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1 INTRODUCTION a nonempty closed convex subset dfl, and
m:K—-K, T:H—H, A:H— H are nonlinear

Variational inequalities which were introduced by operators. Letg: H — H be a continuous mapping,
stampacchia in the early sixties have a considerabléhen we consider the problem of finditigs H such that
impact on a wide class of problems in mechanics,g(u) € K, and
optimization problems, operations research and
engineering sciences.

If the convex set does depend upon the solution, ther{Tu,g(v) —g(u)) > (A(u),g(v) —g(u)), Y e H : g(v) € K(u),
a problem in this class of variational inequalities is adlle (1)
a quasi variational inequality. These were introduced and ~ Where K(u) = m(u) + K, which we call the general
studied by Benousan and Lior§[See ([]-[20]) and the ~ nonlinear quasi-variational inequalities problem dedote
references therein for numerical methods and application®y (GNQVIP).
of variational and quasi-variational inequalities.

In this paper, we study a class of nonlinear
quasi-variational inequalities, called the general madr SPECIAL CASES
quasi-variational inequalities, and analyze some new l.(a) If g(v) =v,v € H, then problem (1) is equivalent
iterative algorithms for solving it using the projection to findingu € H such thag(u) € K(u), and
techniqgue and the implicit Wiener-Hopf equations
technique. Then we discuss the convergence criteria of
the iterative algorithms under certain conditions. As (Tu,v—g(u)) > (A(u),v—g(u)),WeK(u), (2
several variational classes of variational inequalitied a o ) )
related optimization problems are part of general  Whichis known as a general strongly nonlinear quasi-
quasi-variational inequalities, then it is an immediate vVariational inequality problem(GSNQVIP) introduced and
consequence that the results of this paper hold for thesgtudied by Siddigi and Ansarg]. .
problems. (b) If g =1, the identity mapping, then problem (1) is

reduced to findingi € K(u) such that

2 PRELIMINARIES AND FORMULATION (Tuv=u) = (AU).v—w, wekw, @)

which is known as a strongly nonlinear quasi
Let H be a real Hilbert space whose inner product andvariational inequality problem (SNQVIP), studied by
norm are denoted by(.,.) and||.|| respectively. Let K be  Siddiqi and Ansari3].
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(c) If m=0, that isK(u) = K, then (1) is called a It is obvious that many classes of variational
nonlinear variational inequality, considered by Nodj: [ inequalities can be considered as special cases of the

(d) If m=0, that isK(u) = K, and K = H, then  general quasi variational inequality (1).
problem (1) reduces to findinge H such that

(Tu—A(u),g(v)) = 0, for all We need the following concepts and well-known

g(v) e H, results:

which is known as the weak formulation of the odd
order boundary value problems, see Ciarlet et.5l. [ Lemma 2.1 Let K(u) be a closed convex set i.

Il If A= 0, then Then, for a giverz € H, u € K(u) satisfies the inequality

(a) Inequality (1) is equivalent to findinge K(u), and U—zv—t) > 0w e K(U)
if and only if u= Pz whereFy) is the projection
(Tug(v) —g(u)) =20,vveH:g(v) eK(u), (4)  of H onto the closed convex sk{u) in H.

Recently Noor et. al] discussed (4) as a special case  Lemma 2.2 The mappind is nonexpansive, that is,
. Also (4) can be used to study odd order and

nonsymmetric abstacle, unilateral and equilibrium P (u) — B (V)| < [Ju—Vv]||,Yu,veH.
problems and other problems of pure and applied
sciences. The third-order implicit obstacle boundary &alu Lemma 2.3.If K (u) = m(u)+K andK ¢ H is a closed

problem of findingu such that convex subset, then for amyv € H, one has
—u” > f(x) on Q=101 (5) P (w (V) = m(u) + Rk (v—m(u))
u>M(xu) on Q=101 Definition 2.1. An operator T: H — H is said to be
" i) strongly monotone, if there exists a constant- 0
[—u = f(X)][u=M(x,u)] =0 on Q=1[0,1] such that

u0) =0, u(0)=0, u(1)=0

2 .
wheref (x) is a continuous function arid (x,u(x)) is (Tu=Twvu-v) > afju—Vv|[Yu,ve H;

the obstacle function, is considered and studied by Noor i) jpschitz continuous if there exists a constgnt- 0
et. al.in the framework of variational inequality approach gych that
in [6].

(b) If m= 0, inequality (1) takes the form [Tu—TW| < Bllu—Vv||,Yu,ve H.

The implicit projection operator P, is not
nonexpansive. We shall assume that the implicit
projection operatorP, satisfies the Lipschitz type
continuity, which plays an important role in the existence
theory and in developing numerical methods for solving
(GNQVIP) (1) [6]. Assume that the implicit projection

(Tu,g(v) —g(u)) >0,V e H :g(v) €K, (6)

which is called a general variational inequality
problem, introduced and studied by No@t.[
(c) If g(v) = v, inequality (1) is equivalent to finding

K(u), and g -
ueK(u), an operatorf ) satisfies the condition
<TU,V—g(U)> ZO,VVG K(U), (7)
which is known as a general quasi variational [Peyw—Feww]| < vflu=vil,vuvwweH,  (10)
inequality, introduced by Noo®]. wherev > 0 is a positive constant.
(d) If m=0, andg(v) = v, inequality (1) takes the form Problem (1) is equivalent to finding
ueH :g(u) € K(u) € such that
<TU,V—g(U)> 207VV€ Kv (8)
P
which is called a general variational inequality 0€ Tu—A(U) + Ny (9(u), (11)
problem, introduced and studied by Nodj [and Isac whereNP, (g(u)) denotes the normal cone Kf{u) at
[20). K (u

g(u). Problem (11) is called the quasi-variational inclusion
problem associated with quasi-variational inequality. (1)
(Tuv—u) >0, WeK, ) Thi_s implies that the variational inequality (1) is equixal
to finding a zero of the sum of two monotone operators
Problem (9) is called a variational inequality, which (11). This equivalent formulation is the core of this paper
was studied by Hartman and StampaccHid],[see also since it uses the projection operator technique for solving
Lions and Stampacchid 2] and Stampacchidalf]. the general nonlinear quasi variational inequality (1).

. 1f A=0,m=0,g=1, then (1) takes the form
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3 ITERATIVE METHODS where we have used the fact thgat! exists. Equation
(15) is called the general implicit Wiener-Hopf equation.

In this section, we establish the equivalence between théf g=1 andK(u) =K, then one can obtain the original

variational inequality (GNQVIP) (1) and the fixed point Wiener-Hopf equations, which are mainly due to S|

problem using the projection operator technique. Now we use Lemma 3.1 to establish the equivalence
between problems (1) and (15) which is the main

Lemma 3.1 uc H :g(u) € K(u) is a solution of the ~motivation behind the next result.
general quasi variational inequality (1) if and onlyuit

H :g(u) € K(u) satisfies the relation Lemma 3.2. The general implicit Wiener-Hopf
equation (15) has a solution € H, if and only if, the
g(u) = P (u)[9(u) — pTu+ pA(u)], (12)  general nonlinear quasi-variational inequality problem

whereP ) is the projection operator onté(u) and (GNQVIP) (1) has a solution & K(u), provided

p > 0is a constant. 1
; ; u=g Puz
Proof. One can do the proof by invoking Lemma2.1. (u)

From Lemma 3.1, one can infer that the general z=g(u)— p(Tu—A(u))
nonlinear variational inequality (1) is equivalent to the ’
fixed point problem (12), and consequently formulation  where Py, is the projection ofH onto the closed
(12) can be used to obtain an approximate solution of (1onvex seK (u)
by an iterative algorithm. The fixed point problem (12) is
used to suggest the following iterative methods for
solving the (GNQVIP) (1).

Proof. Letu e H : g(u) € K(u) be a solution of (1).
Then, form Lemma 3.1, one obtains

! — o(Tu—
3.1 Projection Iterative Method U=0" FwloW —p(Tu-AW)

Let
Relation (12) can be written as follows z=g(u) — p(Tu—A(u)),

Then, one has
U= u+an{—g(u) +Fcw[9(u) — pTu+pA(u)[}, (13)

u=g "Rz

wherea, € [0,1],Vn > 0.

Equation (13) is used to suggest the following and
Algorithm

Algorithm 3.1. For a given @ € H, find the z=Pwz—pTg "Pwz+PAG P2,
approximate solutionjl ; by the iterative scheme

that is
Un+1 = Un+0n{—9(Un) +Pc(uy) [9(Un) — 0T th +PA(Un) ]}, 9 9 9
(14) P Qkwz+T9 Fwz=Al PFw2-

whereay, € [0,1],Vn > 0.
This shows thaz € H is a solution of (15) and the
converse is also truel.

3.2 Wiener-Hopf Equations Technique
Algorithm 3.2. For a given 3 € H, find the

Here we consider the problem of solving the generalapproximate solutionz1 by the iterative scheme
implicit Wiener-Hopf equations. To be more precise, let
Pk be the projection oH onto the clqsed convex set 9(Un) = Pk (uZn:n = 0,1,2,... (16)
K(u) and Qg = | — Py, wherel is the identity
operator. For given nonlinear operatoii§ A, g, consider
the problem of finding € H such that

Znp1 = (1_ an)zn + an[g(un) - pTLh + pA(Un)], n= Ov 17(27 )

17
Tg "Rzt P Quuz=Ag "Fwd), (15) where 0< ap < 1, foralln > 0.
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4 CONVERGENCE THEOREMS

< |lun—u— —
In this section we shall discuss the convergence criteria of < [lun = U= an(g(t) —g(W)] (19)
the Algorithms 3.1 and 3.2. +20U [[up — U
+an [[un — u—(g(un) —g(u))|
The following Lemma will be needed in the proof of +an|[un—Uu—p(Tu —Tu)||
Theorem 4.1. +p [|A(Un) — A(U) ||

from Lemma 2.3 and the Lipschitz continuity of, one
Lemma 4.1.[15] Letn ando be positive scalars with |46 Ipschitz Inuity

n <o. Then for alla € [0,1],

1-2a+otal < (1-atayi-zror). W Aol = Ime) s R mi)
— P (w—m(u))||
< 2[[m(Un) —m(u)||
< 20||un —ull,

Theorem 4.1. Let the operators Jg: H — H be Yu,un € H,

strongly monotone with constant&r > 0,n > 0

respectively, and Lipschitz continuous with constante wit ~ Wherew = g(un) — pT U, + PA(Un).

B > 0,0 > 0 respectively. Suppose that the operators

A, m are Lipschitz continuous with constapts- 0,u > 0 from the strong monotonicity and Lipschitz continuity
respectively. If (10) holds and there exists a constantof g, we have

p > O such that

_u— _ 2
t(p) < 1—2v—2y/1—2n+ 02 (18) [[un —u—an(g(un) —g(u)[” <

Hun*U”Z*zan(g(Un)*Q(U)v —u)+ad]|g(un) — g(u)| 2

_ 2.2\ I — 112
t(p) = \/1—2ap + B2p2+yp <(1-2apn+a;0°)||un—ul|

and

where

and a, € [0,1], Yn >0, S, o0n = oo, then the
approximate solution y obtained from Algorithm 3.1 L _ <
converges to a solution@H : g(u) € K(u) satisfying the un (9(un) —g(W)] =
general nonlinear quasi-variational inequality problem Hun—u|| — (g(un) — g(u),Uun—u) + [|g(un) — g(u)| |2

).

Proof. Let ue H :g(u) € K(u) be a solution of

< (1-2n+0?)||un—ulf*.
(GNQVIP)(1). Then, From (13)and (14), we have (20)

from Lemma 4.1 we have

[[Un+1 = ull =[un — U= an(g(un) — g(u))

i {Pk(un 8(Un) =~ PTth - PA(Un)] U~ n(9(un) ~ 9(u) | < (21— o+ any/1-21 1-02)
—Plg(u) — pTu+pAU)}||

[[un —uf|-
(21)
Similarly from the strong monotonicity and Lipschitz
< [[un —u—an(g(un) —g(u))|| continuity of T, One obtains
+0n|Pe () [9(Un) — 0Tt + pA(Un )]
—Plg(u) - PTU+PA(U)]H lun —u—p(T (Un) = T (W))[| < [Jun— [~
< [[un — U — an(g(un) — g(u))]| P (T (Un) =T (u),Un —u)
+0hn[P(un) [9(Un) — pTUn+pA(un)] +P2|[T (un) — T(u)[|?
—F([9(Un) = pTtn + PA(Un )|
+0n[Py(w[9(Un) — P T th + pA(Un) < (1—2ap+ B%p?)||ur — ul?
—Px(w)[9(u) — pTu+ pA(u) || (22
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from (19),(21), (22), (23), and using the Lipschitz
continuity of A, we have
1Z041—2 < (1—an)[|z0 -7
+ain [[un —u— (g(un) —g(u))|

lUpr1—ul| < {1—an+any/1—-2n+02
+20pU + apy/1—2n — 0?2

+any/1—2ap + B2p2

+anyp} [lun —ul|

<{l-an(1-2v/1-2n+0%2-2v

—\/1=2ap+B%p%—yp}|lun—u]

<{l-an(l-2v-2y/1-2n+02—
[[Un —u
= (1—anB)[un—

n
< [1(1—ai6)|uo—ul
[t
where 6 =1—-2v —2,/1-2n+02—t(p)
V1-2ap+B2p+yp

From (18), it follows tha® > 0, and since 3 _q 0 =
0 we havenLin{ﬂon(l— a;i8)} = 0, Consequently the

sequencégu,} converges strongly to € H : g(u) € K(u).
This completes the proail

ull

and t(p) =

Now we shall prove the convergence of the iterative
scheme of Algorithm 3.2.

Theorem 4.2.Let T ,g be strongly monotone with
constant a > 0 ,n > 0 respectively, and Lipschitz
continuous with constang > 0,0 > 0 respectively. Let
the operators Am are Lipschitz continuous with constant
y> 0,u > 0 respectively. If (10) holds and there exists a
constantp such that (18) holds andy € [0,1], Y1n> 0 ;

Z on = o, then the approximate solution, obtained

from Algorithm 3.2 converges to a solution &2H
satisfying the general implicit Wiener-Hopf equation
(15).

Proof. Let ze H be a solution of (15). Then, using
Lemma 4.2, we get

= (1—an)z+an{g(u) — p(Tu—A(u))}, (23)
where 0< a, < 1.

from (17) and (24),0ne has

LICE

+0n[un— U~ p(Tth —TU)|
+anp [|A(un) —A(U)||
Since the operator§,g are strongly monotone with
constanta > 0,n > 0 and Lipschitz continuous with
constant8 > 0,0 > 0, and using the Lipschitz continuity

of the operatorA with constanty > 0, it follows from
(21), (23) that

[Zn+1 =2 < (1—an) [z -2

+an (\/1—2n+o2+\/172pa+p2B2+py)

[[un —

from (10), (20), (21) and the fact thatu) =
we have

ull

Pcwz

[[un — U]} = [|tun — u— (9(un) — 9(U)) + (Pe(un 0 — Pr(w)2) |
< [lun—u— (g(tn) — gl + || (P ey 20 — P 2|
+ | (P u 2= P2 ||
< V/I-20+ 02 tn—l| + 20— 2 + 20 |un — U]
Jun—ul| < L 27|
" T —2v—1-2n+0?)
< 2l

wherek=1—-2v0 — y/1—2n + 02,

Now (25) can be written as

Z011 =2 < (1—an) 20— 2]

[of
+?" <1—2u —k+ \/1—2pa+p2132+PV) |z — 2]
<(1-an)llza =2+ on@l[za— 2|
where

Q= % <1—2u—k+\/1—2pa+p2[32+py>

From (18), we see that < 1 and consequently
[Z011—72|| < [( —(1-9@)an]l|z.—Z|

<[l

Sincez oy diverges, and + ¢ > 0, it follows that
n=0

—(1-ailln—-2

(1— @)a;] = 0. Consequently the sequence

{z,} convergences strongly to in H satisfying the

general implicit Wiener-Hopf equation (15).
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