives

vAl p2l2B2 cschplτ + pl(pl +1)vAlB2cschpl+2τ
−(k2p2n2AnB2−bvAn p4n4B4− c1An)cschpnτ
−k2pn(pn+1)AnB2cschpn+2τ −4ap2n2A2nB2 csch2pnτ
−2apn(2pn+1)A2nB2csch2pn+2τ

+bvAnB4pn(pn+1)
{

p2n2+(pn+2)2
}

cschpn+2τ

+bvAnB4pn(pn+1)(pn+2)(pn+3)cschpn+4τ
+c2A2ncsch2pnτ = 0. (27)

From (27), equating the exponent pairs(2np+2, pn+4)
or (2np, pn+2) give

p =
2
n
.

Equating the exponents of cschplτ and cschpnτ yields the
requirement thatl = n. Then, setting the coefficients of
cschp+ j τ ( j = 0,2,4) to zero, as these are linearly
independent functions, gives

4B2(k2− v−4bvB2)− c1 = 0, (28)

6B2(k2− v−20bvB2)−An(c2−16aB2) = 0, (29)

aAn −6bvB2 = 0. (30)

Solving this system yields

A =

(

3c1

2c2

)
1
n

, (31)

B =
1
2

√

c1(bc2+a)
b(k2c2−ac1)

, (32)

v =
a(k2c2−ac1)

c2(bc2+a)
. (33)

Equation (31) shows that solitons will exist ifc1c2 > 0.
Also, from (32), the following restriction is obtained

bc1(bc2+a)(k2c2−ac1)> 0. (34)

This, in turn, gives the singular soliton solution which is
valid for any positive integern

u(x, t) =

(

3c1

2c2

)
1
n

×

csch
2
n

[

1
2

√

c1(bc2+a)
b(k2c2−ac1)

(

x−
a(k2c2−ac1)

c2(bc2+a)
t

)

]

.

4 Conclusion

In this paper, exact soliton solutions to the gO-BBM
equation are derived. There are three types of soliton
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solutions – solitary waves, shock waves and singular
solitons. These results will be immensely useful in the
area of geophysical fluids and/or rotating fluids within the
shallow water wave approximation.

These results may be extended in many different
ways. For example, the conservation laws can be be
studied that will yield the corresponding conserved
densities from which conserved quantities can be
obtained. Further, perturbation terms will be added to
study the dynamics of the gO-BBM equation in the
adiabatic approximation.
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