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Abstract: The aim of this paper is to study the oscillatory behavior of general third order neutral delay differential equations by using
a generalized Riccati transformation. New sufficient conditions for oscillations of solutions are established.The obtained results extend
and improve some known results in the literature. Illustrative examples aregiven to support our main results.
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1 Introduction

There has been considerable interest in studying the
oscillation of solutions of neutral delay differential
equations in the last two decades. Although the oscillation
of third-order equations has received less attentions
relatively comparing with those of second-order, however
there is an increasing interest in studying the oscillation
of neutral delay third-order equations ( see [2], [4], [8],
[10]) The aim of this paper is to study the oscillation of
solutions of the third order neutral differential equation

(r(t)z′′(t))′+ f (t,z(t),z′(t)) = 0 (1.1)

wherez(t) = x(t)+ p(t)x(τ(t)) under the assumptions
(H1) r(t), p(t) ∈ C([t0,∞),(0,∞)), r ′(t) ≥ 0, r ′′(t) >
0,
∫ ∞ r−1(s)ds= ∞, and

0≤ p(t)≤ p0 < ∞.
(H2) τ(t) ∈ C1([t0,∞),R), for
t ≥ t0,τ(t)≤ t, limt→∞ τ(t) = ∞.

(H3) f ∈C(R×R2,R), f (t,u,v)
v ≥ K > 0.

Many efforts were done to deduce sufficient conditions
for the oscillation of differential equations of the type
(1.1) (see [5], [10], [12],[13]). To the best of our
knowledge most of those papers considered a common
condition on the nonlinear functionf ,namely

f (x)
x

≥ K > 0 (c)

One of our main goal of this paper is to establish new
oscillation criteria for Eq.(1.1) without the traditional
condition(c) . The paper is organized as follows .In sec. 2
we give our main results, we establish sufficient
conditions guarantee the oscillation of Eq.(1.1). In sec.3
we give some examples for which our criteria applied
while some of the others in the literature fail.
We say that a functionφ(t,s, l) belongs to the function
class Ω , denoted byφ ∈ Ω if φ ∈ C(E,R), where
E = {(t,s, l) : t0 ≤ l ≤ s ≤ t < ∞}, which satisfies
φ(t, t, l) = 0 ,φ(t, l , l)> 0 , andφ(t,s, l)> 0 for l < s< t

, and has the partial derivative∂φ
∂s , defined by

∂φ
∂s

= ϕ(t,s, l)φ(t,s, l),ϕ ∈ Ω (1.2)

Further we define the operatorA[.; l , t] by

A[g; l , t] :=
∫ t

l
φ2(t,s, l)g(s)ds (1.3)

f or t ≥ s≥ l ≥ t0,where g(s) ∈C[t0,∞).

It is easy to see thatA[.; l , t] is a linear operator and
satisfies

A[g′; l , t] = −2A[gϕ; l , t] f or g(s) ∈ C1[t0,∞). (see
[11]). In what follows we use the notation
D = {(t,s) : t0 ≤ s < t < ∞} and
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D0 = {(t,s) : t0 ≤ s≤ t < ∞} .We say that a continuous
function H : D → [0,∞) belongs to the function classX
denoted byH ∈ X if
(i)H(t, t) = 0,H(t,s)> 0 for (t,s) ∈ D0.
(ii)H(t,s) has a continuous partial derivative with
respect tos defined by

∂H(t,s)
∂s

=−h(t,s)
√

H(t,s) f orsome h∈C(D0,R).(1.4)

The key idea in our proofs makes use of the idea used in
[9,11].

2 Main Results

Before starting our main results, we begin with Following
the lemma Which depends on [2] and will play an
important role in the proof of main results.

Lemma 2.1 If x(t) is a nonoscillatory solution of Eq.
(1.1), then either z(t) > 0,z′(t) > 0, r(t)z′′(t) > 0
eventually or z(t) < 0,z′(t) < 0, r(t)z′′(t) < 0 eventually
where z(t) be as defined in Eq.(1.1).

Proof. Without loss of generality we may assume that
x(t) > 0,x(τ(t)) > 0 for t ≥ t1 ≥ t0 . Then z(t) > 0 .
Firstly we claim thatr(t)z′′(t) is monotone and of one
signe. If r(t1)z′′(t1) = 0 for some t1 ≥ t0 .Then
(r(t)z′′(t))′ |t=t1= − f (t1,z(t1),z′(t1)) < 0 from which we
can prove thatr(t)z′′(t) cannot have another zero after it
vanishes once (see [7]) . Hencer(t)z′′(t) is monotone and
of one signe, so eitherr(t)z′′(t) > 0 , or r(t)z′′(t) < 0 for
t ≥ t1 . If r(t)z′′(t)< 0, then there existst2 ≥ t1 such that
r(t)z′′(t)≤ r(t2)z′′(t2)< 0
=−c, c> 0 ∀ t ≥ t2
Thusz′′(t) = −c

r(t) , t ≥ t2 , by integration, we get

z′(t) = z′(t2) − c
∫ t
t2

ds
r(s) , t ≥ t2 , therefore we see that

z′(t) → −∞ as t → ∞ , for which it follows thatz(t) is
eventually negative which contradicts the fact that
z(t)> 0 . Hence we conclude thatr(t)z′′(t)> 0 ∀ t ≥ t2
. Now we claim thatz′(t) > 0. Sincer(t)z′′(t) > 0 and
r(t) > 0, thenz′′(t) > 0. Thusz′(t) is monotone and of
one signe (i.e.z′(t) > 0 or z′(t) < 0 ). Assume that
z′(t) < 0. Sincer(t)z′′(t) > 0 , thenr(t)z′′(t) > c > 0 .
Thus
z′′(t)≥ c

r(t) , t ≥ t2.
By integration, we get
z′(t) ≥ z′(t2) + c

∫ t
t2

ds
r(s) , t ≥ t2 . Therefore we see that

z′(t) → ∞ as t → ∞ . This contradicts withz′(t) < 0 .
Hence z′(t) > 0 . The case whenx(t) < 0 is similar.
Theorem 2.1 Suppose that for each l≥ t0 there exists a
functionφ(t,s, l) ∈ Ω such that

limsup
t→∞

A[K− rϕ2; l , t]> 0 (2.1)

where the operator A[.; l , t] is defined by (1.3) and the
functionϕ = ϕ(t,s, l) is defined by (1.2). Then Eq. (1.1) is

oscillatory.

Proof. Suppose that there exists a nonoscillatory
solutionx(t) such thatx(t)> 0∀t ≥ t1 ≥ t0. Thenz(t)> 0
. Now, from Eq. (1.1) and(H3) , we get

(r(t)z′′(t))′ ≤−Kz′(t) (2.2)

Definew(t) = r(t)z′′(t)
z′(t) > 0

Differentiatingw(t) , we obtain

w′(t) =
(r(t)z′′(t))′

z′(t)
− r(t)

z′′(t)
z′(t)

2

,∀t ≥ t1

Using (2.2), we have

w′(t)≤−K−
w2(t)
r(t)

,∀t ≥ t1 (2.3)

Applying the operatorA[.; l , t] to (2.3), we get

A[w′(s); l , t]≤−A[K+
w2(s)
r(s)

; l , t],∀t ≥ t1

Thus, by the properties of the operatorA[.; l , t] , we obtain

A[K; l , t]≤−A[
w2(s)
r(s)

−2w(s)ϕ; l , t],∀t ≥ t1

=−A[(

√

1
r(s)

w(s)−
√

r(s)ϕ)2; l , t]+A[rϕ2; l , t]

≤ A[rϕ2; l , t].

Therefore
A[K− rϕ2; l , t]≤ 0

limsup
t→∞

A[K− rϕ2; l , t]≤ 0

This contradicts with (2.1). Hence Eq. (1.1) is oscillatory.

Theorem 2.2 Assume that there exists a function g∈
C1([t0,∞),R) such that for some H,h∈ X

limsup
t→∞

1
H(t, t0)

∫ t

t0
(H(t,s)ψ(s)−

1
4

r(s)v(s)h2(t,s))ds=∞ (

where ψ(t) = v(t)[K + r(t)g2(t) − (r(t)g(t))′],v(t) =
exp(−2

∫ t
t0

g(s)ds). Then Eq. (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1),
then there exists t1 ≥ t0 such that
x(t)> 0,x(τ(t))> 0, ∀t ≥ t1 . As in the proof of Theorem
2.2 we arrive (2.2). Now, define
u(t) = v(t)r(t)[ z′′(t)

z′(t) +g(t)]> 0, t ≥ t1
Differentiatingu(t) , we obtain

u′(t) = v(t) (r(t)z
′′(t))′

z′(t) − 2v(t)g(t)[u(t)
v(t) − r(t)g(t)] −
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r(t)v(t)[ u(t)
r(t)v(t) −g(t)]2+v(t)[r(t)g(t)]′−2v(t)r(t)g2(t)

Using (2.2), we get

u′(t)≤−ψ(t)−
u2(t)

r(t)v(t)
(2.5)

Multiplying (2.5) byH(t,s) and integrating with respect to
s from T to t , we get

∫ t

T
H(t,s)ψ(s)ds≤ H(t,T)u(T)−

∫ t

T
(

√

H(t,s)
v(s)r(s)

u(s)

+
1
2

√

v(s)r(s)h(t,s))2ds+
∫ t

T

1
4

v(s)r(s)h2(t,s)ds

∫ t

T
[H(t,s)ψ(s)−

1
4

v(s)r(s)h(t,s)2]ds≤ H(t,T)u(T)

limsup
t→∞

1
H(t, t0)

∫ t

t0
(H(t,s)ψ(s)

−
1
4

r(s)v(s)h2(t,s))ds≤ |u(t3)|< ∞, t3 ≥ T ≥ t0

This contradicts (2.4). Hence Eq. (1.1) is oscillatory.
In Theorem 2.2, if we takeH(t,s) = (t − s)n − 1 for
(t,s) ∈ D,n> 2 , thenh(t,s) =−(n−1)(t −s)(n−3)/2 .
Hence we get the following result.

Corollary 2.3 Suppose that there exists a function g∈
C1([t0,∞),R) such that for some integer n> 2 if

limsup
t→∞

1
tn−1

∫ t

t0
(t −s)(n−3)[(t −s)2ψ(s)−

(n−1)2

4
r(s)v(s)]ds= ∞

whereψ(s),v(s) are as in Theorem 2.3, then every solution
of Eq. (1.1) is oscillatory.

3 Examples

Example 3.1 Consider the D.E.

(
1
t2 z′′(t))′+z′ sin2(t)+(z′)3 = 0, t ≥ 1 (3.1)

Herer(t) = 1
t2
, f (t,z,z′) = z′ sin2(t)+(z′)3

Choosingφ(t,s, l) = t −s

It is clear that f (t,z,z′)
z′ = sin2(t) + (z′)2 ≥ K>0 and

ϕ(t,s, l) = −1
t−s .

Now

A[K− rϕ2; l , t] =
∫ t

l
(t −s)2[1−

1
s2(t −s)2 ]ds

=
1
t
+

(t − l)3

3
−

1
l

limsup
t→∞

A[K− rϕ2; l , t] = ∞ > 0

Hence by Theorem 2.2 Eq. (3.1) is oscillatory.
One may note that Theorem 1 in [2] fails to apply to Eq.
(3.1) withq(t) = 1,γ = 1 .

Example 3.2 Consider the D.E.

(
1
t4 z′′(t))′+z′ sin2(t)+(z′)3 = 0, t ≥ 1 (3.2)

Herer(t) = 1
t4
, f (t,z,z′) = z′ sin2(t)+(z′)3

Choosingg(t) = −1
t ,n= 3 in Corollary 2.4, we get

v(t) = t2,ψ(t) = t2− 4
t4

It is clear that f (t,z,z′)
z′ = sin2(t)+(z′)2 ≥ K>0

Now

1
tn−1

∫ t

t0
(t −s)(n−3)[(t −s)2ψ(s)−

(n−1)2

4
r(s)v(s)]ds

=
1
t2 [

t5

30
−

5t2

3
+

9t
2
+

9
t
−

26
5
]

limsup
t→∞

1
tn−1

∫ t

t0
(t −s)(n−3)[(t −s)2ψ(s)−

(n−1)2

4
r(s)v(s)]ds= ∞

Hence by Corollary 2.4 Eq. (3.2) is oscillatory.
Note that, if we putq(t) = 1,α = β = K = L = 1,ρ(t) =
t2 , then we see that Theorem 1 in [13] fails to apply to
Eq.(3.2).
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