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Abstract: In this present work, we explore the application of the first integral ntetbcsome special nonlinear partial differential
equations. The power of this manageable method is confirmed by apfiljamghree selected nonlinear partial differential equations.
By using this method, we found some exact solutions of the Tzitzeica-Boatldugh equation and nonlinear Klein-Gordon equation
with power law nonlinearity and generalized nonlinear heat conductiocatiequand the BBM-like B2, 2) equation. The first integral
method can be applied to nonintegrable equations as well as to integrableTbiemethod is based on the theory of commutative
algebra

Keywords. First integral method; Tzitzeica-Dodd-Bullough equation; Nonlinear K@&ordon equation with power law nonlinearity;
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1 Introduction BBM-like B (2, 2) equation by using the first integral
method. Nonlinear Klein-Gordon equation with power
. . . . law nonlinearity play a significant role in many scientific
_Exact SOIUt'OnSf to ”OF‘"”ear evollut|on equations play anapplications such as solid state physics, nonlinear optics
important role in nonlinear physical science, since thesednd quantum field theory and the Tzitzeica-Dodd

solutions may well describe various natural phenomena, g, 5,91 equation appear in problems varying from fluid
such as vibrations, solitons, and propagation with a f|n|teﬂOW to quantum field theory

speed. Reqently many new approa_ches for finding theI'he paper is arranged as follows. In Section 2, we
gxact solutlonds to lno:ﬂllnearf evolution er?uanons havegescribe briefly the first integral method. In Sections 3-6,
eetz %ropoze t multlp.e lexp- lytnctlzazn mei dx]ifhnsat(zj we apply this method to the Tzitzeica-Dodd-Bullough
ms o|fant' opotohglca tsorl]?ns tB] rat%s grnée equation and nonlinear Klein-Gordon equation with
rational function method4], tanh-function method3,6l,  ver Jaw nonlinearity and generalized nonlinear heat

extended tanh-function method7,8], first integral : : i :
method 10.11,12,13,14,15,16] and so on. The first conduction equation and the BBM-like B (2, 2) equation.

integral method is a powerful solution method for the

computation of exact traveling wave solutions. ThiSZFirSt integral method

method is one of the most direct and effective algebraic

methods for finding exact solutions of nonlinear partial The main steps of the first integral method are summarized
differential equations (PDEs). The first integral method as follows.

was first proposed by Fend@lin solving Burgers-KdV  Step 1. Consider a general nonlinear PDE in the form
equation which is based on the ring theory of 5 an Ao 5

commutative algebra. This method was further developed H( @ @ @ ﬂ ﬂ ﬂ 9<u ):0 1)

by many authors in11,12,13,14,15,16]. The aim of this ’

paper is to find exact solutions of the
Tzitzeica-Dodd-Bullough  equation and nonlinear
Klein-Gordon equation with power law nonlinearity and
generalized nonlinear heat conduction equation and the ux,y,t) = (&),

whereH is a polynomial inu and its partial derivatives.
Using a wave variablé = k(x+1y—ct) so that
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Eqg. (1) can be converted to an ordinary differential Using the wave variablé = k(x— ct) carries Eq. (8) into
equation (ODE) as the ODE

df (&) d2f
E(Nﬂ,é?,dgmm):q

whereE is a polynomial inf = f(&). If all terms contain

k2 (W' — (V)?) =V -V =0.

Rewrite this equation as follows

)

derivatives, then Eq. (2) is integrated where integration e (W' —(V)?) V-0 ©)
constants are considered zeros. -
Step 2. Suppose the solution of ODE (2) can be written as
. Let

follows: X' (&)

u(xy,t) = (&) = X(&), ®3) v(§) =X(§), Y(&)= X&) (10)
and furthermore, we introduce a new independent variablerh ¢ h
Y =Y (&) such that en from Eq. (9) we have

_X(E) O - (X(©)+X%8). a1

where prime denotes derivative with respecto Suppose thak(&) andY (&) are nontrivial solutions of

Step 3. Under the conditions of Step 2, Eq. (2) can be EGs. (10) and (11), and
converted to a system of nonlinear ODEs as follows

X&)y epvie) qx.Y) = 3 &Y

dE - 9 1=
dy (& is an irreducible polynomial in the complex domain
7d(5 ) P(X(&),Y(§))- ()  C[X,Y] such that

If we can find the integrals to Eq. (5), then the general m _

solutions to Eq. (5) can be solved directly. However, in a(xX(€),Y(§)) = Z)ai(x(f))Y'(f) =0, (12
general, it is really difficult for us to realize this even for i=

one first integral, because for a given plane autonomou
system, there is neither a systematic theory that can tell
how to find its first integrals, nor a logical way for telling
us what these first integrals are. We will apply the
so-called Division Theorem to obtain one first integral to
Eq. (5) which reduces Eg. (2) to a first order integrable
ODE. An exact solution to Eq. (1) is then obtained by dq _ dgdX  dqgdy

u\'s/vhereai(x), i =0,1,...,m, are polynomials ofX and
gm(X) # 0. Eq. (12) is called the first integral to Egs. (10)
and (11). Due to the Division Theorem, there exists a
polynomialg(X) + h(X)Y, in the complex domai€|[X,Y]
such that

solving this equation. dé — dX d& ' dYdé
Division Theorem 2.1. Suppose thalP(w,z) and Q(w, 2) m i
are polynomials inC|w,z; and P(w,z) is irreducible in - (g(X)+h(X)Y)i;ai(X)Y. (3)

Clw, 7. If Q(w,z) vanishes at all zero points &f(w,z) , ) ) o
then there exists a polynomi@(w, z) in C[w,z] such that ~ SUppose than= 1, by comparing with the coefficients of
Y', i=2,1,0, on both sides of (13), we have

Q(w,z) = P(W,2)G(w,2). day (X)

X= e = hX)ay(X), (14)
S . dag(X)
3 Tzitzeica-Dodd-Bullough equation X=gx~ = 9(X¥)as(X) +h(X)a0(X), (15)
In this section we consider the Tzitzeica-Dodd-Bullough x\5.(X) = ai(X <1 X 4 X2 ) 16
equation [17] 9(X)20(X) 1(X) k2c( +X9) (16)
Ug =€ +e . (6)  sincea;(X), i = 0,1, are polynomials, then from (14) we
Using the transformation deduce thady (X) is constant antd(X) = 0. For simplicity,

takea; (X) = 1. Balancing the degrees gfX) andap(X),

we conclude that dégo(X)) = degg(X)) = 1. Suppose

-1
) , v(xt)y=e" (7) that

A
u(x,t) = arcsmh(
9(X) =Ao+AX, a(X)=Bo+B1X,  (17)

where Ay # 0, Bj # 0. Substituting (17) into (15), we
— Wi + Ve — V=V = 0. (8)  obtainAg =0, A; = B.

carries Eq. (6) into the ODE
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Substitutingag(X) andg(X) into (16) and setting all the Substituting (25) into (24), we obtain ordinary differeti
coefficients of powersX to be zero, then we obtain a equation:
system of nonlinear algebraic equations and by solving it,

. 2
we obtain K2(c? — az)% +aU—BuU" W t—o0.  (26)
1 1
Ao=0, Bo= im’ Ar=Br= iﬁ:’ 18) " bue to the difficulty in obtaining the first integral of Eq.
1
. 26), f ti VT,
wherec andk are arbitrary constants. Then we have grh6<a)nvlgz.p(?t%()iiecgnt\zzzzg ;?a lon denoted by-
dX
D) = x(@v () = ~x(§)ax(©) (0~ 1)(¢2 — V" 42— ) (¢ — ) (V)2
1 + (n—1)2aVv?— (n—1)%pV3
_ 2
= ke (X(&)+X2(8)). (19) + (n—1)2W4=0. (27)
Solving Eq. (19), we obtain Rewrite this equation as follows
1 K2(n — 1)(? —a®) (V" — (V')?) +K(c? — &%) (V')?
Xy (&)= ———
1(8) e + (n—l)zav42—(n—l)2BV3
1 + (n—1)*W*=0.
Xa(&) = I T AL (20)
1_ e keléto) Therefore, we have
.. . \VZivi 2 \VA
whereéy is integration constant. Then k2(n -~ 1)(02 - az) V2( ) i k2(02 _ a2)(7)2
1
vi(xt) = — , —1)%a—(n—1)2pV
10et) =~ — e +(n-1’a—(n-17p
1 + (n—1)*W-=0. (28)
Vo(X,t) = — . 21
2( ’ ) 1_e7k7\])5(k(xfd)+fo> ( ) Let X/(E)
: : - V(&) =X(&), Y(&) = (29)
Using (7), we have exact solutions of the Tzitzeica-Dodd- X(§)
Bullough equation in the following form Then from Eq. (28) we have
2 dy n-1 2
1 (1_ek\1/5(k(x0t)+fo)) R (BX(&) — yX2(&) —a)
ui(x,t) = arcsinh (22) 1
2 (1_ eklﬁ(k(XCtH‘EO)) - mYz (30)
Suppose thaX (&) andY(&) are nontrivial solutions of
and Egs. (29) and (30), and
1 2 m .
1 (1_e-m<k(x-°‘>+f°>) AXY) = 3 AN
uz(x,t) = arcsinh - : =
2 (1— e Rk +o) is an irreducible polynomial in the complex domain
C[X,Y] such that
(23)

m .
a(X(&),Y(&)) = .Z)a@(x(f))Y'(E) =0, (31
4 Nonlinear Klein-Gordon equation with .
power law nonlinearity where & (X), i = 0,1,...,m, are polynomials ofX and
am(X) # 0. Eq. (31) is called the first integral to Egs. (29)
Let us consider the nonlinear Klein-Gordon equation with @nd (30). According to the Division Theorem, there exists
power law nonlinearity [18] a polynomial g(X) + h(X)Y, in the complex domain
C[X,Y] such that
Ut — U+ au—pu"+ ™ =0, n>1 (24 dq dgdX  dqdy

We use the wave transformation dé dxd¢  dyd¢

ut) =U(E), &=k(x—a). (25) = (9(X) +-h(X)Y) i;a@ (XY, (32)
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Suppose thain= 1, by comparing with the coefficients of whereéy is integration constant. Then

Y. i=2,1,0, on both sides of (32), we have
a(n+ 1) e%\/ ﬁ(k(x_d)+50>

daz (X) 1
- = Vi(x,t) = 40
XX p— 1o X) = h(0a(X). (33) 1oy B T/l krdt) (40)
dag(X
X200 _ gx)a(x) + h(x)a0(X). CON-
_ (n_ 1)a1(X) 2 n-1 a
g(X)ao(X) - kz(cz_az) (BX_ VX - C{) . (35) a(n+1) efT H(k(xfd)+§0)
Va(xt) = B 0l [oa (k(x—ct)+&)
Sinceg;(X), i = 0,1, are polynomials, then from (33) we l+e K Va2e? 0
deduce thatay (X) is constant anch(X) = —-1;. For

Thus, we have the exact solutions of the nonlinear

simplicity, takeay (X) = 1. Balancing the degrees gfX) Klein-Gordon equation with power law nonlinearity in

andap(X), we conclude that

degao(X)) = degg(X)) = 1. the following form
Suppose that 1
et /28 (K(x—ct)+&o) -1
a(n+1) ek Ve
9(X) =Ao+A1X, ap(X)=Bg+B1X, (36) up(x,t) = ( ) —
o . B T /@ekcdtb)
where Ay # 0, Bj # 0. Substituting (36) into (34), we (41)
haveAo = 1;Bo, A= "7B1. and
Substitutingag(X) andg(X) into (35) and setting all the L
coefficients of powersX to be zero, then we obtain a — L 0 (K(x—ct) +&o) n1
system of nonlinear algebraic equations and by solving it, Un(x,t) = a(n+1) e ae
we obtain ’ B 1 —0 L [ (k(x—ct)+&o)
+e as—C
1 a n—1 a (42)
P=FVe—e BT jaz—a
A=+ ng a ) 5 A generalized form of the nonlinear heat
k(in+1)a \ a2—c? :
equation
B — 4+ (n—1)B o]
1= )
k(n+1)a V a2 —c? We next consider a generalized form of the nonlinear heat
npB2 conduction equation [19]
" 17y 5D
U —a(uM)—u-+u"=0. (43)
wherea, 3, y, k andc are arbitrary constants. Then we
have Using the wave variablé = k(x— ct) carries Eq. (43) to
dﬁig) = X(£)Y(§) = —X(£)ao(X(&)) ~kaf —alé()' —ut =0 (“44)
n—-1 a Due to the difficulty in obtaining the first integral of Eq.
=7F k a2 — 2 (X(&) (44), we propose a transformatian= V~#1. Then Eq.
B ) (44) is converted to
- X . 38
(n+1)a (£)) (38) ke(n— 1)V’ 4 ak®n(1—2n)(V')? +ak?n(n— Vv

Solving Eq. (38), we obtain — (=134 (n-1)?v2=0. (45)

Rewrite this equation as follows
a(n+1) o V)

X1(&) = — (39)  ke(n— VA + ak®n(n—1)(VV" — (V)?) — ak®n?(V')?
P ezt — (n—1AV3+ (n—1AV2 =0
and Therefore, we have
" __(\y"2 !
a(n+1) o /2t ke(n—1)V' + akzn(nfl)(vvv#) *akznz(%)z
X2(&) = :
( B e/ —(n=)A+(n-12%=0. (46)
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Let . and
V& =X(E). YO =N ) 1 n-1 h1
X(&) Aoz—m, Bozm, Blz—m» c=+/a, (56)
Then from Eq. (46) we have
dy c n—1 wherea andk are arbitrary constants. By using (55), we
ac *%X(f)Y(f)er(x(f)*l) (;l:aén
FLIRY e T v = —x(@ao(x(8))
n—1 dé
Suppose thaX(&) andY(&) are nontrivial solutions of _ n-1 2
Egs. (47) and (48), and nk\/é(x(f) XH&))- 7)
m . Solving Eq. (57), we obtain
C](X,Y) = %al(x)Yl n-1
i= enkya (& +é0)
is an irreducible polynomial in the complex domain (&)= 1+en”ﬁ;(£+£o)’ (58)
C[X,Y] such that
m whereéy is integration constant. Then
_ ' i _
Vi(€) = — . (59)
where g (X), i = 0,1,...,m, are polynomials ofX and 1+enk\/15(k(x’a)+‘f°>

am(X) # 0. According to the Division Theorem, there

exists a polynomiagi(X) + h(X)Y, in the complex domain Thus, we have the exact solution of the generalized

C[X,Y] such that nonlinear heat conduction equation in the following form
dg dgdX dgdy n1 =
& = &E + WE em("(“‘ﬂ)‘*‘%) !
ur(x,t) = — (60)
m A 14 enkva KxHva)+éo)
= (GO0 +hX)Y) 5 a(X)Y" (50)
= , ) - Similarly, in the case of (56), from (47), we obtain
Suppose thanh = 1, by comparing with the coefficients of ax (&)
e :
Y', i=2,1,0, on both sides of (50), we have 3 = X(E)Y(&) = —X(&)ag(X(£))
Xd2uX) | N ay(x) = h(x)au(X), (51)
ax o1 =ha). = B2 (x(8) - X2(8)) (61)
nky/a ’
Xdao(X) _ X (X) = g(X)a(X) + h(X)ao(X), (52
dx %al( ) = 9(X)az(X) +h(X)ao(X). (52) and then the exact solution of the generalized nonlinear
(n—1)ag(X) heat conduction equation can be written as
gX)a0(X) = 5= (X1, (53) 1
Sinceg;(X), i = 0,1, are polynomials, then from (51) we e’nnk;fé(k(x’\/at”fw "
deduce thata;(X) is constant andh(X) = -";. For U2 (%,1) = L (KAl +&o) (62)
simplicity, takea; (X) = 1. Balancing the degrees gfX) 1+e

andap(X), we conclude that

dega(X)) =1, degg(X)) =0. 6 The BBM-like B (2, 2) equation

Suppose that

g(X) =Ag, ag(X)=Bp+B1X, (54) In this section we study the BBM-like B (2, 2) equation
whereAg # 0, By # 0. U+ (U2)x — (UP)xq = 0. (63)
Substituting (54) into (52), we obtain _
Ag= "By, c= %Bl- We use the wave transformation

Substitutingag(X) andg(X) into (53) and setting all the - B
coefficients of powersX to be zero, then we obtain a uxt)=u(), &=k(x—ct) (64)

system of nonlinear algebraic equations and by solving it,yherek andc are constants ang&) is real function.

we obtain Substituting (64) into (63), we obtain ordinary differeaiti
1 n-1 n-1 equation:
Po=1a D= a BT e 67 VR D) —e + (W) + ()" = 0. (65)
@© 2013 NSP
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Integrating Eqg. (65) respect & then we have Sinceg;(X), i = 0,1, are polynomials, then from (72) we
deduce thata (X) is constant anch(X) = —2k?c. For
—cu+u? 4 2k%c(U)? + 2k%cuu” = R, (66)  simplicity, takea; (X) = 1. Balancing the degrees gfX)
andap(X), we conclude that
whereRis integration constant. degag(X)) = degg(X)) = 1.

fweletX=u, Y= g—g, the Eq. (66) is equivalent to the Suppose that

two dimensional autonomous system
g(X) =Ao+AX, a(X)=Bo+BiX,  (75)

dx(&) _ .,

d&¢ whereA; # 0, Bj # 0. Substituting (75) into (73), we
dY (&) 1 5 b o obtain ) )
TdE 23X (X —X*—2k*cY*+R). (67) g(X) = 2k*cBo + 4k“cBy X.

Substitutingag(X) andg(X) into (74) and setting all the

Making the following transformation coefficients of powersX to be zero, then we obtain a

dn — dé (68) system of nonlinear algebraic equations and by solving it,
n= Jk2eX we obtain
then system (68) becomes /—c
dx Bo= 35 Bo= ity Re—gd (76
2 = 2K2cXY, —c
dn .
dy wherek andc are arbitrary constants.
Fr cX — X2 - 2k%eY2 LR (69)  Using the conditions (76) in (70), we obtain
n
Now, we are applying the Division Theorem to seek the Yi(\ﬁc + 1 X) = 0. 7)
firstintegral to system (69). Suppose tiat X(n), Y = 3k  2ky/—c

Y are the nontrivial solutions to (69), and . o .
() (69) Combining this first integral with (67), the second order

differential Eq. (66) can be reduced to

du v/—C 1
+

is an irreducible polynomial in the complex domain d¢ 3K 2ky/—c
C[X,Y] such that Solving Eq. (78) and changing to the original variables,
m _ we obtain the exact solutions to the BBM-like B (2, 2)
aX(n),Y(n)) = Z)ai(x(ﬂ))Y'('?) =0, (70) equation in the following form
i=

ax.¥) = 5 a00Y

u). (78)

1
u(x,t) = % — 2ce” Ay K- Ho) (79)

where & (X), i = 0,1,...,m, are polynomials ofX and
am(X) # 0. Suppose thatn = 1 in (70). According to the , ,
Division Theorem, there exists a polynomial Wheredois an arbitrary constant,
g(X) +h(X)Y, in the complex domai€[X,Y] such that
dg _ dqdX  dqdy

dn ~ dXdn ' dYdn

= (lia{(X)Yi)(ZKZCXY) +(

7 Conclusion

1 _ The first integral method has been proposed and applied
zoiai(X)Y'_l)(cX—Xz to exact solutions of the Tzitzeica-Dodd-Bullough
i= equation, nonlinear Klein-Gordon equation with power
5 U2 1 i law nonlinearity, generalized nonlinear heat conduction
— 2k°eY“+R) = (9(X) +h(X)Y) _zoai(X)Yv (71)  equation and the BBM-like B (2, 2) equation. The first
= integral method is effective in searching exact solutidns o
where prime denotes differentiation with respect to thenonlinear partial differential equations. The method
variable X. By comparing with the coefficients of proposed in this paper can also be extended to solve some

Yl i=2,1,0, of both sides of (71), we have nonlinear evolution equations in mathematical physics.
2AcX daé;x) — h(X)au(X), (72)
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