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Abstract: A new explicit fourth-order six-stage Runge-Kutta scheme with low dispersion and low dissipation properties is developed.
This new Runge-Kutta scheme is shown to be more efficient in terms of dispersion and dissipation properties than existing algorithms
such as Runge-Kutta temporal schemes developed by Hu et al. (1996), Mead and Renaut (1999), Tselios and Simos (2005). We perform
a spectral analysis of the dispersion and dissipation errors. Numericalexperiments dealing with wave propagation are performed with
these four temporal Runge-Kutta schemes, all coupled with a nine-pointcentred difference scheme of eight order. The variation of two
types of error: the error rate with respect to theL1 norm and the Total Mean Square Error, both with respect to the CFL are obtained for
all the four different schemes and it is seen that low CFL numbers are ingeneral more effective than larger CFL numbers.
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1 Introduction

In Computational Aeroacoustics (CAA), the accurate
prediction of the generation of sound is demanding due to
the requirement for preservation of the shape and
frequency of wave propagation and generation. It is
well-known [11,23] that in order to conduct satisfactory
computational aeroacoustics, numerical methods must
generate the least possible dispersion and dissipation
errors. In general, higher order schemes would be more
suitable for CAA than the lower-order schemes since,
overall, the former are less dissipative [13]. This is the
reason why higher-order spatial discretisation schemes
have gained considerable interest in computational
aeroacoustics.

Since multidimensional finite-volume algorithms are
generally more expensive in terms of numerical cost than
finite-difference algorithms, the majority of CAA codes
are based on the finite-difference methodology [8]. The
trend within the field of CAA has been to employ
higher-order accurate numerical schemes that have in
some manner been optimized for wave propagation in
order to reduce the number of grid points per wavelength
while ensuring tolerable levels of numerical error. We
now highlight some developments made in the

construction of low dispersion and low dissipation
Runge-Kutta algorithms.

Hu et al. [14] have constructed Runge-Kutta methods
with low dispersion and low dissipation properties. They
minimize the error between the exact and the numerical
solution by determining the required coefficients.
Stanescu and Habashi [21] propose a special Runge-Kutta
scheme that can be written using minimum storage (i.e
2N-storage where N is the dimension of the first order
differential system). Mead and Renaut [19] propose a
six-stage fourth order Runge-Kutta method, in the context
of Chebyshev pseudospectral discretization, with
extended stability along the imaginary axis. Berland et al.
[9] have constructed an explicit low-storage fourth-order
six-stage Runge-Kutta scheme optimized in the Fourier
space with a large stability range.

2 Organisation of paper

In section 3, we obtain estimates for the dispersion and
dissipation errors in a six-stage fourth order Runge-Kutta
scheme containing two parameters,β5 andβ6. Section 4
highlights the salient features of some of our techniques
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of optimisation. In section 5, we use our techniques of
optimisation to find optimal values ofβ5 andβ6 and then
perform a comparison of the spectral analysis of the
dispersive and dissipative properties of the Runge Kutta
schemes constructed by Hu et al. [14], Mead and Renaut
[19], Tselios and Simos [25] with our new Runge-Kutta
scheme. In section 6, we present the results of a
numerical experiment dealing with a convective wave
equation and a non-linear spherical wave problem using
four different schemes and compare some types of errors.
Section 7 highlights the main results of this paper.

3 Dispersion and Dissipation in Runge-Kutta
Methods

We consider the time integration using Runge-Kutta
algorithms of the differential equation

∂u
∂ t

= F(u, t),

where the operator,F is a function of the unknown,u and
of time, t.
Hu et al. [14] proposed the following low-storages-stage
algorithm to compute the time integration from
un = u(n∆ t) to un+1 = u[(n+1)∆ t] namely,

un+1 = un +
s

∑
j=1

β j(∆ t) jF j(u). (1)

whereF j = F ◦ ...◦F.
This can be rewritten as

u0 = un, (2)

uρ = un +αρ ∆ tF(uρ−1), (3)

and

un+1 = us, (4)

whereρ = 1,2, ...,s.

For F(u) linear and a six-stage algorithm, we have

un+1 = un +
6

∑
j=1

6

∏
ρ=7− j

αρ(∆ t) j F j(u), (5)

whereρ = 1,2, ...,6 and∏6
ρ=7− j αρ = β j.

We note thatβ j =
1
j!

for j = 1,2,3,4.

The scheme given by (5) is detailed as follows:

u0 = un, (6)

u1 = un +α1∆ tF(u0), (7)

u2 = un +α2∆ tF(u1), (8)

u3 = un +α3∆ tF(u2), (9)

u4 = un +α4∆ tF(u3), (10)

u5 = un +α5∆ tF(u4), (11)

u6 = un +α6∆ tF(u5), (12)

and

un+1 = u6. (13)

Thus, we have the following relationships

α1 =
β6

β5
,

α2 =
β5

β4
.

We consider the usual linear test equation,ut = λu
whereλ = x+ yI. The exact solution to this test equation
can be easily obtained as

u(t +∆ t) = exp(∆ t(x+ yI)) u(t), (14)

where∆ t is the time step.

Using the notation of Albrecht [1], the Runge Kutta
solution [19] has the following form:

un+1=(1+(λk)bT e+(λk)2 bT Ae+ ...+(λk)s bT As−1e) un,
(15)

wherek = ∆ t ande = (1,1,1, ...,1) ∈ ℜs.

If β j = bT A j−1e, then we can rewrite (3) as [19]

un+1 = (1+(λk) β1+ ...+(λk)sβs) un, (16)

or

un+1 = (Ps + I Fs) un, (17)

where,

Ps = 1+ k xβ1+ k2 (x2− y2) β2+ k3 (x3−3xy2) β3+

k4(x4−6x2y2+ y4) β4+ ...,(18)

and

Fs = k yβ1+ k2 (2xy) β2+ k3 (3x2y− y3) β3+

k4 (4x3y−4xy3)β4+ k5(5x4y−10x2y3+ y5) β5+ ... (19)
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We next consider the following definition:
Definition 1 (Van Der Howen and Sommeijer [26])
The Runge Kutta scheme given by (16) is dissipative of
orderp if

exp(xk)−|Ps + IFs|= O(kp+1), (20)

and dispersive of orderq if

hy− tan−1
(Fs

Ps

)

= O(kq+1). (21)

In [26], Van Der Houven and Sommeijer consider the
case whenx = 0 (exact solution is non-dissipative). For a
fourth-order six-stage method withx = 0, P6 andF6 can be
written as

P6 = 1−β2(yk)2+β4(yk)4−β6(yk)6, (22)

F6 = yk−β3(yk)3+β5(yk)5, (23)

with β2 =
1
2

, β3 =
1
6

andβ4 =
1
24

.

The dissipation and dispersion errors can be obtained
as

EA(yk) = 1−|P6+ I F6|, (24)

and

Eφ (yk) = yk− tan−1
(F6

P6

)

. (25)

We now describe how Tselios and Simos [25] have
obtained their optimal parameters forβ5 and β6
respectively.

3.1 Approach by Tselios and Simos [25]

If we expand (24) and (25) using Taylor series, we obtain
an estimate of the dissipation and dispersion errors as [25]

EA(yk) = (yk)6
( 1

144
−β5+β6

)

+

(yk)8
(

− 1
1152

+
β5

6
− β6

2

)

+(yk)10
(

− (β5)
2

2
+

β6

24

)

+(yk)12
( 1

41472
+

(β5)
2

2
+

β5

(

− 1
144

−β6

)

+
β6

144

)

, (26)

and

Eφ (yk) = (yk)5
( 1

120
−β5

)

+(yk)7
(

− 1
336

+
β5

2
−β6

)

+(yk)9
(

− 1
5184

− β5

24
+

β6

6

)

+(yk)11
( 1

19008
+(β5)

2+β5

(

− 1
72

−β6

))

, (27)

whereEA andEφ are the dissipation and dispersion errors
respectively.

Estimates of the magnitude of the dissipation and
dispersion errors have been obtained by Tselios and
Simos [25] as follows:

|EA(β5,β6)|=
(( 1

144
−β5+β6

)2

+
(

− 1
1152

+
β5

6
− β6

2

)2

+
(

− (β5)
2

2
+

β6

24

)2
+

( 1
41472

+
(β5)

2

2
+β5 (−

1
144

−β6)+
β6

144

)2)1/2
(28)

and

|Eφ (β5,β6)|=
(( 1

120
−β5

)2
+
(

− 1
336

+
β5

2
−β6

)2

+
( 1

5184
− β5

24
+

β6

6

)2
+

( 1
19008

+(β5)
2+β5

(

− 1
72

−β6

))2)1/2
.(29)

We note that Tselios and Simos [25] minimize the
quantity, (EA(β5,β6))

2 + (Eφ (β5,β6))
2 using the

Levenberg Marquart method [20] and obtain

β5 = 0.008267383750863793

and
β6 = 0.00121166825454822479.

The coefficients proposed by Mead and Renaut [19]
areβ5 = 0.00556 andβ6 = 0.00093.
Hu et al. [14] found that the optimal values ofβ5 andβ6 are
0.00781005 and 0.0013214 respectively. They minimize
the following integral,

∫ π/2

0
|r− re|2 d(yk), (30)

where r =
un+1

un = 1 + zβ1 + ... + zs βs and

re =
u(t + k)

u(t)
= exp(k(x+ y I)).

In the following section, we describe some of our
techniques of optimisation [2,4] and in section 5, we use
these techniques to compute optimal values ofβ5 andβ6.
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4 Minimized Integrated Exponential Error
for Low Dispersion and Low Dissipation

In this section, we describe briefly the technique of
Minimized Integrated Exponential Error for Low
Dispersion and Low Dissipation(MIEELDLD) . This
technique have been introduced in Appadu and Dauhoo
[2], Appadu and Dauhoo [3]. We now give a resume of
how we have derived this technique of optimisation.
Suppose the amplification factor of the numerical scheme
when applied to the 1-D linear advection equation, given
by

∂u
∂ t

+β
∂u
∂x

= 0, (31)

is
ξ = A+ IB.

Then the modulus of the Amplification Factor,(AFM)
and the relative phase error, (RPE) are calculated as

AFM = |ξ |,
and

RPE =− 1
cw

tan−1 B
A
,

where c and w are the CFL number and phase angle
respectively.

For a scheme to have Low Dispersion and Low
Dissipation, we require

|1−RPE|+(1−AFM)−→ 0.

The quantity, |1− RPE| measures dispersion error
while (1−AFM) measures dissipation error. Also when
dissipation neutralises dispersion optimally, we have,

∣

∣

∣
|1−RPE|− (1−AFM)

∣

∣

∣
→ 0.

Thus on combining these two conditions, we get the
following condition necessary for dissipation to neutralise
dispersion and for low dispersion and low dissipation
character to be satisfied:

eldld =
∣

∣

∣
|1−RPE|− (1−AFM)

∣

∣

∣
+

(|1−RPE|+(1−AFM))−→ 0. (32)

Similarly, we expect

eeldld= exp
(∣

∣

∣
|1−RPE|− (1−AFM)

∣

∣

∣

)

+

exp(|1−RPE|+(1−AFM))−2−→ 0, (33)

in order for Low Dispersion and Low Dissipation
properties to be achieved.
The measure,eeldld denote the exponential error for low
dispersion and low dissipation. The reasons why we
prefereeldldovereldld is because the former is generally

more sensitive to perturbations [2].
We next explain how the integration process is performed
in order to obtain the optimal parameter(s).

Only one parameter involved
If the CFL is the only parameter, we compute

∫ w1

0
eeldld dw,

for a range ofw ∈ [0,w1], and this integral will be a
function of c. The optimal CFL is the one at which the
integral quantity is closest to zero.

Two parameters are involved
We next consider a case where two parameters are
involved and whereby we would like to optimise these
two parameters.

Suppose we want to obtain an improved version of the
Fromm’s scheme which is made up of a linear
combination of Lax-Wendroff (LW) and Beam-Warming
(BW) schemes. Suppose we apply BW and LW in the
ratio λ : 1−λ . This can be done in two ways.

In the first case, if we wish to obtain the optimal value of
λ at any CFL, then we compute

∫ c1

0

∫ w1

0
eeldld dw dc, (34)

which will be in terms ofλ .
The value ofc1 is chosen to suit the region of stability of
the numerical scheme under consideration while
w1 ∈ [0,1.1].

The second way to optimise a scheme made up of a
linear combination of Beam-Warming and Lax-Wendroff
is to compute theIEELDLD as

∫ w1
0 eeldld dw and the

integral obtained in that case will be a function ofc and
λ . Then a 3-D plot of this integral with respect to
c ∈ [0,c1] and λ ∈ [0,1] enables the respective optimal
values ofc and λ to be located. The optimised scheme
obtained will be defined in terms of both a CFL and the
optimal value ofλ to be used.

Considerable and extensive work on the technique of
Minimised Integrated Exponential Error for Low
Dispersion and Low Dissipation has been carried out in
Appadu and Dauhoo [2], Appadu and Dauhoo [3],
Appadu [4,5,6].
In Appadu and Dauhoo [2], we have obtained the optimal
CFL for some explicit methods like Lax-Wendroff,
Beam-Warming, Crowley, Upwind Leap-Frog and
Fromm’s schemes. In Appadu and Dauhoo [3], we have
combined some spatial discretisation schemes with the
optimised time discretisation method proposed by Tam
and Webb [23] in order to approximate the 1-D linear
advection equation. These spatial derivatives are: a
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standard 7-point and 6th-order central difference scheme
(ST7), a standard 9-point and 8th-order central difference
scheme (ST9) and optimised spatial schemes designed by
Tam and Webb [23], Lockard et al. [17], Zingg et al. [28],
Zhuang and Chen [29] and Bogey and Bailly [10]. The
results from some numerical experiments were quantified
into dispersion and dissipation errors and we have found
that the quality of the results is dependent on the choice
of the CFL number even for optimised methods, though
to a much lesser degree as compared to standard methods.
Moreover, in Appadu [2], we have obtained the optimal
CFL of some multi-level schemes in 1-D. These schemes
are high order in space and time and have been designed
by Wang and Liu [27]. We have also optimised the
parameters in the family of Third Order schemes
proposed by Takacs [22]. The optimal CFL of the 2-D
CFLF4 scheme which is a composite method made up of
Corrected Lax-Friedrichs and the two-step Lax-Friedrichs
developed by Liska and Wendroff [16] has been
computed and some numerical experiments have been
performed such as: 2-D solid body rotation test [18], 2-D
acoustics [15] and 2-D circular riemann problem [18]. We
have shown that better results are obtained when the
optimal parameters obtained usingMIEELDLD are used.

The technique of MIEELDLD has been extended
from Computational Fluid Dynamics framework to
Computational Aeroacoustics and used to construct
high-order methods [7] which approximate the 1-D linear
advection equation. Modifications to the spatial
discretization schemes designed by Tam and Webb [23],
Lockard et al. [17], Zingg et al. [28] and Bogey and
Bailly [10] have been obtained, and also a modification to
the temporal scheme developed by Tam et al. [24] has
been obtained. These novel methods obtained using
MIEELDLD have in general better dispersive properties
as compared to the existing optimised methods [7].

Since, in this work, we have estimates for the
dissipation and dispersion errors, we do not work with the
quantities,|1−RPE| and(1−AFM). Expressions for the
dissipation and dispersion errors of the six-stage
fourth-order Runge-Kutta scheme are given by (26) and
(27) respectively whereβ5 andβ6 are the two parameters.
Hence, the measure,eldld given by (32) is equivalent to

M1 =
∣

∣

∣
|Eφ |− |EA|

∣

∣

∣
+(|Eφ |+ |EA|). (35)

For dissipation to neutralise dispersion and for low
dispersion and low dissipation properties to be satisfied,
we require

M1 =
∣

∣

∣
|Eφ |− |EA|

∣

∣

∣
+(|Eφ |+ |EA|)−→ 0. (36)

From (36), we can deduce that

M2 = (|Eφ |− |EA|)2+(|Eφ |+ |EA|)2 −→ 0. (37)

Fig. 1: Plot of the metric,M1 vs Eφ vs EA

The measure,eeldldgiven by (33) is equivalent to

M3 = exp||Eφ |− |EA||+exp
(

|Eφ |+ |EA|
)

−2−→ 0.

(38)
From (38), we can deduce that

M4 = exp
(

|Eφ |− |EA|
)2

+exp
(

|Eφ |+ |EA|
)2

−2−→ 0.

(39)
We note that (36), (37), (38), (39) must be satisfied if

we require dissipation to neutralise dispersion and also
for low dispersion and low dissipation character to be
satisfied.
We next obtain 3D plots of the four measures, all vs
dispersion error vs dissipation error in Figs. (1, 2, 3, 4).
Dispersion error can be negative if there is phase lag. It
can be seen that the measure is zero only when dispersion
error and dissipation error are both equal to zero for all
the four measures.
The reason why we deriveM2 andM4 is because we use a
nonlinear programme (NLP) to compute the minimum of
a real-valued objective function. Most of the algorithms
used by NLP assume that the objective function and
constraints are twice continuously differentiable.
However, NLP will sometimes succeed even if these
conditions are not met.

5 Finding optimal values of the two
parameters in Runge-Kutta schemes

We now consider the dispersion and dissipation errors
given by (26) and (27) respectively. The integrated error
from the metric,M1 is computed as
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Fig. 2: Plot of the metric,M2 vs Eφ vs EA

Fig. 3: Plot of the metric,M3 vs Eφ vs EA

Fig. 4: Plot of the metric,M4 vs Eφ vs EA

∫ 1.1

0
||Eφ |− |EA||+ |Eφ |+ |EA| d(yk). (40)

A 3-D plot and contour plot of this integrated error vs
β5 ∈ [0,0.02] vs β6 ∈ [0,0.0015] is shown in Fig. (5) and
we can deduce that the approximate values forβ5 andβ6
are 0.008 and 0.00132 respectively.

The Integrated Error for the metric,M2 is computed as

∫ 1.1

0
(|Eφ |− |EA|)2+(|Eφ |+ |EA|)2 d(yk), (41)

and a plot of this integrated error vsβ5 vs β6 is shown
in Fig. (6). We then use optimisation function to obtain
the optimal values of β5 and β6 as
0.00813684557939976447 and
0.00136374541073363914 respectively.

A plot of the Integrated Error fromM3 vs β5 vs β6 is
shown in Fig. (7). However, we cannot locate the optimal
values of β5 and β6 accurately. It is for this reason
precisely that we define the metric,M4.

A plot of the integrated error fromM4 vs β5 vs β6 is
shown in Fig. (8) and we obtain the optimal values ofβ5
and β6 as 0.00813684556860650062 and
0.00136374541912936944.
We observe that the optimal values ofβ5 andβ6 obtained
using the metrics,M2 andM4 agree to 10 decimal places.
Hence, the values ofβ5 and β6 that we use for our new
scheme are 0.0081368456 and 0.0013637454
respectively.

5.1 Comparison of known methods with new
method

In our work, we shall takeβ5 = 0.0081368456 and
β6 = 0.0013637454. Table (1) gives values forβ5 andβ6
for four temporal Runge-Kutta schemes namely; Hu et
al., Mead and Renaut, Tselios and Simos and our new
method. We use Eqs. (26) and (27) to obtain the plots of
the dissipation and dispersion errors vsyk.

Figs. (9) and (10) shows the plot of the magnitude of
the dispersion and dissipation errors vsyk for four
temporal Runge-Kutta schemes.
With increase inyk, the magnitude of the dispersion error
increases as expected. The scheme proposed by Mead and
Renaut and Hu et al. have significantly more dispersion
error than the other two schemes. The dispersion error
from Tselios and Simos [25] is slightly smaller than the
one by Appadu foryk ∈ [0,0.8] but for yk > 0.8, the
dispersion error from Appadu is much less than the other
three schemes.
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Fig. 5: Plot of Integrated Error fromM1 vs vsβ5 vs β6.

Fig. 6: Plot of Integrated Error fromM2 vs vsβ5 vs β6.

Fig. 7: Plot of Integrated Error fromM3 vs vsβ5 vs β6.

Fig. 8: Plot of Integrated Error fromM4 vs vsβ5 vs β6.
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Fig. 9: Plot of the magnitude of the dispersion error on a
logarithmic scale vsyk ∈ [0,1.5] for some temporal discretisation
schemes.
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Table 1: Comparing the coefficients ofβ5 and β6 for the four
Runge Kutta schemes

Method β5 β6

Hu et al. [14] 0.00781005 0.00132141

Mead and Renaut [19] 0.00556 0.00093

Tselios and Simos [25] 0.0082673838 0.0012116682

Appadu 0.0081368456 0.0013637454
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Mead and Renaut
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Appadu

Fig. 10: Plot of the magnitude of the dissipation error on a
logarithmic scale vsyk ∈ [0,1.1] for some temporal discretisation
schemes.

The scheme proposed by Mead and Renaut [19] has
the largest dissipation error followed by the one proposed
by Hu et al. [14]. The scheme by Tselios and Simos,
Appadu have almost the same dissipation error for
yk ∈ [0,0.5] but for yk > 0.5, the scheme by Appadu has
significantly less dissipation error.

6 Numerical Experiments

6.1 Convective Wave Equation

We consider the following partial differential equation:

∂u
∂ t

+
∂u
∂x

= 0. (42)

At t = 0, we have a Gaussian profile,

u0 = 0.5 exp
[

−
( x

3

)2]

[25] and the domain extends

from xmin =−50 toxmax = t +50. The analytical solution

is u(x, t) = 0.5 exp
[

−
(x− t

3

)2]

.

A nine point centred difference scheme of eight order is
used for the spatial discretization which is given by

∂u
∂x

≈ 1
h

(

− 4
5
(un

i−1−un
i+1)+

1
5
(un

i−2−un
i+2)

− 4
105

(un
i−3−un

i+3)+
1

280
(un

i−4−un
i+4)

)

. (43)

Our new method is compared with
(i) the fourth-order six-stage Runge-Kutta scheme of Hu
et al [14].
(ii) the fourth-order six-stage Runge-Kutta scheme of
Mead and Renaut [19].
(iii) the fourth-order six-stage Runge-kutta scheme of
Tselios and Simos [25]

In all four cases, we have used a nine point centred
difference scheme of eight order for the spatial
discretization scheme.

Our aim is to obtain values of the error rate with
respect to theL1-norm and the Total Mean Square Error
[22] which are computed as

Enum = h
N

∑
i=1

|uc −ue|, (44)

and

1
N

N

∑
i=1

(uc −ue)
2, (45)

where uc and ue are the computed and exact values,
respectively andN is the number of spatial grid points.
The Total Mean Square Error is equivalent to the sum of
the dispersion and dissipation errors as shown by Takacs
[22]. We then plot these two types of errors vs the CFL
number and find out how these two errors vary with the
CFL number. We consider two cases namely,t = 400 and
t = 1000.

Case 1
We consider the case when time,t = 400, and spatial step,
h = 0.5. Since, CFL= k/h, andk = 400/nmax, then

CFL = 800/nmax, (46)

wherenmax is the number of time steps.
We use some CFL numbers to satisfy (46) such thatnmax
is an integer. Oncenmax has been determined, we can find
the time step,k. The CFL numbers we consider and the
corresponding values ofnmax and k are shown in Table
(2).

Fig. (11) shows the variation of the error rate vs CFL
for four numerical schemes. The general tendency is that
the error is not much affected by the choice of the CFL
number except in the case of Mead and Renaut. We have
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Table 2: Some values of CFL,nmax andk for time, t = 400 and
spatial step,h = 0.5

CFL nmax k

0.1 80000 0.05

0.2 4000 0.1

0.4 2000 0.2

0.64 1250 0.32

0.80 1000 0.40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Fig. 11: Error rate as a function of CFL, using Runge-Kutta
scheme of Hu et al′+′, Mead and Renaut ’o’, Tselios and Simos
′
�

′ and our new scheme, New′∗′, all combined with a nine-
point central difference scheme of eight order at time,t = 400
and spatial step,h = 0.5.

considered five CFL numbers namely 0.1, 0.2, 0.4, 0.64
and 0.8. At CFL 0.1, 0.64 and 0.8, our scheme is the most
effective one. At CFL 0.4, the schemes by Tselios and
Simos and Hu et al. are the most effective.
Fig. (12) shows the variation of the Total Mean Square
Error vs the CFL number. The general tendency is that the
error increases with increase in CFL number for the
scheme by Mead and Renaut and Hu et al. Our scheme
followed by Tselios and Simos are the most effective ones
over the five values of CFL used.

Case 2
We consider the case when time,t = 1000 andh = 0.5.
Values of CFL and the corresponding values ofnmax andk
are shown in Table (3). The difference is since the time
has now been multiplied by 2.5, therefore the values of
nmax are multiplied by 2.5, as compared to the values in
Table (2).
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Fig. 12: Total Mean Square Error as a function of CFL, using
Runge-Kutta scheme of Hu et al′+′, Mead and Renaut ’o’,
Tselios and Simos′�′ and our new scheme, New′∗′, all
combined with a nine-point central difference scheme of eight
order at time,t = 400 and spatial step,h = 0.5.

Table 3: Some values of CFL,nmax andk for time,t = 1000 and
spatial step,h = 0.5

CFL nmax k

0.1 20000 0.05

0.2 10000 0.1

0.4 5000 0.2

0.64 3125 0.32

0.80 2500 0.40
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Fig. 13: Error rate as a function of CFL using Runge-Kutta
scheme of Hu et al′+′, Mead and Renaut′o′, Tselios and Simos
′
�

′ and our new scheme, New′∗′, all combined with a nine-point
central difference scheme of eight order at time,t = 1000 and
spatial step,h = 0.50.
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Fig. 14: Total Mean Square Error as a function of CFL using
Runge-Kutta scheme of Hu et al′+′, Mead and Renaut′o′,
Tselios and Simos′�′ and our new scheme, New′∗′, all
combined with a nine-point central difference scheme of eight
order at time,t = 1000 and spatial step,h = 0.50.

Fig. (13) shows the variation of the error rate vs CFL.
The values of the error rate are much affected by the CFL
number in the case of Runge-Kutta scheme proposed by
Mead and Renaut. At CFL 0.1, 0.64 and 0.8, our
proposed scheme is better. At CFL 0.4, the scheme by
Tselios and Simos is slightly better. Over the five CFL
numbers, our scheme is generally the best one followed
by the scheme of Tselios and Simos.
Fig. (14) shows the variation of the Total Mean Square
Error vs CFL. The values of the Total Mean Square Error
are much affected by CFL in the case of Runge Kutta
schemes by Hu et al., Mead and Renaut.

6.2 Spherical Wave Problem [12]

We consider the following problem

∂u
∂ t

+
∂u
∂ r

+
u
r
= 0, (47)

where 5≤ r ≤ 315 andt > 0.

The initial condition isu(r,0) = 0 for 5≤ r ≤ 315.

The boundary condition isu(5, t) = sin(πt/3) for
0< t < 300.

The analytic solution is given by

u(r, t) = 0 for r > t + 5 and

u(r, t) =
5
r

sin(π(t − r+5)/3) for r ≤ t +5.

Since we have found from section 6.1 that low CFL
numbers are preferred to minimise both dispersion and

dissipation errors, we shall use a small CFL for this
experiment, say 0.1. We perform the numerical
experiment at time,t = 300 at CFL=0.1 with time step
0.02 and spatial step 0.2. The error rate with respect toL1
error and the Total Mean Square Error are compared in
Table (4). The results are shown in Fig. (15). Once again,
it is seen that the scheme by Appadu is the best one.
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Fig. 15: Solution of the spherical wave problem with three
temporal Runge-Kutta schemes, all coupled with with a nine-
point centred difference scheme of eight order at time,t = 300
with spatial step 0.2 and time step 0.02.

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1, 57-68 (2014) /www.naturalspublishing.com/Journals.asp 67

Table 4: Spherical wave problem with spatial step 0.2 and time
step 0.02

Method Error rate -L1 error Total Mean Square Error

Hu et al. 3.081115 3.863205×10−4

Tselios and Simos 3.081116 3.863204×10−4

Appadu 3.081114 3.863198×10−4

7 Conclusion

We have performed a spectral analysis of the dispersion
and dissipation errors of four temporal Runge-Kutta
schemes coupled with a nine-point centred difference
scheme of eight order and seen that our proposed scheme
has the best dispersive and dissipative character. Based on
the plots of the error rate of theL1 norm and the Total
Mean Square Error vs CFL number for the convective
wave equation, we conclude that our proposed scheme is
better than the other three schemes whenh is chosen as
0.50 at two different times,t = 400 andt = 1000. Also,
our proposed scheme is the best one for the simulation of
the spherical wave problem. These demonstrate that our
technique of optimisation is effective to construct low
dispersion and low dissipation Runge-Kutta schemes.
Secondly, we observe that the general trend is that low
CFL numbers are more efficient than larger CFL numbers
in the case of optimized schemes as opposed to standard
schemes.
One possible extension of this work is to take stability
into consideration when we optimise the parameters
which control the grade and balance of dispersion and
dissipation. We will aim to construct low dispersion and
low dissipation Runge-Kutta schemes with large range of
stability.

Nomenclature
I =

√
(−1)

k: time step
h: spatial step
n: time level
β : advection velocity
c: CFL/Courant number

c =
βk
h

w: phase angle in 1-D
w = θh
RPE: relative phase error per unit time step
AF : amplification factor
AFM = |AF |
LDLD: Low Dispersion and Low Dissipation
IEELDLD : Integrated Exponential Error for Low
Dispersion and Low Dissipation
MIEELDLD : Minimised Integrated Exponential Error
for Low Dispersion and Low Dissipation.

Acknowledgement

This work was funded through the Research Development
Programme of the University of Pretoria. The period of
funding is from January 2012 to January 2014.
The author wishes to thank the anonymous referees for
their valuable comments and suggestions which have
helped to improve on the work.

References

[1] P. Albrecht, The Runge-kutta Theory in a nutshell, SIAM
Journal of Numerical Analysis,33, 1712 (1996).

[2] A. R. Appadu and M. Z. Dauhoo, The Concept of Minimised
Integrated Exponential Error for Low Dispersion and Low
Dissipation, International Journal for Numerical Methods in
Fluids,65, 578–601 (2011).

[3] A. R. Appadu and M.Z. Dauhoo, An Overview of Some High
Order and Multi-Level Numerical Schemes in Computational
Aeroacoustics, Proceedings of the World Academy of
Science, Engineering and Technology,38, 365-380 (2009).

[4] A. R.Appadu, Some Applications of the Concept of
Minimized Integrated Exponential Error for Low Dispersion
and Low Dissipation Schemes, International Journal for
Numerical Methods in Fluids,68, 244-268 (2012).

[5] A. R. Appadu, Comparison of Some Optimisation techniques
for Numerical Schemes Discretising Equations with
Advection Terms, International Journal of Innovative
Computing and Applications,4, (2012).

[6] A. R. Appadu, Investigating the Shock-Capturing Properties
of Some Composite Numerical Schemes for the 1-D Linear
Advection Equation, International Journal of Computer
Applications in Technology,43, 79-92 (2012).

[7] A. R.Appadu, The Technique of MIEELDLD in
Computational Aeroacoustics, Journal of Applied
Mathematics, (2012).

[8] G. Ashcroft and Xin Zhang, Optimized Prefactored Compact
Schemes, Journal of Computational Physics,190, 459-477
(2003).

[9] J. Berland, C. Bogey and C. Bailly, Low-dissipation and low-
dispersion fourth-order Runge-Kutta Algorithm, Computers
and Fluids,35, 1459-1463 (2006).

[10] C. Bogey and C. Bailly, A Family of Low Dispersive
and Low Dissipative Explicit Schemes for Computing the
Aerodynamic Noise, Journal of Computational Physics,194,
194-214 (2004).

[11] J. Hardin and M.Y. Hussaini, Computational Aeroacoustics,
Springer-Verlag, New-York, Berlin, (1992).

[12] J. C. Hardin, J. R. Ristorcelli and C. K. W. Tam
(editors), ICASE/LaRC workshop on Benchmark Problems
in Computational Aeroacoustics, NASA CP 3300, (1995)

[13] R. Hixon, Evaluation of High-Accuracy MacCormack-
Type Scheme Using Benchmark Problems, NASA Contractor
Report 202324, ICOMP-97-03-1997.

[14] F. Q. Hu, M.Y.Hussaini, J.L. Manthey, Low-dissipation
and low-dispersion Runge-Kutta schemes for Computational
Acoustics, Journal of Computational Physics,124, 177-191
(1996).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


68 A. R. Appadu: Optimized Low Dispersion and Low Dissipation...

[15] C. Kim, Multi-dimensional Upwind Leapfrog Schemes
and their Applications, Dissertation in partial fulfillment of
the requirements for the Degree of Doctor of Philosophy,
Aerospace Engineering, University of Michigan. (1997).

[16] R. Liska and B. Wendroff, Composite Schemes for
Conservation Laws, SIAM Journal of Numerical Analysis,
35, 2250-2271 (1998).

[17] D. P. Lockard, K. S.Brentner and H. L. Atkins, High-
Accuracy Algorithms for Computational Aeroacoustics,
AIAA Journal,33, 246-251 (1995).

[18] Lukacova, Finite Volume Schemes For Multidimensional
Hyperbolic Systems Based On The Use Of Bicharacteristics,
Applications of Mathematics,51, 205-228 (2006).

[19] J. L. Mead, R. A. Renaut, Optimal Runge-Kutta methods
for first order pseudospectral operators, Journal of
Computational Physics,152, 404-419 (1999).

[20] D. Marquardt, An Algorithm for least-squares estimation
of non-linear parameters, SIAM Journal of Applied
Mathematics,11, 431-441 (1993).

[21] D. Stanescu and W. G. Habashi, 2N-Storage Low
Dissipation and Dispersion Runge-Kutta schemes for
Computational Acoustics, Journal of Computational Physics,
143, 674-681 (1998).

[22] L. Takacs, A Two-Step Scheme for the Advection Equation
with Minimized Dissipation and Dispersion errors, Monthly
Weather Review,113, 1050-1065 (1985).

[23] C. K. W. Tam and J. C. Webb, Dispersion-Relation-
Preserving Finite Difference Schemes for Computational
Acoustics, International Journal of Computational Physics,
107, 262-281 (1993).

[24] C. K. W. Tam, J. C. Webb and Z. Dong, A Study of the Short
Wave Components in Computational Acoustics, Journal of
Computational Acoustics,1, 1-30 (1993).

[25] K. Tselios and Simos, Runge-Kutta methods with minimal
dispersion and dissipation for problems arising from
computational acoustics, Journal of Computational and
Applied Mathematics,175, 173-181 (2005).

[26] P. J. Van Der Howen and B. P. Sommeijer, Explicit
Ruge-Kutta Nystrom methods with reduced phase errors
for computing oscillating oscillations, SIAM Journal on
Numerical Analysis,24, 595-617 (1987).

[27] Wang and Liu, A New Approach to Design High-
Order Schemes, Journal of Computational and Applied
Mathematics,134, 59-67 (2001).

[28] D. W. Zingg, H. Lomax and H. Jurgens, High-Accuracy
Finite-Difference Schemes for Linear Wave Propagation,
SIAM Journal on scientific Computing,17, 328-346 (1996).

[29] M. Zhuang and R. F. Chen, Application of High-
Order Optimised Upwind Schemes for Computational
Aeroacoustics, AIAA Journal,40, 443-449 (2002).

A. R. Appadu is
a lecturer in the Department
of Mathematics and Applied
Mathematics at the University
of Pretoria, South Africa.
He received the PhD degree
in Computational Fluid
Dynamics at the University
of Mauritius. His research
interests are in the areas

of Computational Fluid Dynamics, Computational
Aeroacoustics and Optimisation. He has published
research articles in reputed international journals in
Applied Mathematics. He is referee of some international
journals.

c© 2014 NSP
Natural Sciences Publishing Cor.


	Introduction
	Organisation of paper
	Dispersion and Dissipation in Runge-Kutta Methods
	Minimized Integrated Exponential Error for Low Dispersion and Low Dissipation
	Finding optimal values of the two parameters in Runge-Kutta schemes
	Numerical Experiments
	Conclusion

