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In this paper, we describe a new method for finding search directions for interior point
methods (IPMs) in linear optimization (LO). The theoretical complexity of the new
algorithms are calculated and we prove that the iteration bound is O(log(n/ε)) in this
case too.
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1 Introduction

In this paper we discuss interior point methods (IPMs) for solving linear optimization
(LO) problems. Linear optimization is an area of mathematical programming which deals
with the minimization or maximization of a linear function, subject to linear constraints.
These constrains can be expressed by equalities or inequalities. Dantzig proposed the well-
known simplex method for solving LO problems in 1947. The simplex method has been
continuously improved in the past fifty years. For different variants of the simplex method
there are constructed examples illustrating that in the worst case the number of iterations
required by the algorithm can be exponential. The first polynomial algorithm for solving
LO problems is the ellipsoid method of Khachiyan in 1979. This method is important
from a theoretical point of view, but is not so efficient in practice. An alternative variant
was defined by Karmakar in 1984. His algorithm uses interior points of the polytope of
to approximate the optimal solution. The complexity of this algorithm is smaller than
Khachiyan’s and the implementation of Karmakar’s algorithm proved to be efficient in
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practice too, especially when the size of the problem is large. Interior point algorithms
were studied by Frish in 1955, and Gill exhibited barrier algorithm of Frish algorithm
communicate with Karmakar’s algorithm perfectly. In the past twenty years, some papers
have been written about interior point algorithms. For an overview of results see Todd
(1986), Gonzaga (1989), Wright (1996), Ye (1997), and Darvay (2002).

In section 2 we give path-following algorithms and in section 3 we show the Newton’s
method. We propose a new search-directions in sections 4 and 5. In section 6 we conduct
the complexity analysis of the algorithm, and then the conclusion is given in section 7.

2 Path-Following Algorithms

We consider the LP problem in the following standard form

min cT x

s.t Ax = b,

x ≥ 0.

(2.1)

where A ∈ Rm×n with rank(A) = m, b ∈ Rm and c ∈ Rn. The dual of this problem can
be writhen in the following form

max bT y

s.t AT y + s = c,

s ≥ 0.

(2.2)

We assume that the interior point condition (IPC) holds for these problems, i.e., there
exist (xo, yo, so) such that

Axo = b, xo ≥ 0,

AT yo + so = c, so ≥ 0.

and

FP = {x ∈ Rn
+ : Ax = b},

FD = {(y, s) ∈ Rm ×Rn
+ : AT y + s = c},

where FP and FD are solution sets of primal and dual problems, respectively. Their interi-
ors are as the follows:

F o
P = {x ∈ Rn

++ : Ax = b},
F o

D = {(y, s) ∈ Rm ×Rn
++ : AT y + s = c},

where R+ = {x ∈ R, x ≥ 0} and R++ = {x ∈ R, x > 0}.
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Using the self-dual embedding method, a larger LO problem can be constructed in such
a way that the IPC holds for that problem (Darvay, 2002). Hence, the IPC can be assumed
without loss of generality. Finding the optimal solutions of both the primal-dual problems,
is equivalent to solving the following system:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = 0,

(2.3)

where xs denotes the coordinatewise product of the vectors x and s.
The first condition of system (2.3) merely states that the candidate point must be fea-

sible; that is, it must satisfy the constraints of the problem. This is usually referred to as
primal feasibility. The second condition is usually referred to as dual feasibility. The last
relation is the complementarity condition. Primal-dual IPMs generally replace the comple-
mentarity condition by a parameterized equation, for example

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = µe,

(2.4)

where µ > 0 and e = [1, 1, . . . , 1]T . If the IPC is satisfied, then for a fix µ > 0 the system
(2.4) has a unique solution that can be obtained from the convex problem as

min cT x− µ

n∑

j=0

ln xj

s.t Ax = b,

x ≥ 0.

(2.5)

This solution is called the µ−center, and the set of µ−center for µ > 0 forms the central
path. The target-following approach starts from the observation that the system (2.4) can
be generalized by replacing the vector µe with an arbitrary positive vector w2. Thus we
have the system

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = w2,

(2.6)

where w ≥ 0.

3 The Newton’s Method

Let F : Rn → Rn be a continuously differentiable function, and let J(x) be the Jacobi
matrix attached to F . Consider the system

F (x) = 0.
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Suppose there is the vector xo, then a sequence of points is obtained by

xk+1 = xk − J(xk)−1F (xk).

If ∆xk is a step direction vector, then

xk+1 = xk + ∆xk

and
J(xk)∆xk = −F (xk).

If xo is sufficiently near to a solution of F , then this sequence is convergent. The analysis
of the Newton’s method is very important from the point of view of IPMs.

4 A New Class of Directions

In this section we define a new method for finding search directions for IPMs. We
consider the function

ϕ ∈ C1, ϕ : R+ → R+.

Furthermore, we suppose that the inverse function ϕ−1 exists. Then, the system (2.6) can
be written in the following equivalent form:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

ϕ(xs) = ϕ(w2).
(4.1)

And we can apply the Newton’s method to the system (4.1) to obtain a new class of search
directions. We mention that a direct generalization of the approach defined in (4.1) would
be the following variant. The system (2.4) is equivalent to

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (4.2)

ϕ

(
xs

µ

)
= ϕ(e). (4.3)

If t = 1/µ the above system is equivalent to

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

ϕ(txs) = ϕ(e).
(4.4)

And using Newton’s method in the system (4.3) yields new search directions. For our
purpose the first approach is more convenient, so in this paper we use the system (4.3). Let
us introduce the vector

v =
√

xs

µ
=
√

txs.
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Suppose that we have Ax = b and AT y + s = c for a triplet (x, y, s) such that x ≥ 0 and
s ≥ 0, then x and s are strictly feasible. Applying Newton’s method to the system (4.3) we
obtain

A∆x = 0,

AT ∆y + ∆s = 0,

tsϕ́(txs)∆x + txϕ́(txs)∆s = ϕ(e)− ϕ(txs),

s∆x + x∆s =
ϕ(e)− ϕ(txs)

tϕ́(txs)
.

(4.5)

Furthermore, we denote

dx =
v∆x

x
, ds =

v∆s

s
,

and so we have

µv(dx + ds) = µv(
v∆x

x
+

v∆s

s
) =

µv2∆x

x
+

µv2∆s

s
= s∆x + x∆s (4.6)

and

dxds =
v2∆x∆s

xs
=

∆x∆s

µ
= t∆x∆s, (4.7)

as v2 = xs/µ. Hence the system (4.4) can be written in the following equivalent form:

Ādx = 0, (4.8)

tĀ∆y + ds = 0, (4.9)

dx + ds = pv, (4.10)

where

pv =
ϕ(e)− ϕ(v2)

vϕ́(v2)
(4.11)

and Ā = A · diag(d) with the notation

diag(ξ) =




ξ1 0 . . . 0
0 ξ2 . . . 0

. . . . . . . . . . . .

0 0 . . . ξn




for any vector ξ.
Darvay considered that ϕ(x) = x, and ϕ(x) =

√
x yielded pv = v−1 − v and pv =

2(e− v), respectively, and he obtained the standard primal-dual algorithm (Darvay, 2002).
Peng et al. 2002 observed that a new search direction can be obtained by taking pv = v−3−
v. The same authors analysed in 2001 the case pv = v−q − v, where q > 1. The authors
have also introduced a class of search directions based on self-regular proximities ( Peng et
al. 2000). For ϕ(x) = x2 Darvay got pv = (v−3 − v)/2, and for ϕ(x) = x(q+1)/2, where
q > 1 he obtained pv = 2(v−q − v)/(q + 1). Our general approach can be particularized
in such a way as to obtain the directions defined in above papers. In the following section
we use a different function to develop a new primal-dual algorithm.
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5 A New Primal-Dual Algorithm

In this section we take ϕ(x) = x(q+1)/q, q ≥ 1 and we develop a new primal-dual
weighted-path-following algorithm based on the appropriate search directions. Thus, mak-
ing the substitution ϕ(x) = x(q+1)/q in (4.11) we get

pv =
q

q + 1

(
v(−2+q)/q − v

)
=

q

q + 1

(
v−(2+q)/q − v

)
. (5.1)

And we can define a proximity measure to the central path by

σ

(
x,

1
t

)
=
‖pv‖

2
,

where ‖.‖ denotes the Euclidean norm (l2 norm). Furthermore, let us introduce the notation

qv = dx − ds.

From (4.8), (4.9) and (4.10) we get dT
x ·ds = 0. Hence the vectors dx and ds are orthogonal,

and thus we obtain
‖pv‖ = ‖qv‖.

Therefore the proximity measure can be written in the form

σ

(
x,

1
t

)
=
‖qv‖

2
.

Moreover, we have

dx =
pv + qv

2
, ds =

pv − qv

2
, dxds =

p2
v − q2

v

4
. (5.2)

The algorithm can be defined as follows:

Algorithm 5.1. Let ε ≥ 0 be the accuracy parameter and 0 < θ < 1 the update parameter
(default θ = 1/(2

√
n)).

begin
x := e; t := 1;

while n/t ≥ ε do begin
t := 1

1−θ t;
Compute ∆x using (4.5) and ϕ(x) = x(q+1)/q;
x := x + ∆x;

end
end.

In the next section we shall prove that this algorithm is well defined for the default
value of θ, and we will also give an upper bound for the number of iterations performed by
the algorithm.
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6 Complexity Analysis

From the self-dual property of the problem (SP) it follows that the duality gap is

2(qT x) = 2(xT s),

where x is a feasible solution of (SP), and s = s(x) is the appropriate slack vector. For
simplicity we also refer to xT s as the duality gap.

Remark 6.1. Let σ = σ(x, 1/t), ‖v‖ < 1, and introduce the vectors x+ and s+ such that
x+ = x + ∆x and s+ = s + ∆s. Then we have

(x+)T s+ ≤ 1
t

(
4(q + 1)

q
σ2

)
.

In the following lemma we discuss the question of the bound on the number of itera-
tions.

Lemma 6.1. Let xk be the k-th iteration of algorithm (2.1), and let sk = s(xk) be the
appropriate slack vector. Then (xk)sk < ε for

k ≥
(

1
1− θ

log
n

ε

)
.

Proof. Using lemma (2) we find that

(xk)T sk ≤
(

1
t

)k (
4(q + 1)

q
σ2

)
,

and with suitable selection of σ, we obtain

(xk)T sk ≤ n

(1− θ)k
.

Thus the inequality (xk)T sk ≤ ε is satisfied if

n

(1− θ)k
< ε.

Now taking logarithms, we may write

log(n)− k log(1− θ) ≤ log ε,

and using the equation log(1− θ) ≤ (1− θ) we observe that the above inequality holds if

log(n)− log ε ≤ k log(1− θ) ≤ k(1− θ),

or
k ≥ 1

1− θ
log

n

ε
.

Thus, the proof is complete
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For θ = 1/(2
√

n) we obtain the following Theorem.

Theorem 6.1. Let θ = 1/(2
√

n). Then algorithm (2.1) requires at most

o
(
log

n

ε

)

iterations

7 Conclusion

In this paper we have developed a new class of search directions for the linear opti-
mization problem. For this purpose we have introduced a function ϕ, and we have used
Newton’s method to define new search directions. For ϕ(x) = x(q+1)/q these results can
be used to introduce a new primal-dual polynomial algorithm for solving (SP). We have
proved that the complexity of this algorithm is o(log(n/ε)). It is clear that the complexity
of this algorithm is less than o(

√
n log(n/ε)).
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