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1 INTRODUCTION

Variational inequalities which were introduced by
stampacchia in the early sixties have a considerable
impact on a wide class of problems in mechanics,
optimization problems, operations research and
engineering sciences.

If the convex set does depend upon the solution, then
a problem in this class of variational inequalities is called
a quasi variational inequality. These were introduced and
studied by Benousan and Lions [1]. See ([1]-[20]) and the
references therein for numerical methods and applications
of variational and quasi-variational inequalities.

In this paper, we study a class of nonlinear
quasi-variational inequalities, called the general nonlinear
quasi-variational inequalities, and analyze some new
iterative algorithms for solving it using the projection
technique and the implicit Wiener-Hopf equations
technique. Then we discuss the convergence criteria of
the iterative algorithms under certain conditions. As
several variational classes of variational inequalities and
related optimization problems are part of general
quasi-variational inequalities, then it is an immediate
consequence that the results of this paper hold for these
problems.

2 PRELIMINARIES AND FORMULATION

Let H be a real Hilbert space whose inner product and
norm are denoted by〈., .〉 and‖.‖ respectively. Let K be

a nonempty closed convex subset ofH, and
m : K → K, T : H −→ H, A : H −→ H are nonlinear
operators. Let g : H −→ H be a continuous mapping,
then we consider the problem of findingu ∈ H such that
g(u) ∈ K, and

〈Tu,g(v)−g(u)〉 ≥ 〈A(u),g(v)−g(u)〉 ,∀v∈ H : g(v) ∈ K(u),
(1)

whereK(u) = m(u) + K, which we call the general
nonlinear quasi-variational inequalities problem denoted
by (GNQVIP).

SPECIAL CASES
I.(a) If g(v) = v,v∈ H, then problem (1) is equivalent

to findingu∈ H such thatg(u) ∈ K(u), and

〈Tu,v−g(u)〉 ≥ 〈A(u),v−g(u)〉 ,∀v∈ K(u), (2)

which is known as a general strongly nonlinear quasi-
variational inequality problem(GSNQVIP) introduced and
studied by Siddiqi and Ansari [2].

(b) If g= I , the identity mapping, then problem (1) is
reduced to findingu∈ K(u) such that

〈Tu,v−u〉 ≥ 〈A(u),v−u〉 ,∀v∈ K(u), (3)

which is known as a strongly nonlinear quasi
variational inequality problem (SNQVIP), studied by
Siddiqi and Ansari [3].
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(c) If m = 0, that isK(u) = K, then (1) is called a
nonlinear variational inequality, considered by Noor [4].

(d) If m = 0, that is K(u) = K, and K = H, then
problem (1) reduces to findingu∈ H such that

〈Tu−A(u),g(v)〉 = 0, for all
g(v) ∈ H,

which is known as the weak formulation of the odd
order boundary value problems, see Ciarlet et. al. [5].

II. If A= 0, then
(a) Inequality (1) is equivalent to findingu∈K(u), and

〈Tu,g(v)−g(u)〉 ≥ 0,∀v∈ H : g(v) ∈ K(u), (4)

Recently Noor et. al.[6] discussed (4) as a special case
. Also (4) can be used to study odd order and
nonsymmetric abstacle, unilateral and equilibrium
problems and other problems of pure and applied
sciences. The third-order implicit obstacle boundary value
problem of findingu such that

−u
′′′
≥ f (x) on Ω = [0,1] (5)

u ≥ M(x,u) on Ω = [0,1]

[−u
′′′
− f (x)][u−M(x,u)] = 0 on Ω = [0,1]

u(0) = 0, u
′
(0) = 0, u

′
(1) = 0

where f (x) is a continuous function andM(x,u(x)) is
the obstacle function, is considered and studied by Noor
et. al.in the framework of variational inequality approach
in [6].

(b) If m= 0, inequality (1) takes the form

〈Tu,g(v)−g(u)〉 ≥ 0,∀v∈ H : g(v) ∈ K, (6)

which is called a general variational inequality
problem, introduced and studied by Noor [7].

(c) If g(v) = v, inequality (1) is equivalent to finding
u∈ K(u), and

〈Tu,v−g(u)〉 ≥ 0,∀v∈ K(u), (7)

which is known as a general quasi variational
inequality, introduced by Noor [8].

(d) If m= 0, andg(v) = v, inequality (1) takes the form

〈Tu,v−g(u)〉 ≥ 0,∀v∈ K, (8)

which is called a general variational inequality
problem, introduced and studied by Noor [9] and Isac
[10].

III. If A= 0,m= 0,g= I , then (1) takes the form

〈Tu,v−u〉 ≥ 0,∀v∈ K, (9)

Problem (9) is called a variational inequality, which
was studied by Hartman and Stampacchia [11], see also
Lions and Stampacchia [12] and Stampacchia [13].

It is obvious that many classes of variational
inequalities can be considered as special cases of the
general quasi variational inequality (1).

We need the following concepts and well-known
results:

Lemma 2.1. Let K(u) be a closed convex set inH.
Then, for a givenz∈ H, u∈ K(u) satisfies the inequality

〈u−z,v−u〉 ≥ 0,∀v∈ K(u)

if and only if u= PK(u)z, wherePK(u) is the projection
of H onto the closed convex setK(u) in H.

Lemma 2.2. The mappingPK is nonexpansive, that is,

‖PK(u)−PK(v)‖ ≤ ‖u−v‖ ,∀u,v∈ H.

Lemma 2.3.If K(u) =m(u)+K andK ⊂H is a closed
convex subset, then for anyu,v∈ H, one has

PK(u)(v) = m(u)+PK(v−m(u))

Definition 2.1. An operator T: H → H is said to be
i) strongly monotone, if there exists a constantα > 0

such that

〈Tu−Tv,u−v〉 ≥ α||u−v||2,∀u,v∈ H;

ii) Lipschitz continuous if there exists a constantβ > 0
such that

||Tu−Tv|| ≤ β ||u−v||,∀u,v∈ H.

The implicit projection operator PK(u) is not
nonexpansive. We shall assume that the implicit
projection operatorPK(u) satisfies the Lipschitz type
continuity, which plays an important role in the existence
theory and in developing numerical methods for solving
(GNQVIP) (1) [6]. Assume that the implicit projection
operatorPK(u) satisfies the condition

∥

∥PK(u)w−PK(v)w
∥

∥≤ υ ‖u−v‖ ,∀u,v,w∈ H, (10)

whereυ > 0 is a positive constant.
Problem (1) is equivalent to finding

u∈ H : g(u) ∈ K(u) ∈ such that

0∈ Tu−A(u)+NP
K(u)(g(u)), (11)

whereNP
K(u)(g(u)) denotes the normal cone ofK(u) at

g(u). Problem (11) is called the quasi-variational inclusion
problem associated with quasi-variational inequality (1).
This implies that the variational inequality (1) is equivalent
to finding a zero of the sum of two monotone operators
(11). This equivalent formulation is the core of this paper
since it uses the projection operator technique for solving
the general nonlinear quasi variational inequality (1).

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1, 89-94 (2014) /www.naturalspublishing.com/Journals.asp 91

3 ITERATIVE METHODS

In this section, we establish the equivalence between the
variational inequality (GNQVIP) (1) and the fixed point
problem using the projection operator technique.

Lemma 3.1. u∈ H : g(u) ∈ K(u) is a solution of the
general quasi variational inequality (1) if and only ifu ∈
H : g(u) ∈ K(u) satisfies the relation

g(u) = PK(u)[g(u)−ρTu+ρA(u)], (12)

wherePK(u) is the projection operator ontoK(u) and
ρ > 0 is a constant.

Proof. One can do the proof by invoking Lemma2.1.

From Lemma 3.1, one can infer that the general
nonlinear variational inequality (1) is equivalent to the
fixed point problem (12), and consequently formulation
(12) can be used to obtain an approximate solution of (1)
by an iterative algorithm. The fixed point problem (12) is
used to suggest the following iterative methods for
solving the (GNQVIP) (1).

3.1 Projection Iterative Method

Relation (12) can be written as follows

u= u+αn{−g(u)+PK(u)[g(u)−ρTu+ρA(u)]}, (13)

whereαn ∈ [0,1],∀n≥ 0.
Equation (13) is used to suggest the following

Algorithm

Algorithm 3.1. For a given u0 ∈ H, find the
approximate solution un+1 by the iterative scheme

un+1 = un+αn{−g(un)+PK(un)[g(un)−ρTun+ρA(un)]},
(14)

whereαn ∈ [0,1],∀n≥ 0.

3.2 Wiener-Hopf Equations Technique

Here we consider the problem of solving the general
implicit Wiener-Hopf equations. To be more precise, let
PK(u) be the projection ofH onto the closed convex set
K(u) and QK(u) = I − PK(u), where I is the identity
operator. For given nonlinear operatorsT,A,g, consider
the problem of findingz∈ H such that

Tg−1PK(u)z+ρ−1QK(u)z= A(g−1PK(u)z), (15)

where we have used the fact thatg−1 exists. Equation
(15) is called the general implicit Wiener-Hopf equation.
If g = I andK(u) ≡ K, then one can obtain the original
Wiener-Hopf equations, which are mainly due to Shi [14].

Now we use Lemma 3.1 to establish the equivalence
between problems (1) and (15) which is the main
motivation behind the next result.

Lemma 3.2. The general implicit Wiener-Hopf
equation (15) has a solution z∈ H, if and only if, the
general nonlinear quasi-variational inequality problem
(GNQVIP) (1) has a solution u∈ K(u), provided

u= g−1PK(u)z

z= g(u)−ρ(Tu−A(u)),

where PK(u) is the projection ofH onto the closed
convex setK(u).

Proof. Let u ∈ H : g(u) ∈ K(u) be a solution of (1).
Then, form Lemma 3.1, one obtains

u= g−1PK(u)[g(u)−ρ(Tu−A(u))]

Let
z= g(u)−ρ(Tu−A(u)),

Then, one has

u= g−1PK(u)z

and

z= PK(u)z−ρTg−1PK(u)z+ρA(g−1PK(u)z),

that is

ρ−1QK(u)z+Tg−1PK(u)z= A(g−1PK(u)z).

This shows thatz∈ H is a solution of (15) and the
converse is also true.�

Algorithm 3.2. For a given z0 ∈ H, find the
approximate solution zn+1 by the iterative scheme

g(un) = PK(un)zn,n= 0,1,2, ... (16)

zn+1 = (1−αn)zn+αn[g(un)−ρTun+ρA(un)],n= 0,1,2, ...
(17)

where 0≤ αn ≤ 1, for all n≥ 0.
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4 CONVERGENCE THEOREMS

In this section we shall discuss the convergence criteria of
the Algorithms 3.1 and 3.2.

The following Lemma will be needed in the proof of
Theorem 4.1.

Lemma 4.1.[15] Letη andσ be positive scalars with
η ≤ σ . Then for allα ∈ [0,1],

1−2ηα +σ2α2 ≤
(

1−α +α
√

1−2η +σ2
)2

.

Theorem 4.1. Let the operators T,g : H → H be
strongly monotone with constantsα > 0,η > 0
respectively, and Lipschitz continuous with constants with
β > 0,σ > 0 respectively. Suppose that the operators
A,m are Lipschitz continuous with constantsγ > 0,υ > 0
respectively. If (10) holds and there exists a constant
ρ > 0 such that

t(ρ)< 1−2υ −2
√

1−2η +σ2 (18)

where

t(ρ) =
√

1−2αρ +β 2ρ2+ γρ

and αn ∈ [0,1], ∀n ≥ 0, ∑∞
n=0 αn = ∞, then the

approximate solution un obtained from Algorithm 3.1
converges to a solution u∈ H : g(u) ∈ K(u) satisfying the
general nonlinear quasi-variational inequality problem
(1).

Proof. Let u ∈ H : g(u) ∈ K(u) be a solution of
(GNQVIP)(1). Then, From (13)and (14), we have

‖un+1−u‖=‖un−u−αn(g(un)−g(u))

+αn{PK(un)[g(un)−ρTun+ρA(un)]

−PK(u)[g(u)−ρTu+ρA(u)]}‖

≤ ‖un−u−αn(g(un)−g(u))‖

+αn‖PK(un)[g(un)−ρTun+ρA(un)]

−PK(u)[g(u)−ρTu+ρA(u)]‖

≤ ‖un−u−αn(g(un)−g(u))‖

+αn‖PK(un)[g(un)−ρTun+ρA(un)]

−PK(u)[g(un)−ρTun+ρA(un)‖

+αn‖PK(u)[g(un)−ρTun+ρA(un)

−PK(u)[g(u)−ρTu+ρA(u)‖

≤ ‖un−u−αn(g(un)−g(u))‖ (19)

+2αnυ ‖un−u‖

+αn‖un−u− (g(un)−g(u))‖

+αn‖un−u−ρ(Tun−Tu)‖

+ρ ‖A(un)−A(u)‖

from Lemma 2.3 and the Lipschitz continuity ofm, one
has

‖PK(un)w−PK(u)w‖= ‖m(un)−m(u)+PK(w−m(un))

−PK(w−m(u))‖

≤ 2‖m(un)−m(u)‖

≤ 2υ‖un−u‖,

∀u,un ∈ H,

wherew= g(un)−ρTun+ρA(un).

from the strong monotonicity and Lipschitz continuity
of g, we have

‖un−u−αn(g(un)−g(u))‖2 ≤

‖un−u‖2−2αn 〈g(un)−g(u),un−u〉+α2
n ||g(un)−g(u)||2

≤ (1−2αnη+α2
nσ2)‖un−u‖2

and

‖un−u− (g(un)−g(u))‖ ≤

‖un−u‖2−〈g(un)−g(u),un−u〉+ ||g(un)−g(u)||2

≤ (1−2η +σ2)‖un−u‖2
.

(20)
from Lemma 4.1 we have

‖un−u−αn(g(un)−g(u))‖ ≤
(

1−αn+αn

√

1−2η +σ2
)

‖un−u‖ .
(21)

Similarly from the strong monotonicity and Lipschitz
continuity ofT, One obtains

‖un−u−ρ(T(un)−T(u))‖ ≤ ‖un−u‖2−

ρ 〈T(un)−T(u),un−u〉

+ρ2||T(un)−T(u)||2

≤ (1−2αρ +β 2ρ2)‖un−u‖2

(22)

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1, 89-94 (2014) /www.naturalspublishing.com/Journals.asp 93

from (19),(21), (22), (23), and using the Lipschitz
continuity ofA, we have

‖un+1−u‖ ≤ {1−αn+αn

√

1−2η +σ2

+2αnυ +αn

√

1−2η −σ2

+αn

√

1−2αρ +β 2ρ2

+αnγρ}‖un−u‖

≤ {1−αn(1−2
√

1−2η +σ2−2υ

−
√

1−2αρ +β 2ρ2− γρ}‖un−u‖

≤ {1−αn(1−2υ −2
√

1−2η +σ2− t(ρ))}
‖un−u‖

= (1−αnθ)‖un−u‖

≤
n

∏
i=0

(1−αiθ)‖u0−u‖

where θ = 1−2υ −2
√

1−2η +σ2− t(ρ)

and t(ρ) =
√

1−2αρ +β 2ρ2+ γρ

From (18), it follows thatθ > 0, and since ∑∞
n=0 αn =

∞ we have lim
n→∞

{∏n
i=0(1−αiθ)} = 0, Consequently the

sequence{un} converges strongly tou∈ H : g(u) ∈ K(u).
This completes the proof.�

Now we shall prove the convergence of the iterative
scheme of Algorithm 3.2.

Theorem 4.2. Let T ,g be strongly monotone with
constant α > 0 ,η > 0 respectively, and Lipschitz
continuous with constantβ > 0,σ > 0 respectively. Let
the operators A,m are Lipschitz continuous with constant
γ > 0,υ > 0 respectively. If (10) holds and there exists a
constantρ such that (18) holds andαn ∈ [0,1], ∀n≥ 0 ;

∞
∑

n=0
αn = ∞, then the approximate solution zn obtained

from Algorithm 3.2 converges to a solution z∈ H
satisfying the general implicit Wiener-Hopf equation
(15).

Proof. Let z∈ H be a solution of (15). Then, using
Lemma 4.2, we get

z= (1−αn)z+αn{g(u)−ρ(Tu−A(u))}, (23)

where 0≤ αn ≤ 1.

from (17) and (24),one has

‖zn+1−z‖ ≤ (1−αn)‖zn−z‖

+αn‖un−u− (g(un)−g(u))‖

+αn‖un−u−ρ(Tun−Tu)‖

+αnρ ‖A(un)−A(u)‖

Since the operatorsT,g are strongly monotone with
constantα > 0,η > 0 and Lipschitz continuous with
constantβ > 0,σ > 0, and using the Lipschitz continuity
of the operatorA with constantγ > 0, it follows from
(21), (23) that

‖zn+1−z‖ ≤ (1−αn)‖zn−z‖

+αn

(

√

1−2η +σ2+
√

1−2ρα +ρ2β 2+ργ
)

‖un−u‖

from (10), (20), (21) and the fact thatg(u) = PK(u)z,
we have

‖un−u‖=
∥

∥un−u− (g(un)−g(u))+(PK(un)zn−PK(u)z)
∥

∥

≤ ‖un−u− (g(un)−g(u))‖+
∥

∥(PK(un)zn−PK(un)z)
∥

∥

+
∥

∥(PK(un)z−PK(u)z)
∥

∥

≤
√

1−2η +σ2‖un−u‖+‖zn−z‖+2υ ‖un−u‖

‖un−u‖ ≤
1

(1−2υ −
√

1−2η +σ2)
‖zn−z‖

≤
1
k
‖zn−z‖

wherek= 1−2υ −
√

1−2η +σ2,

Now (25) can be written as

‖zn+1−z‖ ≤ (1−αn)‖zn−z‖

+
αn

k

(

1−2υ −k+
√

1−2ρα +ρ2β 2+ργ
)

‖zn−z‖

≤ (1−αn)‖zn−z‖+αnφ ‖zn−z‖

where

φ =
1
k

(

1−2υ −k+
√

1−2ρα +ρ2β 2+ργ
)

From (18), we see thatφ < 1 and consequently

‖zn+1−z‖ ≤ [(1− (1−φ)αn]‖zn−z‖

≤
n

∏
i=0

[(1− (1−φ)αi ]‖z0−z‖

Since
∞
∑

n=0
αn diverges, and 1− φ > 0, it follows that

lim
n→∞

n
∏
i=0

[(1− (1− φ)αi ] = 0. Consequently the sequence

{zn} convergences strongly toz in H satisfying the
general implicit Wiener-Hopf equation (15).�
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