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Abstract: In this present work, we explore the application of the first integral method to some special nonlinear partial differential
equations. The power of this manageable method is confirmed by applyingit for three selected nonlinear partial differential equations.
By using this method, we found some exact solutions of the Tzitzeica-Dodd-Bullough equation and nonlinear Klein-Gordon equation
with power law nonlinearity and generalized nonlinear heat conduction equation and the BBM-like B(2,2) equation. The first integral
method can be applied to nonintegrable equations as well as to integrable ones. This method is based on the theory of commutative
algebra
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1 Introduction

Exact solutions to nonlinear evolution equations play an
important role in nonlinear physical science, since these
solutions may well describe various natural phenomena,
such as vibrations, solitons, and propagation with a finite
speed. Recently many new approaches for finding the
exact solutions to nonlinear evolution equations have
been proposed, multiple exp-function method [1], ansatz
method and topological solitons [2,3], transformed
rational function method [4], tanh-function method [5,6],
extended tanh-function method [7,8], first integral
method [10,11,12,13,14,15,16] and so on. The first
integral method is a powerful solution method for the
computation of exact traveling wave solutions. This
method is one of the most direct and effective algebraic
methods for finding exact solutions of nonlinear partial
differential equations (PDEs). The first integral method
was first proposed by Feng [10]in solving Burgers-KdV
equation which is based on the ring theory of
commutative algebra. This method was further developed
by many authors in [11,12,13,14,15,16]. The aim of this
paper is to find exact solutions of the
Tzitzeica-Dodd-Bullough equation and nonlinear
Klein-Gordon equation with power law nonlinearity and
generalized nonlinear heat conduction equation and the

BBM-like B (2, 2) equation by using the first integral
method. Nonlinear Klein-Gordon equation with power
law nonlinearity play a significant role in many scientific
applications such as solid state physics, nonlinear optics
and quantum field theory and the Tzitzeica-Dodd
-Bullough equation appear in problems varying from fluid
flow to quantum field theory.
The paper is arranged as follows. In Section 2, we
describe briefly the first integral method. In Sections 3-6,
we apply this method to the Tzitzeica-Dodd-Bullough
equation and nonlinear Klein-Gordon equation with
power law nonlinearity and generalized nonlinear heat
conduction equation and the BBM-like B (2, 2) equation.

2 First integral method

The main steps of the first integral method are summarized
as follows.
Step 1. Consider a general nonlinear PDE in the form

H

(

u,
∂u
∂ t

,
∂u
∂y

,
∂u
∂x

,
∂ 2u
∂ t2 ,

∂ 2u
∂y2 ,

∂ 2u
∂x2 ,

∂ 2u
∂ t∂x

, ...

)

= 0, (1)

whereH is a polynomial inu and its partial derivatives.
Using a wave variableξ = k (x+ ly− ct) so that

u(x,y, t) = f (ξ ),
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Eq. (1) can be converted to an ordinary differential
equation (ODE) as

E

(

f (ξ ),
d f (ξ )

dξ
,

d2 f (ξ )
dξ 2 , ...

)

= 0, (2)

whereE is a polynomial inf = f (ξ ). If all terms contain
derivatives, then Eq. (2) is integrated where integration
constants are considered zeros.
Step 2. Suppose the solution of ODE (2) can be written as
follows:

u(x,y, t) = f (ξ ) = X(ξ ), (3)

and furthermore, we introduce a new independent variable
Y = Y (ξ ) such that

Y (ξ ) =
X ′(ξ )
X(ξ )

, (4)

where prime denotes derivative with respect toξ .
Step 3. Under the conditions of Step 2, Eq. (2) can be
converted to a system of nonlinear ODEs as follows

dX(ξ )
dξ

= X(ξ )Y (ξ ),

dY (ξ )
dξ

= Φ(X(ξ ),Y (ξ )). (5)

If we can find the integrals to Eq. (5), then the general
solutions to Eq. (5) can be solved directly. However, in
general, it is really difficult for us to realize this even for
one first integral, because for a given plane autonomous
system, there is neither a systematic theory that can tell us
how to find its first integrals, nor a logical way for telling
us what these first integrals are. We will apply the
so-called Division Theorem to obtain one first integral to
Eq. (5) which reduces Eq. (2) to a first order integrable
ODE. An exact solution to Eq. (1) is then obtained by
solving this equation.
Division Theorem 2.1. Suppose thatP(w,z) andQ(w,z)

are polynomials inC[w,z]; and P(w,z) is irreducible in
C[w,z]. If Q(w,z) vanishes at all zero points ofP(w,z) ,
then there exists a polynomialG(w,z) in C[w,z] such that

Q(w,z) = P(w,z)G(w,z).

3 Tzitzeica-Dodd-Bullough equation

In this section we consider the Tzitzeica-Dodd-Bullough
equation [17]

uxt = e−u + e−2u
. (6)

Using the transformation

u(x, t) = arcsinh

(

v−1− v
2

)

, v(x, t) = e−u (7)

carries Eq. (6) into the ODE

−vvxt + vxvt − v3− v4 = 0. (8)

Using the wave variableξ = k(x− ct) carries Eq. (8) into
the ODE

k2c
(

vv′′− (v′)2)− v3− v4 = 0.

Rewrite this equation as follows

k2c

(

vv′′− (v′)2
)

v2 − v− v2 = 0. (9)

Let

v(ξ ) = X(ξ ), Y (ξ ) =
X ′(ξ )
X(ξ )

. (10)

Then from Eq. (9) we have

dY
dξ

=
1

k2c

(

X(ξ )+X2(ξ )
)

. (11)

Suppose thatX(ξ ) andY (ξ ) are nontrivial solutions of
Eqs. (10) and (11), and

q(X ,Y ) =
m

∑
i=0

ai(X)Y i

is an irreducible polynomial in the complex domain
C[X ,Y ] such that

q(X(ξ ),Y (ξ )) =
m

∑
i=0

ai(X(ξ ))Y i(ξ ) = 0, (12)

where ai(X), i = 0,1, ...,m, are polynomials ofX and
am(X) 6= 0. Eq. (12) is called the first integral to Eqs. (10)
and (11). Due to the Division Theorem, there exists a
polynomialg(X)+h(X)Y, in the complex domainC[X ,Y ]
such that
dq
dξ

=
dq
dX

dX
dξ

+
dq
dY

dY
dξ

= (g(X)+h(X)Y )
m

∑
i=0

ai(X)Y i
. (13)

Suppose thatm = 1, by comparing with the coefficients of
Y i, i = 2,1,0, on both sides of (13), we have

X
da1(X)

dX
= h(X)a1(X), (14)

X
da0(X)

dX
= g(X)a1(X)+h(X)a0(X), (15)

g(X)a0(X) = a1(X)

(

1
k2c

(X +X2)

)

. (16)

Sinceai(X), i = 0,1, are polynomials, then from (14) we
deduce thata1(X) is constant andh(X) = 0. For simplicity,
takea1(X) = 1. Balancing the degrees ofg(X) anda0(X),
we conclude that deg(a0(X)) = deg(g(X)) = 1. Suppose
that

g(X) = A0+A1X , a0(X) = B0+B1X , (17)

whereA1 6= 0, B1 6= 0. Substituting (17) into (15), we
obtainA0 = 0, A1 = B1.
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Substitutinga0(X) andg(X) into (16) and setting all the
coefficients of powersX to be zero, then we obtain a
system of nonlinear algebraic equations and by solving it,
we obtain

A0 = 0, B0 =± 1
k
√

c
, A1 = B1 =± 1

k
√

c
, (18)

wherec andk are arbitrary constants. Then we have

dX(ξ )
dξ

= X(ξ )Y (ξ ) =−X(ξ )a0(X(ξ ))

= ∓ 1
k
√

c

(

X(ξ )+X2(ξ )
)

. (19)

Solving Eq. (19), we obtain

X1(ξ ) = − 1

1− e
1

k
√

c
(ξ+ξ0)

,

X2(ξ ) = − 1

1− e
− 1

k
√

c
(ξ+ξ0)

, (20)

whereξ0 is integration constant. Then

v1(x, t) = − 1

1− e
1

k
√

c
(k(x−ct)+ξ0)

,

v2(x, t) = − 1

1− e
− 1

k
√

c
(k(x−ct)+ξ0)

. (21)

Using (7), we have exact solutions of the Tzitzeica-Dodd-
Bullough equation in the following form

u1(x, t) = arcsinh











1−
(

1− e
1

k
√

c
(k(x−ct)+ξ0)

)2

2

(

1− e
1

k
√

c
(k(x−ct)+ξ0)

)











(22)

and

u2(x, t) = arcsinh











1−
(

1− e
− 1

k
√

c
(k(x−ct)+ξ0)

)2

2

(

1− e
− 1

k
√

c
(k(x−ct)+ξ0)

)











.

(23)

4 Nonlinear Klein-Gordon equation with
power law nonlinearity

Let us consider the nonlinear Klein-Gordon equation with
power law nonlinearity [18]

utt −a2uxx +αu−βun + γu2n−1 = 0, n > 1. (24)

We use the wave transformation

u(x, t) =U(ξ ), ξ = k(x− ct). (25)

Substituting (25) into (24), we obtain ordinary differential
equation:

k2(c2−a2)
d2U
dξ 2 +αU −βUn + γU2n−1 = 0. (26)

Due to the difficulty in obtaining the first integral of Eq.

(26), we propose a transformation denoted byU = V
1

n−1 .

Then Eq. (26) is converted to

k2(n − 1)(c2−a2)VV ′′+ k2(2−n)(c2−a2)(V ′)2

+ (n−1)2αV 2− (n−1)2βV 3

+ (n−1)2γV 4 = 0. (27)

Rewrite this equation as follows

k2(n − 1)(c2−a2)(VV ′′− (V ′)2)+ k2(c2−a2)(V ′)2

+ (n−1)2αV 2− (n−1)2βV 3

+ (n−1)2γV 4 = 0.

Therefore, we have

k2(n − 1)(c2−a2)
VV ′′− (V ′)2

V 2 + k2(c2−a2)(
V ′

V
)2

+ (n−1)2α − (n−1)2βV

+ (n−1)2γV 2 = 0. (28)

Let

v(ξ ) = X(ξ ), Y (ξ ) =
X ′(ξ )
X(ξ )

. (29)

Then from Eq. (28) we have

dY
dξ

=
n−1

k2(c2−a2)

(

βX(ξ )− γX2(ξ )−α
)

− 1
n−1

Y 2
. (30)

Suppose thatX(ξ ) andY (ξ ) are nontrivial solutions of
Eqs. (29) and (30), and

q(X ,Y ) =
m

∑
i=0

ai(X)Y i

is an irreducible polynomial in the complex domain
C[X ,Y ] such that

q(X(ξ ),Y (ξ )) =
m

∑
i=0

ai(X(ξ ))Y i(ξ ) = 0, (31)

where ai(X), i = 0,1, ...,m, are polynomials ofX and
am(X) 6= 0. Eq. (31) is called the first integral to Eqs. (29)
and (30). According to the Division Theorem, there exists
a polynomial g(X) + h(X)Y, in the complex domain
C[X ,Y ] such that

dq
dξ

=
dq
dX

dX
dξ

+
dq
dY

dY
dξ

= (g(X)+h(X)Y )
m

∑
i=0

ai(X)Y i
. (32)
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Suppose thatm = 1, by comparing with the coefficients of
Y i, i = 2,1,0, on both sides of (32), we have

X
da1(X)

dX
− 1

n−1
a1(X) = h(X)a1(X), (33)

X
da0(X)

dX
= g(X)a1(X)+h(X)a0(X), (34)

g(X)a0(X) =
(n−1)a1(X)

k2(c2−a2)

(

βX − γX2−α
)

. (35)

Sinceai(X), i = 0,1, are polynomials, then from (33) we
deduce thata1(X) is constant andh(X) = − 1

n−1. For
simplicity, takea1(X) = 1. Balancing the degrees ofg(X)
anda0(X), we conclude that
deg(a0(X)) = deg(g(X)) = 1.
Suppose that

g(X) = A0+A1X , a0(X) = B0+B1X , (36)

whereA1 6= 0, B1 6= 0. Substituting (36) into (34), we
haveA0 =

1
n−1B0, A1 =

n
n−1B1.

Substitutinga0(X) andg(X) into (35) and setting all the
coefficients of powersX to be zero, then we obtain a
system of nonlinear algebraic equations and by solving it,
we obtain

A0 = ∓1
k

√

α
a2− c2 , B0 =∓n−1

k

√

α
a2− c2 ,

A1 = ± nβ
k(n+1)α

√

α
a2− c2 ,

B1 = ± (n−1)β
k(n+1)α

√

α
a2− c2 ,

α =
nβ 2

(n+1)2γ
, (37)

whereα, β , γ , k andc are arbitrary constants. Then we
have

dX(ξ )
dξ

= X(ξ )Y (ξ ) =−X(ξ )a0(X(ξ ))

= ∓n−1
k

√

α
a2− c2 (X(ξ )

− β
(n+1)α

X2(ξ )). (38)

Solving Eq. (38), we obtain

X1(ξ ) =
α(n+1)

β
e

n−1
k

√

α
a2−c2 (ξ+ξ0)

1+ e
n−1

k

√

α
a2−c2 (ξ+ξ0)

(39)

and

X2(ξ ) =
α(n+1)

β
e
− n−1

k

√

α
a2−c2 (ξ+ξ0)

1+ e
− n−1

k

√

α
a2−c2 (ξ+ξ0)

,

whereξ0 is integration constant. Then

V1(x, t) =
α(n+1)

β
e

n−1
k

√

α
a2−c2 (k(x−ct)+ξ0)

1+ e
n−1

k

√

α
a2−c2 (k(x−ct)+ξ0)

(40)

and

V2(x, t) =
α(n+1)

β
e
− n−1

k

√

α
a2−c2 (k(x−ct)+ξ0)

1+ e
− n−1

k

√

α
a2−c2 (k(x−ct)+ξ0)

.

Thus, we have the exact solutions of the nonlinear
Klein-Gordon equation with power law nonlinearity in
the following form

u1(x, t) =







α(n+1)
β

e
n−1

k

√

α
a2−c2 (k(x−ct)+ξ0)

1+ e
n−1

k

√

α
a2−c2 (k(x−ct)+ξ0)







1
n−1

(41)
and

u2(x, t) =







α(n+1)
β

e
− n−1

k

√

α
a2−c2 (k(x−ct)+ξ0)

1+ e
− n−1

k

√

α
a2−c2 (k(x−ct)+ξ0)







1
n−1

.

(42)

5 A generalized form of the nonlinear heat
equation

We next consider a generalized form of the nonlinear heat
conduction equation [19]

ut −a(un)xx −u+un = 0. (43)

Using the wave variableξ = k(x− ct) carries Eq. (43) to

−kcu′−ak2(un)′′−u+un = 0. (44)

Due to the difficulty in obtaining the first integral of Eq.

(44), we propose a transformationu = V− 1
n−1 . Then Eq.

(44) is converted to

kc(n−1)V 2V ′ + ak2n(1−2n)(V ′)2+ak2n(n−1)VV ′′

− (n−1)2V 3+(n−1)2V 2 = 0. (45)

Rewrite this equation as follows

kc(n−1)V 2V ′ + ak2n(n−1)(VV ′′− (V ′)2)−ak2n2(V ′)2

− (n−1)2V 3+(n−1)2V 2 = 0.

Therefore, we have

kc(n−1)V ′ + ak2n(n−1)(
VV ′′− (V ′)2

V 2 )−ak2n2(
V ′

V
)2

− (n−1)2V +(n−1)2 = 0. (46)
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Let

v(ξ ) = X(ξ ), Y (ξ ) =
X ′(ξ )
X(ξ )

. (47)

Then from Eq. (46) we have

dY
dξ

= − c
akn

X(ξ )Y (ξ )+
n−1
ak2n

(X(ξ )−1)

+
n

n−1
Y 2

. (48)

Suppose thatX(ξ ) andY (ξ ) are nontrivial solutions of
Eqs. (47) and (48), and

q(X ,Y ) =
m

∑
i=0

ai(X)Y i

is an irreducible polynomial in the complex domain
C[X ,Y ] such that

q(X(ξ ),Y (ξ )) =
m

∑
i=0

ai(X(ξ ))Y i(ξ ) = 0, (49)

where ai(X), i = 0,1, ...,m, are polynomials ofX and
am(X) 6= 0. According to the Division Theorem, there
exists a polynomialg(X)+h(X)Y, in the complex domain
C[X ,Y ] such that

dq
dξ

=
dq
dX

dX
dξ

+
dq
dY

dY
dξ

= (g(X)+h(X)Y )
m

∑
i=0

ai(X)Y i
. (50)

Suppose thatm = 1, by comparing with the coefficients of
Y i, i = 2,1,0, on both sides of (50), we have

Xda1(X)

dX
+

n
n−1

a1(X) = h(X)a1(X), (51)

Xda0(X)

dX
− cX

akn
a1(X) = g(X)a1(X)+h(X)a0(X), (52)

g(X)a0(X) =
(n−1)a1(X)

ak2n
(X −1). (53)

Sinceai(X), i = 0,1, are polynomials, then from (51) we
deduce thata1(X) is constant andh(X) = n

n−1. For
simplicity, takea1(X) = 1. Balancing the degrees ofg(X)
anda0(X), we conclude that
deg(a0(X)) = 1, deg(g(X)) = 0.
Suppose that

g(X) = A0, a0(X) = B0+B1X , (54)

whereA0 6= 0, B1 6= 0.
Substituting (54) into (52), we obtain
A0 =− n

n−1B0, c = akn
1−n B1.

Substitutinga0(X) andg(X) into (53) and setting all the
coefficients of powersX to be zero, then we obtain a
system of nonlinear algebraic equations and by solving it,
we obtain

A0 =
1

k
√

a
, B0 =− n−1

nk
√

a
, B1 =

n−1
nk
√

a
, c=−

√
a (55)

and

A0=− 1
k
√

a
, B0 =

n−1
nk
√

a
, B1 =− n−1

nk
√

a
, c=

√
a, (56)

wherea andk are arbitrary constants. By using (55), we
obtain

dX(ξ )
dξ

= X(ξ )Y (ξ ) =−X(ξ )a0(X(ξ ))

=
n−1
nk
√

a
(X(ξ )−X2(ξ )). (57)

Solving Eq. (57), we obtain

X1(ξ ) =
e

n−1
nk
√

a
(ξ+ξ0)

1+ e
n−1

nk
√

a
(ξ+ξ0)

, (58)

whereξ0 is integration constant. Then

V1(ξ ) =
e

n−1
nk
√

a
(k(x−ct)+ξ0)

1+ e
n−1

nk
√

a
(k(x−ct)+ξ0)

. (59)

Thus, we have the exact solution of the generalized
nonlinear heat conduction equation in the following form

u1(x, t) =







e
n−1

nk
√

a
(k(x+

√
at)+ξ0)

1+ e
n−1

nk
√

a
(k(x+

√
at)+ξ0)







− 1
n−1

. (60)

Similarly, in the case of (56), from (47), we obtain

dX(ξ )
dξ

= X(ξ )Y (ξ ) =−X(ξ )a0(X(ξ ))

= − n−1
nk
√

a
(X(ξ )−X2(ξ )), (61)

and then the exact solution of the generalized nonlinear
heat conduction equation can be written as

u2(x, t) =







e
− n−1

nk
√

a
(k(x−

√
at)+ξ0)

1+ e
− n−1

nk
√

a
(k(x−

√
at)+ξ0)







− 1
n−1

. (62)

6 The BBM-like B (2, 2) equation

In this section we study the BBM-like B (2, 2) equation

ut +(u2)x − (u2)xxt = 0. (63)

We use the wave transformation

u(x, t) = u(ξ ), ξ = k(x− ct) (64)

wherek andc are constants andu(ξ ) is real function.
Substituting (64) into (63), we obtain ordinary differential
equation:

−cu′+(u2)′+ k2c(u2)′′′ = 0. (65)
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Integrating Eq. (65) respect toξ , then we have

−cu+u2+2k2c(u′)2+2k2cuu′′ = R, (66)

whereR is integration constant.
If we let X = u, Y = du

dξ , the Eq. (66) is equivalent to the
two dimensional autonomous system

dX(ξ )
dξ

= Y,

dY (ξ )
dξ

=
1

2k2cX

(

cX −X2−2k2cY 2+R
)

. (67)

Making the following transformation

dη =
dξ

2k2cX
, (68)

then system (68) becomes

dX
dη

= 2k2cXY,

dY
dη

= cX −X2−2k2cY 2+R. (69)

Now, we are applying the Division Theorem to seek the
first integral to system (69). Suppose thatX = X(η), Y =
Y (η) are the nontrivial solutions to (69), and

q(X ,Y ) =
m

∑
i=0

ai(X)Y i

is an irreducible polynomial in the complex domain
C[X ,Y ] such that

q(X(η),Y (η)) =
m

∑
i=0

ai(X(η))Y i(η) = 0, (70)

where ai(X), i = 0,1, ...,m, are polynomials ofX and
am(X) 6= 0. Suppose thatm = 1 in (70). According to the
Division Theorem, there exists a polynomial
g(X)+h(X)Y, in the complex domainC[X ,Y ] such that

dq
dη

=
dq
dX

dX
dη

+
dq
dY

dY
dη

= (
1

∑
i=0

a′i(X)Y i)(2k2cXY )+(
1

∑
i=0

iai(X)Y i−1)(cX −X2

− 2k2cY 2+R) = (g(X)+h(X)Y )
1

∑
i=0

ai(X)Y i
, (71)

where prime denotes differentiation with respect to the
variable X . By comparing with the coefficients of
Y i, i = 2,1,0, of both sides of (71), we have

2k2cX
da1(X)

dX
= h(X)a1(X), (72)

2k2cX
da0(X)

dX
= g(X)a1(X)+h(X)a0(X), (73)

g(X)a0(X) = a1(X)(cX −X2+R). (74)

Sinceai(X), i = 0,1, are polynomials, then from (72) we
deduce thata1(X) is constant andh(X) = −2k2c. For
simplicity, takea1(X) = 1. Balancing the degrees ofg(X)
anda0(X), we conclude that
deg(a0(X)) = deg(g(X)) = 1.
Suppose that

g(X) = A0+A1X , a0(X) = B0+B1X , (75)

whereA1 6= 0, B1 6= 0. Substituting (75) into (73), we
obtain

g(X) = 2k2cB0+4k2cB1X .

Substitutinga0(X) andg(X) into (74) and setting all the
coefficients of powersX to be zero, then we obtain a
system of nonlinear algebraic equations and by solving it,
we obtain

B0 =±
√
−c

3k
, B2 =± 1

2k
√
−c

, R =−2
9

c2
, (76)

wherek andc are arbitrary constants.
Using the conditions (76) in (70), we obtain

Y ± (

√
−c

3k
+

1

2k
√
−c

X) = 0. (77)

Combining this first integral with (67), the second order
differential Eq. (66) can be reduced to

du
dξ

=∓(

√
−c

3k
+

1

2k
√
−c

u). (78)

Solving Eq. (78) and changing to the original variables,
we obtain the exact solutions to the BBM-like B (2, 2)
equation in the following form

u(x, t) =
2c
3
−2ce

± 1
2k
√
−c

(k(x−ct)+ξ0)
, (79)

whereξ0 is an arbitrary constant.

7 Conclusion

The first integral method has been proposed and applied
to exact solutions of the Tzitzeica-Dodd-Bullough
equation, nonlinear Klein-Gordon equation with power
law nonlinearity, generalized nonlinear heat conduction
equation and the BBM-like B (2, 2) equation. The first
integral method is effective in searching exact solutions of
nonlinear partial differential equations. The method
proposed in this paper can also be extended to solve some
nonlinear evolution equations in mathematical physics.
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