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Abstract: In this paper, we implemented the functional variable method for the exactsolutions of the Harry-Dym, the modified
Zakharov-Kuznetsov and the Kadomtsev-Petviashvili equations. By using this scheme, we found some exact solutions of the above-
mentioned equations. Then, some of the solitary solutions are converted toperiodic solutions or hyperbolic function solutions by a
simple transformation.
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1 Introduction

Since the soliton phenomena were first observed by John
Scott Russell in 1834 and the KdV equation was solved
by the inverse scattering method in 1967, finding exact
solutions of nonlinear wave equations has become one of
the most exciting and active areas of research
investigation. The investigation into the exact solutionsof
nonlinear evolution equations plays an important role in
mathematics, physics, and other applied science areas.
The aspect of integrability of nonlinear evolution
equations has recently attracted a lot of attention in
nonlinear science and theoretical physics. Among these
methods, inverse scattering method [1,2], Hirota bilinear
tranformation [3], the tanh-sech method [4,5,6,7],
sine-cosine method [8,9], Exp-function method [10,11,

12,13] and
(

G′
G

)

-expansion method [14,15,16,17] were

used to develop nonlinear dispersive and dissipative
problems.

With the development of computer science, directly
searching for solutions of nonlinear wave equations has
become more and more attractive. This is due to the
availability of computers symbolic system like MAPLE
which allows us to perform some complicated and tedious
algebraic calculation on a computer and help us to find
new exact solutions of nonlinear evolution equations.

The existence of soliton- type solutions for nonlinear
partial differential equations (PDEs) is of particular

interest because of their extensive applications in many
physics areas such as nonlinear optics, plasmas, fluid
mechanics, condensed matter, electro magnetics and
many more. Envelope solitons are stable nonlinear wave
packets that preserve their shape when propagating in a
nonlinear dispersive medium. It is also of interest to note
that the formation of this type of pulses is due to an exact
balance between nonlinearity and dispersion effects.

The paper is arranged as follows. In section 2, we
describe functional variable method for finding exact
travelling wave solutions of nonlinear evolution
equations. In section 3 to section 5, we illustrate this
method in detail with celebrated the Harry-Dym,
modified Zakharov-Kuznetsov and
Kadomtsev-Petviashvili equations. Finally, some
conclusions are given.

2 The functional variable method

Zerarka et.al. have summarized for using functional
variable method [18,19]. For a given nonlinear partial
differential equation (PDE), written in several
independent variables as

P(u,ut ,ux,uy,uz,uxy,uyz,uxz, ...) = 0. (2.1)
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where the subscript denotes partial derivative,P is some
function, andu{t,x,y,z, ...} is called a dependent variable
or unknown function to be determined.

We firstly introduce the new wave variable as
ξ = k(x+ ct) or ξ = x− ct.

The nonlinear partial differential equation can be
converted to an ordinary differential equation (ODE) like

Q(U,Uξ ,Uξ ξ ,Uξ ξ ξ ,Uξ ξ ξ ξ , ...) = 0. (2.2)

Let us make a transformation in which the unknown
function U is consedered as a functional variable in the
form

Uξ = F(U) (2.3)

and some successively derivatives ofU are

Uξ ξ = 1
2(F

2)′,

Uξ ξ ξ = 1
2(F

2)′′
√

F2,

Uξ ξ ξ ξ = 1
2

[

(F2)′′′F2+(F2)′′(F2)′
]

,
.
.
.

(2.4)

where ”′” stands for d
dU . The ODE (2.2) can be reduced in

terms of U,F and its derivatives upon using the
expressions of (2.4) into (2.2) gives

R(U,F,F ′,F ′′,F ′′′,F(4), ...) = 0 (2.5)

The key idea of this particular form (2.5) is of special
interest because it admits analytical solutions for a large
class of nonlinear wave type equations. After integration,
the Eq.(2.5) provides the expression ofF , and this in turn
together with (2.3) give the appropriate solutions to the
original problem.

In order to illustrate how the method works we
examine some examples treated by other approaches.
This matter is exposed in the following section.

3 The Harry-Dym equation

Consider the Harry-Dym equation [20]

ut = u3uxxx. (3.1)

The Harry–Dym (HD) equation that has nonlinearity and
dispersion coupled together was discovered by H. Dym in
1973–1974 while its first appearance in the literature
occurred in a 1975 paper of Kruskal, [21] where it was
named after its discoverer. It arises, e.g., in the analysisof
the Saffman–Taylor problem with surface tension [22].

Using the wave variableξ = x − ct, the Eq. (3.1) is
carried to an ODE

cUξ +U3Uξ ξ ξ = 0. (3.2)

Integrating (3.2) with respect toξ and considering the
zero constants for intergation we obtain

Uξ ξ −
c

2U2 = 0, (3.3)

then we use the transformation

Uξ = F(U), (3.4)

that will convert Eq. (3.3) to

(F2(U))′

2
− c

2U2 = 0. (3.5)

where the prime denotes differentiation with respect toξ .
According to Eq. (2.4), we get from (3.5) the expression
of the functionF(U) reads

F(U) =
√

−c
U . (3.6)

If we get
Uξ = F(U) (3.7)

then we setting the constants of integration to zero and we
can obtain the below result

U(ξ ) = (
3
2

√
−cξ )2/3. (3.8)

We can easily obtain following exact solutions

u(x, t) = [
3
2

√
−c(x− ct)]2/3, c < 0, (3.9)

Comparing our results and Mokhtari’s results [20] with
Hereman’s results [23] then it can be seen that the results
are same.

4 The modified Zakharov-Kuznetsov
equations

Let us consider the (2+1)-dimensional modified Zakharov-
Kuznetsov equations [24]:

ut +u2ux +uxxx +uxyy = 0. (4.1)

The solitary wave solutions of the mZK equation had
been constructed via a direct method in [25]. The Lie
group analysis is used to carry out the integration of this
equation in [26]. The first integral method was used to
construct travelling wave solutions of this equation in
[27].

Using the wave variableξ = x+y−ct and proceeding
as before we find

−cUξ +U2Uξ +2Uξ ξ ξ = 0, (4.2)

Integrating the equation (4.2) and neglecting constants of
integration, we find

−cU +
U3

3
+2Uξ ξ = 0. (4.3)
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Following the Eq. (2.4), it is easy to deduce from (4.3) the
expression of the functionF(U) reads

F(U) =

√

c
2

U

√

1− 1
6c

U2, (4.4)

or

F(U) =

√

c
2

U
√

1− c1U2, (4.5)

wherec1 =
1
6c .

The solution of the Eq.(4.3) is obtained as

U(ξ ) =
1√−c1

csch(

√

c
2

ξ ). (4.6)

We can easily obtain following hyperbolic solutions

u1(x,y, t) =
√
−6ccsch[

√
2c
2

(x+ y− ct)], (4.7)

u2(x,y, t) =−
√

6csech[

√
2c
2

(x+ y− ct)]. (4.8)

Forc < 0, it is easy to see that solutions (4.7) and (4.8)
can reduce to complex solutions as follows:

u3(x,y, t) =−
√

6ccsc[

√
−2c
2

(x+y−ct)], c < 0, (4.9)

u4(x,y, t) =−
√

6csec[

√
−2c
2

(x+y−ct)] c< 0. (4.10)

Comparing our results and Wazwaz’s results [25],
Adem’s results [26] with Tascan’s results [27] then it can
be seen that the results are same.

5 Kadomtsev-Petviashvili equation

We next consider Kadomtsev-Petviashvili equations [28]

ut −uxxx −6buux −3vy = 0,

uy = vx.
(5.1)

Using the wave variableξ = x+y−ct, the system (5.1)
is carried to a system of ODEs

−cUξ −Uξ ξ ξ −6bUUξ −3Vξ = 0,

Vξ =Uξ .
(5.2)

Integrating the second equation in the system and
neglecting the constant of integration we find

U =V. (5.3)

Substituting (5.3) into the first equation of the system and
integrating we find

−cU −Uξ ξ −3bU2−3U = 0. (5.4)

Following the Eq. (2.4), it is easy to deduce from (5.4) the
expression of the functionF(U) reads

F(U) =
√

U2(−2bU −3− c). (5.5)

If we get

Uξ = F(U) (5.6)

then we setting the constants of integration to zero and we
can obtain the below result

V (ξ ) =U(ξ ) =−c+3
2b

sec2(

√
c+3
2

ξ ), (5.7)

We can easily obtain following periodic solutions

v1(x,y, t) = u1(x,y, t) =− c+3
2b sec2[

√
c+3
2 (x+ y− ct)], c+3> 0

(5.8)

v2(x,y, t) = u2(x,y, t) =− c+3
2b csc2[

√
c+3
2 (x+ y− ct)], c+3> 0.

(5.9)
Forc+3< 0, it is easy to see that solutions (5.8)-(5.9) can
reduce to hyperbolic solutions as follows:

v3(x,y, t)= u3(x,y, t)=−c+3
2b

sech2[

√
−c−3

2
(x+y−ct)],

(5.10)

v4(x,y, t) = u4(x,y, t) =
c+3
2b

csch2[

√
−c−3

2
(x+y−ct)].

(5.11)
Comparing our results and Wazwaz’s results [29],

Bekir’s results [16] with Wang’s results [30] then it can be
seen that the results are same. All the solutions reported
in this paper have been verified with Maple by putting
them back into the original Eq. (5.1).

6 Conclusion

As a result, many exact solutions are obtained with the
help of symbolic system Maple including soliton
solutions presented by hyperbolic functions sech and
cosech, periodic solutions presented by sec and cosec and
rational solutions. The functional variable method was
succesfully used to establish exact solutions. This method
handle nonlinear wave equation effectively. This method
has many advantages: it is direct and concise. It is shown
that the algorithm can be also applied to other NLPDEs in
mathematical physics. On the other hand, we will extend
this method to seek soliton-like solutions for some PDEs
in the forthcoming works.
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