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Abstract: In this paper, we generalize a known theorem dealing with|C,1|k summability factors to the|C,α ,β |k summability factors
of infinite series. This theorem also includes some known and new results.
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1 Introduction

A positive sequence(bn) is said to be an almost increasing
sequence if there exists a positive increasing sequence(cn)
and two positive constantsA andB such thatAcn ≤ bn ≤
Bcn (see [1]). Let ∑an be a given infinite series. We denote
by tα ,β

n thenth Ces̀aro mean of order(α,β ), with α +β >

−1, of the sequence(nan), that is (see [3])

tα ,β
n =

1

Aα+β
n

n

∑
v=1

Aα−1
n−v Aβ

v vav, (1)

where

Aα+β
n = O(nα+β ), Aα+β

0 = 1 and Aα+β
−n = 0 f or n> 0.

(2)
The series∑an is said to be summable|C,α,β |k, k ≥ 1,
if (see [4])

∞

∑
n=1

1
n
| tα ,β

n |k< ∞. (3)

If we takeβ = 0, then|C,α,β |k summability reduces to
|C,α |k summability (see [5]).

2 The known result

Theorem A ([ [7]). Let (ϕn) be a positive sequence and
(Xn) be an almost increasing sequence. If the conditions

∞

∑
n=1

n
∣

∣∆ 2λn
∣

∣Xn < ∞, (4)

|λn|Xn = O(1) as n→ ∞, (5)

ϕn = O(1) as n→ ∞, (6)

n∆ϕn = O(1) as n→ ∞, (7)

n

∑
v=1

|tv|
k

vXk−1
v

= O(Xn) as n→ ∞ (8)

are satisfied , then the series∑anλnϕn is summable|C,1|k,
k≥ 1.

3 The main result

The aim of this paper is to generalize Theorem A in the
following form.
Theorem.Let (ϕn) be a positive sequence and(Xn) be an
almost increasing sequence. If the conditions (4), (5), (6)
and (7) are satisfied and the sequence(wα ,β

n ) defined by

wα ,β
n =







∣

∣

∣
tα ,β
n

∣

∣

∣
, α = 1,β >−1

max1≤v≤n

∣

∣

∣
tα ,β
v

∣

∣

∣
, 0< α < 1,β >−1

(9)

satisfies the condition
n

∑
v=1

(wα ,β
v )k

vXk−1
v

= O(Xn) as n→ ∞, (10)

then the series∑anλnϕn is summable|C,α,β |k, 0< α ≤
1, (α +β −1)> 0 andk≥ 1.
We need the following lemmas for the proof of our theorem.

Lemma 1 ( [2]). If 0 < α ≤ 1, β >−1 and 1≤ v≤ n, then

|
v

∑
p=0

Aα−1
n−pAβ

pap |≤ max
1≤m≤v

|
m

∑
p=0

Aα−1
m−pAβ

pap | . (11)
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Lemma 2 ( [6]). Under the conditions (4) and (5), we have

nXn |∆λn|= O(1) as n→ ∞, (12)
∞

∑
n=1

Xn |∆λn|< ∞. (13)

3 Proof of the theorem

Let (Tα ,β
n ) be thenth (C,α,β ) mean, with 0< α ≤ 1 and

β >−1, of the sequence
(nanλnϕn). Then, by (1), we have that

Tα ,β
n =

1

Aα+β
n

n

∑
v=1

Aα−1
n−v Aβ

v vavλvϕn. (14)

Thus, applying Abel’s transformation first and then using
Lemma 1, we have that

Tα ,β
n =

1

Aα+β
n

n−1

∑
v=1

∆(λvϕn)
v

∑
p=1

Aα−1
n−pAβ

p pap

+
λnϕn

Aα+β
n

n

∑
v=1

Aα−1
n−v Aβ

v vav,

=
1

Aα+β
n

n−1

∑
v=1

(λv∆ϕv+ϕv+1∆λv)
v

∑
p=1

Aα−1
n−pAβ

p pap

+
λnϕn

Aα+β
n

n

∑
v=1

Aα−1
n−v Aβ

v vav.

|Tα+β
n | ≤

1

Aα+β
n

n−1

∑
v=1

|λv∆ϕv||
v

∑
p=1

Aα−1
n−pAβ

p p ap|

+
1

Aα+β
n

n−1

∑
v=1

|ϕv+1∆λv||
v

∑
p=1

Aα−1
n−pAβ

p p ap|

+
|λnϕn|

Aα+β
n

|
v

∑
v=1

Aα−1
n−v Aβ

v vav|

≤
1

Aα+β
n

n−1

∑
v=1

Aα+β
v wα ,β

v |λv||∆ϕv|

+
1

Aα+β
n

n−1

∑
v=1

Aα+β
v wα ,β

v |ϕv+1||∆λv|

+|λn||ϕn|w
α ,β
n

= Tα ,β
n,1 +Tα ,β

n,2 +Tα ,β
n,3 .

To complete the proof of the theorem, by Minkowski’s
inequality, it is sufficient to show that

∞

∑
n=1

n−1|Tα ,β
n,r |k < ∞, f or r = 1,2,3.

Whenk> 1, we can apply Ḧolder’s inequality with indices
k andk′, where1

k +
1
k′ = 1, we get

m+1

∑
n=2

n−1|Tα ,β
n,1 |k ≤

m+1

∑
n=2

n−1(Aα+β
n )−k×

{

n−1

∑
v=1

Aα+β
v wα ,β

v |∆ϕv||λv|

}k

= O(1)
m+1

∑
n=2

1

n1+(α+β )k

n−1

∑
v=1

(vα+β )k(wα,β
v )k|∆ϕv|

k|λv|
k

{

n−1

∑
v=1

1

}k−1

= O(1)
m+1

∑
n=2

1

n2+(α+β−1)k

n−1

∑
v=1

v(α+β )k(wα ,β
v )k|λv|

k 1
vk

= O(1)
m

∑
v=1

v(α+β )k(wα ,β
v )kv−k|λv|

k
m+1

∑
n=v+1

1

n2+(α+β−1)k

= O(1)
m

∑
v=1

v(α+β )k(wα ,β
v )kv−k|λv|

k
∫ ∞

v

dx

x2+(α+β−1)k

= O(1)
m

∑
v=1

(wα ,β
v )k|λv||λv|

k−1 1
v

= O(1)
m

∑
v=1

(wα ,β
v )k|λv|

v Xk−1
v

= O(1)
m−1

∑
v=1

∆ |λv|
v

∑
r=1

(wα ,β
r )k

r Xk−1
r

+O(1)|λm|
m

∑
v=1

(wα ,β
v )k

v Xk−1
v

= O(1)
m

∑
v=1

|∆λv|Xv+O(1)|λm|Xm = O(1), m→ ∞

by virtue of the hypotheses of the theorem and Lemma 2.
Again, we get that

m+1

∑
n=2

n−1|Tα ,β
n,2 |k ≤

m+1

∑
n=2

n−1(Aα+β
n )−k×

{

n−1

∑
v=1

Aα+β
v wα ,β

v |ϕv+1||∆λv|

}k

= O(1)
m+1

∑
n=2

1

n1+(α+β )k

{

n−1

∑
v=1

vα+β (wα ,β
v )|∆λv|

}k

= O(1)
m+1

∑
n=2

1

n1+(α+β )k

n−1

∑
v=1

v(α+β )k(wα ,β
v )k|∆λv|

Xk−1
v

×

{

n−1

∑
v=1

Xv|∆λv|

}k−1

= O(1)
m+1

∑
n=2

1

n1+(α+β )k

n−1

∑
v=1

v(α+β )k(wα ,β
v )k|∆λv|

Xk−1
v

= O(1)
m

∑
v=1

v(α+β )k(wα ,β
v )k|∆λv|

Xk−1
v

m+1

∑
n=v+1

1

n1+(α+β )k

= O(1)
m

∑
v=1

v(α+β )k(wα ,β
v )k|∆λv|

Xk−1
v

∫ ∞

v

dx

x1+(α+β )k

= O(1)
m

∑
v=1

v|∆λv|
(wα ,β

v )k

vXk−1
v

= O(1)∑m
v=1 ∆ (v|∆λv|)∑v

r=1
(wα,β

r )k

rXk−1
r

+O(1)m|∆λm|∑m
v=1

(wα,β
v )k

vXk−1
v

= O(1)∑m−1
v=1 v|∆ 2λv|Xv+O(1)∑m−1

v=1 Xv|∆λv|+O(1)m|∆λm|Xm
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= O(1), as m→ ∞,

by hypotheses of the theorem and Lemma 2. Finally, as in
Tα ,β

n,1 , we have that

m

∑
n=1

n−1|Tα ,β
n,3 |k =

m

∑
n=1

n−1|λn ϕn wα ,β
n |k

= O(1)
m

∑
n=1

(wα ,β
n )k|λn|

nXk−1
n

= O(1), as m→ ∞.

by virtue of the hypotheses of the theorem and Lemma
2. This completes the proof of the theorem. It should be
noted that, if we takeβ=0 andα=1, then we get Theorem
A. If we take β=0, then we get a result concerning the
|C,α |k summability factors of infinite series. Also, if we
takek= 1 andβ = 0, then we get a new result dealing with
the|C,α | summability factors of infinite series.
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