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Abstract: A new explicit fourth-order six-stage Runge-Kutta scheme with low d&perand low dissipation properties is developed.
This new Runge-Kutta scheme is shown to be more efficient in terms adrdisp and dissipation properties than existing algorithms
such as Runge-Kutta temporal schemes developed by Hu et al. (M&#&) and Renaut (1999), Tselios and Simos (2005). We perform
a spectral analysis of the dispersion and dissipation errors. Numexigatiments dealing with wave propagation are performed with
these four temporal Runge-Kutta schemes, all coupled with a nine-gaitrted difference scheme of eight order. The variation of two
types of error: the error rate with respect to thenorm and the Total Mean Square Error, both with respect to the CFLéa@ed for

all the four different schemes and it is seen that low CFL numbers ayerieral more effective than larger CFL numbers.
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1 Introduction construction of low dispersion and low dissipation
Runge-Kutta algorithms.

In Computational Aeroacoustics (CAA), the accurate Hu et al. 14] have constructed Runge-Kutta methods

prediction of the generation of sound is demanding due to ith low dispersion and low dissipation properties. They

he requirement for preservation of the sh nd ..~ )
1Ereequeer?clzjy eof ew;veo pri());asgeati?)zo ang gter?er:ltigge Ita igminimize the error between the exact and the numerical

well-known [11,23] that in order to conduct satisfactory S?It:f'on b% d gett()—:'rmlé_nlngr the requw?dl Rc?]eﬁlclzer;tts.
computational aeroacoustics, numerical methods mus?‘cﬂeﬁf’gliﬁat caﬁ Ss vagitrt)e%pzz?na s;ﬁierﬁrr?umusg)er;i lé ?e
generate the least possible dispersion and dissipatio 9 ge (i

errors. In general, higher order schemes would be mord:}_lf'srtor:ggf Wh‘?rri N I\I/IS tr:je drlgegsli)nlmg‘ thre first order
suitable for CAA than the lower-order schemes since, erential system). Mead a enautd] propose a

overall, the former are less dissipative3]. This is the six-stage fourth order Runge-Kutta method, in the context

reason why higher-order spatial discretisation schemeQLt nthedbyfhgﬁt plsiudtc;]spi?;:trailn rd'sf(riet'éat'r?nr; d Vtv'trl]
have gained considerable interest in computationa ended stability along the Imaginary axis. beriand et al.
aeroacoustics. 9] have constructed an explicit low-storage fourth-order

six-stage Runge-Kutta scheme optimized in the Fourier

Since multidimensional finite-volume algorithms are space with a large stability range.

generally more expensive in terms of numerical cost than

finite-difference algorithms, the majority of CAA codes

are based on the finite-difference methodologl [The L

trend within the field of CAA has been to employ 2 Organisation of paper

higher-order accurate numerical schemes that have in

some manner been optimized for wave propagation inin section 3, we obtain estimates for the dispersion and
order to reduce the number of grid points per wavelengthdissipation errors in a six-stage fourth order Runge-Kutta
while ensuring tolerable levels of numerical error. We scheme containing two parametefg,and 3s. Section 4
now highlight some developments made in the highlights the salient features of some of our techniques

* Corresponding author e-maikao.Appadu@up.ac.za, biprao2@yahoo.com

© 2014 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/080106

58 NS 2 A. R. Appadu: Optimized Low Dispersion and Low Dissipation...

of optimisation. In section 5, we use our techniques of

optimisation to find optimal values @ and 3 and then ul=u"+ alAtF(uo), @)
perform a comparison of the spectral analysis of the
dispersive and dissipative properties of the Runge Kutta
schemes constructed by Hu et dl4], Mead and Renaut
[19], Tselios and Simos2b] with our new Runge-Kutta
scheme. In section 6, we present the results of a ud = u“+a3AtF(u2), 9)
numerical experiment dealing with a convective wave

u? = U+ opAtF (ub), (8)

equation and a non-linear spherical wave problem using 4 _.n 3
four different schemes and compare some types of errors. U" = U7+ 0aAtF (), (10)
Section 7 highlights the main results of this paper.
W = U+ asAtF (u), (12)
6 n 5
) : . w =u"+ agAtF (u), (12)
3 Dispersion and Dissipation in Runge-Kutta g SAF (L)
Methods an
We consider the time integration using Runge-Kutta Y= (13)

algorithms of the differential equation
Thus, we have the following relationships

Jdu

— =F(u,t

g —Fy, ;
where the operatoF is a function of the unknowry and a1 = F67
of time, t. 5
Hu et al. [L4] proposed the following low-storagestage Bs

. . . ; a; = —.
algorithm to compute the time integration from Ba
n__ n+1l __
u" = u(nat) to U™ = uf(n+ 1)At] namely, We consider the usual linear test equation= Au
1 s o whereA = x+Yyl. The exact solution to this test equation
umtt =u"+ > B (At)'F!(u). (1)  canbe easily obtained as
=1
whereFl =Fo...oF. u(t +At) = exp(At(x+yl)) u(t), (14)
This can be rewritten as whereAt is the time step.
0 Using the notation of Albrechtl], the Runge Kutta
ul =" (2)  solution [L9] has the following form:
W ="+ apAtF (U, @  Uni=(1+(AKb e+ (Ak)?b Ae+ ...+ (AK)® bTAS*ti)SL)Jm
and wherek = At ande = (1,1,1,...,1) € 0S.
UMt =, (4) If Bj = b" Al~e, then we can rewrite3] as [L9]

wherep =1,2,...,s.
P Unit = (14 (AK) Byt ...+ (AK)B) Un,  (16)

ForF (u) linear and a six-stage algorithm, we have  or

6 6
M=+ S ] w@) Fiw, @) Unt1 = (R F) Ui, (17)
J=1p=7—]j where,
wherep =1,2,....6 and[15_;_; ap = B;. Po=1+kxBi+K (F—y?) Bo+K (X3 —3xy?) Bs+
We note thaj = Tl' for j =1,2,3,4. KX — 68Xy +y*) Ba+...(18)
' and

The scheme given byp) is detailed as follows:

Fs=kyB1+K* (2y) B+ K (3CY—y°) Bs+
W =u", 6) K (4Cy—axy®) By + KO (5xy — 1033 +Y°) Bs+... (19)
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and
We next consider the following definition: 5/ 1 7 1 B
Definition 1 (Van Der Howen and Sommeije2§]) Ep(yk) = (¥K) (ﬁ)_ 55) +(¥K) (_ 336 2 6)
The Runge Kutta scheme given byg] is dissipative of 0 1 Bs  Ps
orderp if +(yk) (_75184_ﬂ+ E)
1 1
exp(xk) — |Ps+ IFs| = O(kP* 20 Ll — 2 — =
P — [P+ IR = O(KP*Y),  (20) +0™ (15505t (B2 +Bs(— 25— Bs) ). (@7)
and dispersive of orderif WhereEA andE, are the dissipation and dispersion errors
respectively.
hy—tan? (F2) = ogka+2 21 - : o
y—tan (Es) =O(k¥). (21) Estimates of the magnitude of the dissipation and
dispersion errors have been obtained by Tselios and
Simos R5] as follows:
In [26], Van Der Houven and Sommeijer consider the 1 )
case whenx = 0 (exact solution is non-dissipative). For a |Ea(Bs, Bs)| = ((7 —Bs+ Be)
fourth-order six-stage method with= 0, P; andFg can be 144
written as +(_ 1 +$_&)2
1152 6 2
Po = 1= Bo(YK)* + Bayk)* — Bs(yK)°,  (22) +(- (Bs)® oy
2 24
1 (Bs)? 1 Bs \2\1/2
e 3 5 T L Pe
Fo = yk— Ba(yk)*+ Bs(yK)®, 23) (Gt th 1P Tig) ) @9
. 1 1 1 and
with B = > Bz = 5 andf, = 2

Eo(s.Be)| = (55 B) + (~5ag+ > —Bo)

The dissipation and dispersion errors can be obtained

1 Bs, Bs\?
as _P e
(5247 6) +
Balyk) =1—[Rs+1 Fel, (24) (LHB 24 B (_L_B )>2>l/2(29)
19008 " ¥ TR T 70
and E We note that Tselios and Simog5 minimize the
Ep(Yk) = yk—tan™* (—6). (25)  quantity, (Ea(Bs.Bs))? + (Eg(Bs.Bs))? using the
Ps Levenberg Marquart metho@(Q] and obtain
We now describe how Tselios and Sim@&g|[ have Bs = 0.008267383750863793
obtained their optimal parameters fofs and [
respectively. and

PBs =0.00121166825454822479

The coefficients proposed by Mead and Rend9} |
aref;s = 0.00556 and3; = 0.00093.
3.1 Approach by Tselios and Smos [ 25] Hu et al. [L4] found that the optimal values @ andf3s are
0.00781005 and 0.0013214 respectively. They minimize

If we expand 24) and @5) using Taylor series, we obtain the following integral,

an estimate of the dissipation and dispersion errorg%]s | /2
| i ref? d. (30)
— 6 1 n+1
Ealyk) = (¥k) (El*BSJFBG)jL where r = 2 — =1+2%+..+2 B and
1 2
P (- et e - ) o (- B R) i = ek )
12 1 (Bs)? In the following section, we describe some of our
+(yk) (m+ 2 + techniques of optimisatior2[4] and in section 5, we use

1 these techniques to compute optimal valuefzodnd 3s.

B (~ g2z o)+ 2). (26)
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4 Minimized Integrated Exponential Error more sensitive to perturbation®]

for Low Dispersion and Low Dissipation We next explain how the integration process is performed
in order to obtain the optimal parameter(s).
In this section, we describe briefly the technique of )
Minimized Integrated Exponential Error for Low Only one parameter involved
Dispersion and Low DissipatiogMIEELDLD) . This  If the CFL is the only parameter, we compute
technique have been introduced in Appadu and Dauhoo Wy
[2], Appadu and Dauhoo3]. We now give a resume of / eeldld dw,
how we have derived this technique of optimisation. 0
e e oo o e nimercel Sh™or  range ot < 0w, and this teral il be a
’ function of c. The optimal CFL is the one at which the

by integral quantity is closest to zero.
% +B % =0, (31)  Two parameters are involved
X ;
, We next consider a case where two parameters are
IS involved and whereby we would like to optimise these
¢ =A+IB. two parameters.
Then the modulus of the Amplification Factq&\FM) ) _ )
and the relative phase erroRRE) are calculated as Suppose we want to obtain an improved version of the
Fromm’s scheme which is made up of a linear
AFM =[], combination of Lax-Wendroff (LW) and Beam-Warming
and (BW) schemes. Suppose we apply BW and LW in the

1 . B ratioA : 1— A. This can be done in two ways.
RPE=—-— tan ! —,
cw A In the first case, if we wish to obtain the optimal value of
where ¢ and w are the CFL number and phase angle A at any CFL, then we compute
respectively.
"C1 Wy
For a scheme to have Low Dispersion and Low ./o ./o eeldiddw dc, (34)

Dissipation, we require which will be in terms ofA .

11— RPE|+ (1— AFM) — 0. The value ofc; is chosen to suit the region of stability of
the numerical scheme under consideration while
The quantity,|1 — RPE| measures dispersion error Wi € [0,1.1].
while (1 — AFM) measures dissipation error. Also when

dissipation neutralises dispersion optimally, we have, ~ The second way to optimise a scheme made up of a
linear combination of Beam-Warming and Lax-Wendroff
11— RPE| — (1— AFM)| =0 is to compute thdEELDLD as f(‘,"’l eeldld dw and the

integral obtained in that case will be a functionménd

A. Then a 3-D plot of this integral with respect to
c € [0,c1] and A € [0,1] enables the respective optimal
values ofc and A to be located. The optimised scheme
obtained will be defined in terms of both a CFL and the
optimal value ofA to be used.

Thus on combining these two conditions, we get the
following condition necessary for dissipation to neusali
dispersion and for low dispersion and low dissipation
character to be satisfied:

eldid — ‘|1—RPE|—(1—AFM)’+
Considerable and extensive work on the technique of
(|]1-RPE[+ (1-AFM)) — 0. (32)  Minimised Integrated Exponential Error for Low
Similarly, we expect Dispersion and Low Dissipation has been carried out in
Appadu and Dauhoo?2], Appadu and Dauhoo 3],
Appadu §,5,6].
eeldld= exp(‘ |1—RPE|— (1—AFM)D + In Appadu and Dauho@®], we have obtained the optimal
CFL for some explicit methods like Lax-Wendroff,
exp(|1—-RPE|+(1-AFM)) -2 — 0, (33) Beam-Warming, Crowley, Upwind Leap-Frog and
in order for Low Dispersion and Low Dissipation Fromm’s schemes. In Appadu and Dauh@h we have
properties to be achieved. combined some spatial discretisation schemes with the
The measuregeldld denote the exponential error for low optimised time discretisation method proposed by Tam
dispersion and low dissipation. The reasons why weand Webb 23] in order to approximate the 1-D linear
prefereeldld overeldld is because the former is generally advection equation. These spatial derivatives are: a
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standard 7-point and'8order central difference scheme
(ST7), a standard 9-point ané'®rder central difference
scheme (ST9) and optimised spatial schemes designed by
Tam and WebbZ3], Lockard et al. 17], Zingg et al. Rg],
Zhuang and Chen2P] and Bogey and Bailly 10]. The
results from some numerical experiments were quantified
into dispersion and dissipation errors and we have found
that the quality of the results is dependent on the choice
of the CFL number even for optimised methods, though
to a much lesser degree as compared to standard methods.
Moreover, in AppaduZ], we have obtained the optimal
CFL of some multi-level schemes in 1-D. These schemes
are high order in space and time and have been designed
by Wang and Liu 27]. We have also optimised the
parameters in the family of Third Order schemes
proposed by Takac2P]. The optimal CFL of the 2-D
CFLF4 scheme which is a composite method made up of Fig. 1: Plot of the metricM; vsEgp VS Ea
Corrected Lax-Friedrichs and the two-step Lax-Friedrichs

developed by Liska and Wendroff1¢] has been

computed and some numerical experiments have been

performed such as: 2-D solid body rotation teld][ 2-D The measuregeldld given by @33) is equivalent to
acoustics I5] and 2-D circular riemann probleni §]. We

have shown that better results are obtained when the _

optimal parameters obtained usiM§EELDLD are used. Ma = expl[Eo| — |Eall + exp(|Eq,| * |EA|) 2= ?3.8)

The technique of MIEELDLD has been extended  From (38), we can deduce that
from Computational Fluid Dynamics framework to

Computational Aeroacoustics and used to constructy, — exp(|E¢| _ |EA|) 2 . exp(\ £yl + |EA|> 2 "0
high-order methods7] which approximate the 1-D linear (39)

advection equation. Modifications to the spatial o
discretization schemes designed by Tam and Weldh [ We note that.%)i (37, (39), (39) must be Sfat'Sf'ed i
we require dissipation to neutralise dispersion and also

Lockard et al. 17], Zingg et al. P8 and Bogey and ) _ Halise
Bailly [10] have been obtained, and also a modification togoartils?iv(\a/ddlsperﬂon and low dissipation character to be

the temporal scheme developed by Tam et 24] has .
been obtained. These novel methods obtained usin%\/e next obtain 3D plots of the four measures, all vs

MIEELDLD have in general better dispersive properties Dl_sper5|_on error vs dlzsmatloq.err?r;hn Figs, er'] 3, 4)|' It
as compared to the existing optimised methads [ ISpErsion €error can be negatve It there 1S phase 1ag.
can be seen that the measure is zero only when dispersion

error and dissipation error are both equal to zero for all
the four measures.

The reason why we derivd, andM, is because we use a
nonlinear programme (NLP) to compute the minimum of
a real-valued objective function. Most of the algorithms
used by NLP assume that the objective function and
constraints are twice continuously differentiable.
However, NLP will sometimes succeed even if these
conditions are not met.

Since, in this work, we have estimates for the
dissipation and dispersion errors, we do not work with the
quantities|1— RPE| and(1— AFM). Expressions for the
dissipation and dispersion errors of the six-stage
fourth-order Runge-Kutta scheme are given Bg)(and
(27) respectively wher@s and3s are the two parameters.
Hence, the measureldld given by 32) is equivalent to

My = ||Eg| — [Eal| + (Egl + [Ea).  (35)

For dissipation to neutralise dispersion and for low
dispersion and low dissipation properties to be satisfied,

we require o )
5 Finding optimal values of the two
My = ‘|E¢| - \EA|‘ + (|Eg| +|Eal) — 0. (36) parameters in Runge-Kutta schemes
From (36), we can deduce that We now consider the dispersion and dissipation errors

given by @6) and @7) respectively. The integrated error
Mz = (|Eg| — |Eal)?+ (|Eg| + |Ea])? — O. (37)  from the metricM; is computed as
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Fig. 2: Plot of the metricM, Vs Ey VS Ea

Fig. 3: Plot of the metricMz VS Ey VS Ea

Fig. 4: Plot of the metricMg VSEy VS Ea

11
| IEol— [Eall+ [Eql +[Eal d(sk).  (40)

A 3-D plot and contour plot of this integrated error vs
Bs € [0,0.02 vs 35 € [0,0.0015 is shown in Fig. %) and
we can deduce that the approximate valuesBpand 35
are 0.008 and 0.00132 respectively.

The Integrated Error for the metribl, is computed as

11
| (Eal —EAD?+ (Eol + [Ea)?d0K),  (41)

and a plot of this integrated error Y8 vs 3 is shown
in Fig. (6). We then use optimisation function to obtain
the optimal values of Bs and Bz as
0.00813684557939976447 and
0.00136374541073363914 respectively.

A plot of the Integrated Error fronviz vs 5 vs 35 is
shown in Fig. ). However, we cannot locate the optimal
values of B5 and (s accurately. It is for this reason
precisely that we define the metridy.

A plot of the integrated error frorMy vs Bs vs [ is
shown in Fig. 8) and we obtain the optimal values £
and as 0.00813684556860650062 and
0.00136374541912936944.
We observe that the optimal values[@f and 3 obtained
using the metricsM, andM,4 agree to 10 decimal places.
Hence, the values s and 3; that we use for our new
scheme are 0.0081368456 and 0.0013637454
respectively.

5.1 Comparison of known methods with new
method

In our work, we shall takeBs = 0.0081368456 and
Bs = 0.0013637454. Tablelj gives values foi3s and s

for four temporal Runge-Kutta schemes namely; Hu et
al., Mead and Renaut, Tselios and Simos and our new
method. We use Eqs26) and @7) to obtain the plots of
the dissipation and dispersion errorsyks

Figs. ©) and (L0) shows the plot of the magnitude of
the dispersion and dissipation errors yk for four
temporal Runge-Kutta schemes.

With increase inyk, the magnitude of the dispersion error
increases as expected. The scheme proposed by Mead and
Renaut and Hu et al. have significantly more dispersion
error than the other two schemes. The dispersion error
from Tselios and Simos2p] is slightly smaller than the

one by Appadu foryk € [0,0.8] but for yk > 0.8, the
dispersion error from Appadu is much less than the other
three schemes.
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Bs

Fig. 7: Plot of Integrated Error fronviz vs vsfs5 vs 5.
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Fig. 5: Plot of Integrated Error fronvl; vs vs 35 vs (s.

0.0015 0020

Fig. 8: Plot of Integrated Error fronvl vs vs 35 vs s.

000007
0.00006-]
0.00005-
0.00004-
0.00003

000002
0.00001

B
Fi : 10 Hu etal. |
ig. 6: Plot of Integrated Error fronM, vs vsfs vs . % Mead and Renaul
= = =Tselios and Simos
10 ) ) Appadu
0 0.5 1 15
yk

Fig. 9: Plot of the magnitude of the dispersion error on a
logarithmic scale vgk € [0, 1.5] for some temporal discretisation
schemes.
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Table 1: Comparing the coefficients @8 and 3z for the four
Runge Kutta schemes

Method Bs Be
Hu et al. 14] 0.00781005 0.00132141
Mead and Renauilp]  0.00556 0.00093

0.0082673838 0.0012116682
0.0081368456  0.0013637454

Tselios and Simos2p]
Appadu

abs(E,)

Hu et al. 1
X Mead and Renau
= = = Tselios and Simo

Appadu
T T
0.8 1

06
yk

I I
0.2 0.4

A nine point centred difference scheme of eight order is
used for the spatial discretization which is given by

Jdu 1 4 1
x " h ( - g(uirll —uly) + g(uirlz —Uo)
4 1
_ﬁ(uin—S —Ul3)+ @)(Uin% - Uin+4)> : (43)

Our new method is compared with
(i) the fourth-order six-stage Runge-Kutta scheme of Hu
et al [14].
(ii) the fourth-order six-stage Runge-Kutta scheme of
Mead and Renauflp].
(iii) the fourth-order six-stage Runge-kutta scheme of
Tselios and Simo<2h)

In all four cases, we have used a nine point centred
difference scheme of eight order for the spatial
discretization scheme.

Our aim is to obtain values of the error rate with

respect to theé_;-norm and the Total Mean Square Error
[22] which are computed as

N
Enum=nh ‘Uc — Ue/, (44)
2,

and

Fig. 10: Plot of the magnitude of the dissipation error on a

logarithmic scale vgk € [0,1.1] for some temporal discretisation
schemes.

The scheme proposed by Mead and Rena&@} has

the largest dissipation error followed by the one proposed[

by Hu et al. L4]. The scheme by Tselios and Simos,

Appadu have almost the same dissipation error for

yk € [0,0.5] but for yk > 0.5, the scheme by Appadu has
significantly less dissipation error.

6 Numerical Experiments

6.1 Convective Wave Equation

We consider the following partial differential equation:
Ju
ot

we

Ju
&_0
have

(42)

At t 0,

X\ 2 .
up =05 exp{— (5) } [25] and the domain extends
from Xpin = —50 toXmax =t + 50. The analytical solution

isu(x,t) =0.5 exp{f (Xit)z}.

a Gaussian profile,

3

1 X )
N i;(uc—ue) ) (45)
where u; and ue are the computed and exact values,
respectively andN is the number of spatial grid points.
The Total Mean Square Error is equivalent to the sum of
he dispersion and dissipation errors as shown by Takacs
[22]. We then plot these two types of errors vs the CFL
number and find out how these two errors vary with the
CFL number. We consider two cases namehy, 400 and

t =1000.

Case 1l

We consider the case when tinte; 400, and spatial step,

h=0.5. Since, CFE& k/h, andk = 400/nyax, then
CFL = 800/ Nmax, (46)

wherenx is the number of time steps.

We use some CFL numbers to satis#) such thatmay

is an integer. Oncemax has been determined, we can find

the time stepk. The CFL numbers we consider and the

corresponding values afax andk are shown in Table

2.

Fig. (12) shows the variation of the error rate vs CFL
for four numerical schemes. The general tendency is that
the error is not much affected by the choice of the CFL
number except in the case of Mead and Renaut. We have
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Table 2: Some values of CFLnmax andk for time,t = 400 and
spatial steph=0.5 o
CFL  Nmax k
0.1 80000 0.05 51 o ]
w
0.2 4000 0.1 °§f
04 2000 0.2 < +
5]
064 1250 0.32 | o M x|
= =]
o ® @ it ul
0.80 1000 0.40 .
107100 O‘Al O‘.2 0‘.3 014 0‘.5 0‘.6 017 O‘.S 0.9
CFL
10 o i Fig. 12: Total Mean Square Error as a function of CFL, using
Runge-Kutta scheme of Hu et &/, Mead and Renaut '0,
Tselios and Simo<’ and our new scheme, New’, all
combined with a nine-point central difference scheme of eight
§ order at timet = 400 and spatial stepp,= 0.5.
w
) + ]
§ &8 lul ¥ )
Table 3: Some values of CFlLymax andk for time,t = 1000 and
spatial steph = 0.5
W 1 CFL nmx K
0.1 20000 0.05
0 0.1 0.2 0.3 0.4 CFL 0.5 0.6 0.7 0.8 0.9 02 10000 01
Fig. 11: Error rate as a function of CFL, using Runge-Kutta 04 5000 0.2
scheme of Hu et d4’, Mead and Renaut '0’, Tselios and Simos 0.64 3125 0.32
') and our new scheme, Nel#’, all combined with a nine-
point central difference scheme of eight order at titne, 400 0.80 2500 0.40
and spatial steg) = 0.5.
considered five CFL numbers namely 0.1, 0.2, 0.4, 0.64 5
and 0.8. At CFL 0.1, 0.64 and 0.8, our scheme is the most
effective one. At CFL 0.4, the schemes by Tselios and
Simos and Hu et al. are the most effective. o}
Fig. (12) shows the variation of the Total Mean Square 52 |
Error vs the CFL number. The general tendency is that the ¢ & Q N +
error increases with increase in CFL number for the ¥ x @ & * ®
scheme by Mead and Renaut and Hu et al. Our scheme
followed by Tselios and Simos are the most effective ones
over the five values of CFL used.
Case 2 107 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

We consider the case when times= 1000 andh = 0.5.
Values of CFL and the corresponding valuesgfy andk

are shown in Tabled). The difference is since the time Fig. 13

CFL

: Error rate as a function of CFL using Runge-Kutta

has now been multiplied by 2.5, therefore the values ofscheme of Hu et -/, Mead and Renadt/, Tselios and Simos
Nmax are multiplied by 2.5, as compared to the values in'0 and our new scheme, Néw/, all combined with a nine-point

Table @).

spatial steph = 0.50.

central difference scheme of eight order at time; 1000 and
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Fig. 14: Total Mean Square Error as a function of CFL using
Runge-Kutta scheme of Hu et &', Mead and Renaufto/,
Tselios and Simo<$[)’ and our new scheme, New’, all

combined with a nine-point central difference scheme of eight

order at timet = 1000 and spatial step,= 0.50.

Fig. (13) shows the variation of the error rate vs CFL.

dissipation errors, we shall use a small CFL for this
experiment, say 0.1. We perform the numerical
experiment at timet = 300 at CFL=0.1 with time step
0.02 and spatial step 0.2. The error rate with respekt to
error and the Total Mean Square Error are compared in
Table @). The results are shown in Fidlg). Once again,

it is seen that the scheme by Appadu is the best one.

0.02!

—Huetal]
WNW -

0.015
250 260 270 280 290 300
r

0.01

0.005

S o
-0.005|
-0.01-

-0.015

-0.02-

The values of the error rate are much affected by the CFL
number in the case of Runge-Kutta scheme proposed b
Mead and Renaut. At CFL 0.1, 0.64 and 0.8, our
proposed scheme is better. At CFL 0.4, the scheme b
Tselios and Simos is slightly better. Over the five CFL
numbers, our scheme is generally the best one followe(
by the scheme of Tselios and Simos.

Fig. (14) shows the variation of the Total Mean Square
Error vs CFL. The values of the Total Mean Square Error
are much affected by CFL in the case of Runge Kutta
schemes by Hu et al., Mead and Renaut.

70.02’2_
6.2 Spherical Wave Problem[12] 0025
We consider the following problem Ooiz
Jdu du u 0.01
—+——+-=0 47
ot or - r ’ (47) 0.005
where 5<r <315 and > 0. s o
—0.005
The initial condition isu(r,0) = 0 for 5<r < 315. —o01
The boundary condition isi(5,t) = sin(rt/3) for o
0 <t < 300. -007
00%%,

The analytic solution is given by

urt) = 0 for r > t + 5 and

u(r,t) = ? sin(r(t —r +5)/3) forr <t+5.

Since we have found from section 6.1 that low CFL
numbers are preferred to minimise both dispersion and

0.015§
0.01

0.005

-0.005
-0.01-

-0.015

Fig. 15: Solution of the spherical wave problem with three
temporal Runge-Kutta schemes, all coupled with with a nine-
point centred difference scheme of eight order at time,300
with spatial step 0.2 and time step 0.02.
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