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Abstract: We give a new construction of the extended binary Golay code. Therootien is carried out by taking the Gray image of
a self-dual linear code over the rify= F» + UF> + VIF> + U, of length 6 and size’2. Writing a typical generating matrix of the form
[13]A], with A being a 3x 3 matrix overR, and finding some dependencies among the entrids ok are able to set a general form
for the generating matrices of self-dual codes of length 6. Using spe@as properties of elements Bf we end up with a family of
generating matrices all of which give us the extended binary Golay ¥ge@lso prove the minimum distance property analytically.
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1 Introduction able to find a family of generating matrices all of which
result in the extended binary Golay code.

We then give an analytical proof for the minimum
The binary Golay code is a perfect code with parameterslistance of the class of codes that we consider in section
[23/12,7], and was first introduced by Golay iB][ By 4,
adding a parity check to the Golay code, the extended We finish with some remarks and possible directions
binary Golay code is obtained. The extended binaryfor future work.
Golay code is a self-dual Type Il optimal code with
parameterg24,12 8] and is unique up to equivalence.
The extended binary Golay code has received a2 Self-dual codes oveilf, + UFs + VIFo + uvFs
considerable attention by researchers and many different

constructions have been introduced. For some of thesost of what follows can be found ir8[and [9]. The ring
constructions we refer t@], [7], [2]. R = IF> + ulF, + VIF> 4 uvF; is defined as a characteristic

2 ring subject to the restrictiong = v2 = 0 anduv = vu.

In this work, we give a different construction than the Note thatR is not a chain rina. but its ideal N iv b
ones mentioned above. We consideraIargeralphabet,i.e.Oe airis notacha g, butits ideals can easlly be

the ringR = IF2 + U, + VIF2 + uviF, which is a non-chain described as
Frobenius ring. Self-dual codes over rings have been{0} C I, = uv(R) = {0,uv} C Iy, ly,lysy Cluy C 11 =R
studied quite extensively, viz1], [4]. Self-dual codes (2.1)
over the ringR were studied in §]. In that work, the  where
extended Golay was obtained frofby a brute search.
But, here we use a more systematic approach and the rich v = U(R) = {0,u,uv,u+uv},
algebraic structure of the ring to find a large family of Iv =Vv(R) = {0,v,uv,v+ uv},
generating matrices all of which lead to the extended |, , = (u+V)(R) = {0,u+V,uv,u+Vv+uv},
binary Golay code. We also find the parameters
analytically from the generating matrices ower
In section 2, we give some of the general properties ofNote thatl,y is the maximal ideal oR that contains all
the ringR, and self-dual codes ov&from [8] and [9]. the zero divisors with everything outsidlg, being a unit.
In section 3, we describe the construction. The /IS0 we have
construction reduces to finding ax3 matrix overR with
some dependencies and restrictions and using this, we are

luv = {0,u,V,u+V,uv,u+ uv,vV+ uv,u+Vv+uv}.

1if ais a unit

2 _
foranya€ R a” = {0 otherwise

2.2)
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Moreover, the ring entails the following properties The following theorem is very useful in connecting
which will later be used in our constructions: self-dual codes oveR to binary self-dual codes:

Theorem 2.5([9]) SupposeC is a self-dual linear code
overR of lengthn. Theng(C) is a self-dual binary linear
code of length 4.

Because the Gray map is distance preserving, we get
the following corollary:

Corollary 2.6. If Cis a Type | (respectively Type Il) code
and over R with parametergn, 2,d), then ¢(C) is a binary

(unit) = (xy) = xy, if X,y are non-units ~ (2.5) Type | (respectively, Type Il) code of parametéts, k, d].

Linear codes oveR of lengthn are defined as always

(non — unit) « (non — unit) = 0or uv, (2.3)

(non — unit) x (non— unit) x (non—unit) =0  (2.4)

to beR-submodules oR". 3 The Construction
By extending the notion of the Lee weight and the Gray
map from f], we define We construct the extended Golay code as the Gray image
Definition 2.1. ¢ : R" — F4", which is given by of a linear code oveR of length 6.
We start with three free generators o®ii.e. we take
p(@+ub+vc+uvd) = (a+b+c+d,c+d,b+d,d), a generating matrix of the forr® = [I3|A], whereA is a

3 x 3 matrix overR. LetC be the code generated by such
is defined to be the Gray map froR" to F3", where a matrix. Since the generators are free and linearly
a,b,c.deF). independent, we know th#E| = (16)% = 2'2, and hence

and ¢(C) is a binary linear code with parametdg, 12]. In
order to ensure th& is self-dual it is enough to show that
C is self-orthogonal. For self-orthogonality, first, the ow
of G must contain an even number of units 8, fand the
rows must be orthogonal to each other. So, each roiv of
must contain either one or three units. But it is easy to see
that in the latter case, the rows cease to be orthogonal. So
we take the matriA to be in the following form:

Definition 2.2. For any elemera+ ub+vc+uvd € R, we
definew (a+ub+vc+uvd) =wy(a+b+c+d,c+d,b+
d,d), wherewy denotes the ordinary Hamming weight for
binary vectors, to be the Lee weightaf- ub+ vc+ uvd.
Note that the units, L +u, 1+vand 14+ u+v-+uv each
have Lee weights 1 while the other unitsi; iv, 1+ u+uv,
1+v+uv, 1+ u+vhave weights 3. We will call the units
that have weight 1 to bleasic units and the others will be

labeled ason-basic units. One can quickly observe that A— ;1 il ¥2 3.1)
(basic)(basic) = basic, (non-basi¢)on-basic) = basic and yz yz xg ’ '

that (non-basicfbasic) = non-basic.

The non-zero non-units all have Lee weight 2 except\,\,herexi
uv, which has Lee weight 4. _ can be determined uniquely ovBrin terms of the other
_ From the definitions it can be deduced thalis a  gnyries by using orthogonality equations. This gives us a
linear distance-preserving map; thus we obtain theyeneral form for self-dual codes of length 6. The equations
following lemma, which will later be useful: for ys,ys andyg are given in the following:

's are units andyj's are non-unitsys,ys andys

Lemma 2.3If C is a linear code oveR of lengthn, size
2 and minimum Lee distance, then ¢(C) is a binary Y3 =X1(Y1Xe +Y2Ya) = XaXoy1 +Y2ya  (3.2)
[4n,k,d]-linear code. -

The inner product and duality can be defined next. For?Y (2.3), (2.4) and @.5). Similarly
(X1,X2, .-, Xn), (Y1, ¥2,...,Yn) € R, we define

Y5 = X1X3Y2 + Y1Ya (3.3)
< (X1,X2; s 7Xn)a (YLYZa s >Yn) >= X1y1+X2y2+ B '+XnYn
(2.6) _
where the operations are performed in the iig _ Y6 = X2X3Y4 +Y1Ya. | _(3-4)
Definition 2.4. Let C be a linear code oveR of lengthn, Now, we give some further necessary conditionsion
then we define thdual of C as to guarantee tha&t is extremal:
Lemma 3.1.For the minimum weight of to be at least 8,
Cti={ye(R" <y,x>=0, VxeC}. the non-units in the same row Afcannot be from the same

ideally, Iy, Iy+v. Consequently, rows @& cannot contain O
Cis said to be self-orthogonal@ C C*, and itis self-dual ~ Or Uv since they are common to all ideals.
if C=C*. A self-dual code oveR is said to be of Type Proof. Assume the non-units of one of the rows are in the
Il if the Lee weights of all codewords are divisible by 4, same ideal, say,. By multiplying the corresponding row
otherwise it is said to be of Type I. of G by u, a codeword of weight 4 is obtainedO
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The equations3.2), (3.3) and (3.4) force that the pairs must be of Type Il. So in order to prove thét has
{y1,¥3}, {y2,¥5} and{ys,ys} be in the same one of the minimum weight 8 all we have to do is to show that we
idealsly, Iy, ly+y. Moreovery, andy, should not be in the cannot have a weight 4 codewordGn
same ideally,ly,lysy, because if they were, this would Any codeword inC is of the formairy + asro + asrs,
mean thats andys would be in the same ideal which is wherea; € R. We have already considered the case where
impossible by Lemma 3.1. exactly one of they; is non-zero.

Lemma 3.2.For the minimum Lee weight of to be at Next we consider the case where @l are non-zero.

least 8, the unitsq must all be chosen from non-basic We have the following subcases:
units. Case 1:All aj's are units. Then all the coordinates of

§ C= 01l + Qor2 + Qar are units and consequently has
weight > 4.
Case 2:If two of the aj’s are units, then the weight of

Proof. Recall that the Lee weight of basic units is 1. So i

X1, say, were a basic unit, for the weight of the first row to

be> 8, at least one of the non-units in the first row must be . .

v, (W (uv) = 4) which is impossible by Lemma 3.10 the first thrge coor'dlnate;_s 4 and at least one of the next
To sum up, in order to get a code with minimum weight thrée coordinates is a unit and hewagc) > 4.

at least 8x’s must all be non-basic units, and withoutloss ~ ¢asé 3: In the remaining cases the first three

of generality, we can takg, € I/, = I\ {O,uv}; y, € I, =  coordinates have weight4.
v\ {0,uv} andys € I/}, = lusv \ {0, uv}. The last case to consider is when exactly two of the
We can summarize the construction in the following @i’ aré non-zero. Without loss of generality, we might
form: assumedy, az # 0. If both a; anda, are units, them has
four unit entries and one non-zero entry, so has weight
non-basic unit I I > 4. If one of them is a unit and the other a non-unit, the
A= * non-basic unit Wiy , first four coordinates have weight at least 3, and the last
* * non-basic uni coordinate cannot be zero singeandy, cannot be in the

(3.5) same ideal. The last coordinate will be a non-zero
where the entries marked withare the dependent entries non-unit and hence will have weight at least 2, forcing the
given by the equations(2)-(3.4). codeword to have weight at least 5. If bath anda, are

As an example we can give the following matrix for A: non-units, then the first three coordinate diave weight
at least 4 and the last three coordinates cannot be zero at
1+uv u v the same time by the constraints given in Lemma 3.1.
u+uv 14+uv u+v |. This completes the proof.
V4 Uv u+Vv+uv 14+ uv

Remark 3.3.Considering the general form of A obtained 5 Conclusion
in the construction, we have a total o##44-6-4-2=3072

different generating matrices in the standard form for thet,o onstruction of the extended binary Golay code over
extended binary Golay code over the ringR described in this work is quite simple since the
Remark 3.4. If we take thexs in the construction |ength of the code to consider is reduced to 6 and the
described above to be basic units, then we obtain theyumber of generators to consider is reduced to 3 with just
unique extremal Type | code of parametg4 12, 6|. one 3x 3 matrix determining the code. The special
properties of the elements of the rinB help us
understand many of the properties of the code quite
4 The Minimum Weight easily. Thus we were able to obtain a class of generating
matrices all of which lead to the extended binary Golay
We give an analytical proof that the code generated bycode. We were also able to prove that the minimum
G = [I3/A] with A described as above has minimum Lee weight of the codes obtained from the construction is 8.
weight 8. Consider the rows @b, sayri,ro,r3. First of Note that, in P], we gave a linear code ov& whose
all, wy_(rj) = 8 fori = 1,2, 3. To look at the multiples of binary image is equivalent to the extended binary Golay
the rows, take without loss of generality the first row code. However, we had obtained that code by just a brute
ri = [1,0,0,x1,y1,Y2] wherex; is a non-basic unit and search, and we just gave that as an example without
y1 € I, andy, € I|. If ais a basic unit, therax; is @  mentioning any of the algebraic structure that we used in
non-basic unit andy; anday, stay in the same ideals as this paper. We should also mention that the construction
before sow (ar1) = 8. Similarly, if a is a non-basic unit that we give here seems promising in obtaining other
we getw (ar;) = 8. If a€ I}, thenay; = 0 butay, = uv codes with good parameters.
and hencew(ar1) = 8. Similarly, multiplying by all A possible future direction for research on this topic
non-units yield weight 8 or 12. This is true for the other could be finding a decoding and encoding algorithm for
rows as well. NowC is self-dual and all the multiples of this construction by using the properties of the i@ his
generators have weights divisible by 4, which me@ns might prove to be quite useful for engineering purposes.
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