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Abstract: We establish sufficient conditions for the existence and exponential convergence of positive almost periodic solutions for a
discrete Nicholson’s blowflies model with nonlinear harvesting term. A result concerning the persistence of the solutions is provided
prior to proving the main theorems. The validity of the main results is demonstrated by a numerical example.
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1 Introduction

One of the most popular population models is the well
known Nicholson’s blowflies model

x′(t) =−αx(t)+βx(t − τ)e−γx(t−τ), (1)

which was proposed by Gurney et al. in [1] to describe
the population of the Australian sheep–blowfly and to
agree with Nicholson’s experimental data [2]. Herex(t) is
the size of the population at timet, β is the maximum per
capita daily egg production, 1/γ is the size at which the
blowfly population reproduces at its maximum rate,α is
the pair capita daily adult death rate andτ is the
generation time. The dynamical behavior of solutions for
various modifications of this model and its discrete
analogue has been extensively studied by many authors
during the last couple of decades. For the background of
model (1), we suggest the reader to consult some relevant
papers [3,4,5,6,7,8,9,10,11].

It is well–known that the optimal management of
renewable resources has direct relationship to sustainable
development of population. One way to handle this is to
study population models subject to harvesting, dispersal
or competition. Biologists have purported that the process
of harvesting of population species, in particular, is of
great significance in exploitation of biological resources
such as in fishery, forestry and wildlife management.
Assuming that the harvesting is a function of the delayed

estimate of the true population, the authors in [12] have
put forward a question about the asymptotic behavior of
Nicholson’s model containing linear harvesting term of
the form

x′(t) =−αx(t)+βx(t − τ)e−γx(t−τ)−Hx(t −σ), (2)

whereα,β ,τ ,γ ,σ ,H ∈ (0,∞). In response to the raised
question, there have appeared many results concerning the
investigation of periodic and almost periodic behaviors of
equation (2) via employing several utilities such as fixed
point theorems and coincidence degree theory [13,14,15,
16,17,18]. The generalized Nicholson’s blowflies model
with a nonlinear harvesting term of the form

x′(t) = −α(t)x(t)+
N

∑
k=1

βk(t)x(t − τk(t))e
−x(t−τk(t))

− H(t,x(t)) (3)

has been recently attacked in the new paper [19]. Indeed,
the standard Leray-Schauder degree techniques are used
to establish necessary and sufficient conditions for the
existence of at least oneT−periodic solutions.

Besides their theoretical significance, difference
equations with almost periodic coefficients have shown
important influence in mathematical biology. A model
governed by these types of equations could be used to
mimic a population’s response to seasonal fluctuations in
its environment; see for instance the remarkable
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monographs [20,21,22]. Motivated by the above
justifications, numerous number of papers studying
population models described by difference equations have
been published by many researches over the last three
decades. Following this trend, the investigation of the
almost periodic solutions for the discrete counterpart of
equation (2) has been recently investigated by Alzabut et
al. in [23]. In this paper, however, we shall consider the
discrete Nicholson’s blowflies model with nonlinear
harvesting term of the form

∆x(n) = −α(n)x(n+1)+β (n)x(n− τ(n))e−γ(n)x(n−τ(n))

− H(n,x(n−σ(n))), (4)

where n ∈ Z and α,β ,γ ,τ ,σ : Z → [0,∞) and
H : Z× Z

m → [0,∞). We shall employ the contraction
mapping principle to establish sufficient conditions for
the existence of an almost periodic solution for (4). By
constructing an appropriate Lyapunov functional, we also
prove that the solutions of (4) converge exponentially to
an almost periodic solution. We provide a numerical
example to illustrate the effectiveness of the main
theorems. To the best of author’s observation, no paper
has been published regarding the investigation of almost
periodicity of equation (4). Comparing with some earlier
works, the result of this paper is novel and presents a
different approach.

2 Preliminary Assertions

Let Z and Z
m be the sets of integer numbers and the

m−dimensional integer vectors, respectively. For a
bounded sequencesg and f defined onZ and Z× Z

m,
respectively, we defineg+,g−, f+ and f− as follows
g+ = supn∈Zg(n), g− = infn∈Zg(n) and
f+ = sup(n,x)→(Z,Zm) f (n,x), f− = inf(n,x)→(Z,Zm) f (n,x).

In the sequel, we assume that

α− > 0, β− > 0, γ− > 0 (5)

and
r = max{τ+, σ+}> 0. (6)

Let I = {−r,−r+1, . . . ,−1,0},C= {ϕ : I →Z} andC+ =
{ϕ ∈C : ϕ ≥ 0,ϕ(0)> 0}. For eachϕ ∈C, we define the
norm ofϕ as‖ϕ‖0 =maxs∈I |ϕ|. Denotexn = x(n+ s) for
all s∈ I . For anyϕ ∈ C+, it is easy to see that there is a
unique solutionx(n,0,ϕ) of (4) with

x0 = ϕ (7)

andx(n,0,ϕ)> 0 for all n∈ Z.

Definition 1.[24] A sequence x: Z → R
m is said to be

almost periodic sequence if theε−translation set of x:

E{ε ,x} :=
{

τ ∈ Z : |x(n+ τ)−x(n)| < ε
}

,

for all n∈Z is a relatively dense set inZ for all ε > 0, that
is, for any givenε > 0, there exists an integer l> 0 such

that each discrete interval of length l contains an integer
τ = τ(ε) ∈ E{ε ,x} such that

|x(n+ τ)−x(n)|< ε ,

for all n∈Z, τ is called theε−translation number of x(n).

Definition 2.[24] Let f : Z× D → R
m, where D is an

open set inRm, f (n,x) is said to be almost periodic in n
uniformly for x∈ D if for any ε > 0 and any compact set
S in D, there exists a positive integer l(ε ,S) such that any
interval of length l(ε ,S) contains an integerτ for which

| f (n+ τ ,x)− f (n,x)|< ε ,

for all n ∈ Z and x∈ S, τ is called theε−translation
number of f(n,x).

We consider equation (4) under the assumptions:

H.1α,β ,γ ,τ ,σ : Z → [0,∞) are almost periodic
sequences;

H.2H : Z×Z
m → [0,∞) is almost periodic sequence and

there existsLH > 0 such that

‖H(n,x)−H(n,y)‖ ≤ LH‖x−y‖.

Further, we assume that

A.1There exist two constantsΓ1 andΓ2 such that

(β
γ

)+ 1
α−e

< Γ1,
β−

α+
Γ1e−γ+Γ1 − H+

α+
> Γ2

andΓ1 > Γ2.

The following result tells that every solution of (4)
persists.

Lemma 1.Let A.1 hold. Then for
ϕ ∈ C0 := {ϕ : Γ2 < ϕ(n) < Γ1,∀ n ∈ I}, the solution
x(n,n0,ϕ) of (4) and (7) satisfies

Γ2 < x(n,n0,ϕ)< Γ1, ∀ n∈ [n0,∞). (8)

Proof.Set x(n) = x(n,n0,ϕ). Let [n0,T) ⊆ [n0,∞) be an
interval such that

x(n)> 0, ∀ n∈ [n0,T). (9)

We claim that

0< x(n)< Γ1, ∀ n∈ [n0,T). (10)

For the sake of contradiction, we assume that (10) is not
true. Then, one can findn1 ∈ (n0,T) such that

x(n1+1)≥ Γ1 and 0< x(n)< Γ1, (11)
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for all n∈ [n0− r,n1+1). In view of (4), A.1, (11) and the
fact that supu≥0ue−u = 1

e, we have

0≤ ∆x(n1) = −α(n1)x(n1+1)

+ β (n1)x(n1− τ(n1))e
−γ(n1)x(n1−τ(n1))

−H(n1,x(n1−σ(n1)))

≤ −α(n1)x(n1+1)

+
β (n1)

γ(n1)
γ(n1)x(n1− τ(n1))e

−γ(n1)x(n1−τ(n1))

≤ −α−x(n1+1)+

(

β
γ

)+ 1
e

≤ α−[−Γ1+

(

β
γ

)+ 1
α−e

]

< 0,

which is a contradiction and this implies that (10) holds.
Next, we show that

x(n)> Γ2, ∀ n∈ [n0,T). (12)

On the contrary, assume that there existsn2 ∈ (n0,T) such
that

x(n2+1)≤ Γ2, and x(n)> Γ2, (13)

for all n ∈ [n0 − r,n2 + 1). In virtue of A.1 and (10), we
obtain

Γ2 < x(n)< Γ1, γ+x(n)≥ γ+
1

γ−
≥ 1 (14)

for all n ∈ [n0− r,n2+1). In view of (4), A.1, (13), (14)
and the fact that min1≤u≤δ ue−u = δe−δ , we have

0≥ ∆x(n2) = −α(n2)x(n2+1)

+
β (n2)

γ(n2)
γ(n2)x(n2− τ(n2))e

−γ(n2)x(n2−τ(n2))

− H(n2,x(n2−σ(n2)))

≥ −α+Γ2+
β−

γ+
γ+Γ1e−γ+Γ1 −H+

≥ α+
[

−Γ2+
β−

α+
Γ1e−γ+Γ1 − H+

α+

]

> 0,

which is a contradiction and this implies that (12) holds.
In view of (10) and (12), it follows that relation (8) is true.
Hence the proof is complete.

3 The Main Results

Consider the linear difference system

x(n+1) = A(n)x(n), (15)

wherex ∈ Z
m and A : Z → Z

m×m is a matrix sequence.
In what follows, we denote by‖ · ‖ any convenient norm
either of a vector or of a matrix.

Definition 3.The difference system (15) is said to possess
an exponential dichotomy onZ if there exist a projection P,
that is, an m×m matrix P such that P2 = P, and constants
K > 0, ν > 0 such that

‖X(r)PX−1(s+1)‖ ≤ K
( 1

1+ν

)r−s−1
, r ≥ s

and

‖X(r)(I −P)X−1(s+1)‖ ≤ K
( 1

1+ν

)s+1−r
, s≥ r,

where X(t) is the fundamental solution matrix of (15) and
r,s∈ Z.

Consider the following almost periodic difference
system

x(n+1) = A(n)x(n)+ f (n,x), (16)

whereA : Z → Z
m×m is almost periodic matrix sequence

and f : Z×Z
m → Z

m is almost periodic vector sequence.

Theorem 1.[23] If the linear system (15) admits
exponential dichotomy, then system (16) has a bounded
solution x(n) in the form

x(n) =
n−1

∑
k=−∞

X(n)PX−1(k+1) f (k,x(k))

−
∞

∑
k=n

X(n)(I −P)X−1(k+1) f (k,x(k)), (17)

where X(n) is the fundamental solution matrix of (15).

The following result can be easily extracted from
Lemma 2.15 in [25].

Theorem 2.Let α(n) > 0 be an almost periodic sequence
onZ and

inf
n∈Z

α(n)
1+α(n)

> 0, (18)

then the linear system

∆x(n) =−α(n)x(n+1) (19)

admits an exponential dichotomy onZ.

Set

B = {ϕ : ϕ is an almost periodic sequence onZ}.

If we define the norm‖ϕ‖
B

=supn∈Z |ϕ(n)|, for anyϕ ∈
B, then one can easily deduce thatB is a Banach space.

We assume that

A.2β+

α−
1
e2 +

LH
α− < 1.

Theorem 3.Let A.1 and A.2 hold. Then, there exists a
unique positive almost periodic solution of (4) in
B

∗ : ={ϕ : ϕ ∈ B, Γ2 < ϕ(n)< Γ1, ∀ n∈ Z}.
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Proof.For anyφ ∈ B, we consider an auxiliary equation

∆x(n) = −α(n)x(n+1)+β (n)φ(n− τ(n))e−γ(n)φ(n−τ(n))

− H(n)φ(n−σ(n)). (20)

Since infn∈Z
α(n)

1+α(n) > 0, it follows from Theorem2 that
the linear system

∆x(n) =−α(n)x(n+1) (21)

admits an exponential dichotomy onZ. By Theorem1
and Theorem2, we deduce that system (20) has a
bounded solution of the form

xφ (n) =
n−1

∑
m=−∞

n−1

∏
r=m

( 1
1+α(r)

)

×
[

β (m)φ(m− τ(m))e−γ(m)φ(m−τ(m))

− H(m,φ(m−σ(m)))
]

. (22)

By using H.1–H.2, the almost periodicity of

∏n−1
r=m

(

1
1+α(r)

)

and the fact that the uniform limit of

almost periodic sequences is also almost periodic, we
deduce thatxφ is also almost periodic.

Define a mappingT : B → B by setting

T(φ(n)) = xφ (n), ∀ φ ∈ B.

It is easy to see thatB∗ is a closed subset ofB. For any
φ ∈ B

∗, we have

xφ (n) ≤
n−1

∑
m=−∞

n−1

∏
r=m

( 1
1+α(r)

)

× β (m)φ(m− τ(m))e−γ(m)φ(m−τ(m))

=
n−1

∑
m=−∞

n−1

∏
r=m

( 1
1+α(r)

)

× β (m)

γ(m)
γ(m)φ(m− τ(m))e−γ(m)φ(m−τ(m)).

By the fact that supu≥0ue−u = 1
e, we obtain

xφ (n) ≤
n−1

∑
m=−∞

n−1

∏
r=m

( 1
1+α−

)

(

β
γ

)+ 1
e
. (23)

Using that∑n−1
m=−∞ ∏n−1

r=m

(

1
1+α−

)

= 1
α− , we end up with

xφ (n)≤
(

β
γ

)+ 1
α−e

< Γ1, ∀ n∈ Z. (24)

On the other hand, we have

xφ (n) ≥
n−1

∑
m=−∞

n−1

∏
r=m

( 1
1+α(r)

)

×
[β (m)

γ+
γ+φ(m− τ(m))e−γ+φ(m−τ(m))−H+

]

.

By virtue of the fact that min1≤u≤κ ue−u = κe−κ , we
obtain

xφ (n)≥ β−

α+
Γ1e−γ+Γ1 − H+

α+
> Γ2, ∀ n∈ Z.

This tells that the mappingT is a self–mapping fromB∗

to B
∗.

Next, we claim thatT is a contractive mapping onB∗.
Let ϕ,ψ ∈ B

∗. Then

‖T(ϕ)−T(ψ)‖B = sup
n∈Z

|T(ϕ(n))−T(ψ(n))|

= sup
n∈Z

∣

∣

∣

n−1

∑
m=−∞

n−1

∏
r=m

( 1
1+α(r)

)

β (m)
[

ϕ(m− τ(m))

e−γ(m)ϕ(m−τ(m))−ψ(m− τ(m))e−γ(m)ψ(m−τ(m)))
]

− H(m,ϕ(m−σ(m)))+H(m,ψ(m−σ(m)))
∣

∣

∣

= sup
n∈Z

∣

∣

∣

n−1

∑
m=−∞

n−1

∏
r=m

( 1
1+α(r)

)β (m)

γ(m)

[

γ(m)ϕ(m− τ(m))

e−γ(m)ϕ(m−τ(m))− γ(m)ψ(m− τ(m))e−γ(m)ψ(m−τ(m)))
]

− H(m,ϕ(m−σ(m)))+H(m,ψ(m−σ(m)))
∣

∣

∣
.

In virtue of the fact that supu≥1

∣

∣

1−u
eu

∣

∣= 1
e2 , we observe that

∣

∣xe−x−ye−y
∣

∣ =

∣

∣

∣

∣

1− (x+θ(y−x))

ex+θ(y−x)

∣

∣

∣

∣

|x−y| (25)

≤ 1
e2 |x−y| , x,y∈ [1,∞), 0< θ < 1.

By (8), we also observe

γ(m)ϕ(m− τ(m))≥ γ(m)Γ2 ≥ γ(m)
1

γ−
≥ 1, ∀ m∈ Z.

Therefore, by (4), (5) and (25), we have

‖T(ϕ)−T(ψ)‖B ≤ sup
n∈Z

n−1

∑
m=−∞

n−1

∏
r=m

( 1
1+α−

)

×
[β (m)

e2

∣

∣

∣
ϕ(m− τ(m))−ψ(m− τ(m))

∣

∣

∣

+
∣

∣H(m,ϕ(m−σ(m)))−H(m,ψ(m−σ(m)))
∣

∣

]

≤
(

sup
n∈Z

n−1

∑
m=−∞

n−1

∏
r=m

( 1
1+α−

))(β+

e2 +LH

)

‖ϕ −ψ‖ .

Therefore, we end up with

‖T(ϕ)−T(ψ)‖B ≤
( β+

α−e2 +
LH

α−
)

‖ϕ −ψ‖ ,

which implies by (A.2) that the mappingT is contractive
onB

∗. Therefore, the mappingT possesses a unique fixed
point ϕ∗ ∈ B

∗ such thatTϕ∗ = ϕ∗. Thus,ϕ∗ is an almost
periodic solution of (4) in theB

∗. The proof is complete.

c© 2013 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.2, No. 3, 201-207 (2013) /www.naturalspublishing.com/Journals.asp 205

We assume that

A.3α− > 1+ β+

e2 +LH .

Theorem 4.Let A.1 and A.3 hold. Further, assume x∗(n)
is positive almost periodic solution of (4) in the setB∗.
Then, the solution x(n,n0,ϕ) of (4) with ϕ ∈C0 converges
exponentially to x∗(n) as n→ ∞.

Proof.Setx(n)= x(n,n0,ϕ) andy(n)= x(n)−x∗(n), where
n∈ [n0− r,∞). Then

∆y(n) = −α(n)y(n+1)+β (n)
[

x(n− τ(n))e−γ(n)x(n−τ(n))

−x∗(n− τ(n))e−γ(n)x∗(n−τ(n))]

−
[

H(n,x(n−σ(n)))−H(n,x∗(n−σ(n)))
]

. (26)

The result of Lemma1 tells that x(n) is positive and
bounded on[n0,∞) and

Γ2 < x(n)< Γ1, ∀ n∈ [n0− r,∞). (27)

Define a functionΦ(u) by setting

Φ(u) = eu−α−+β+ 1
e2 eu(r+1)+LHeu(r+1), u∈ [0,1].

(28)
It is clear thatΦ is continuous on[0,1]. Then, by (A.3) we
have

Φ(0) = 1−α−+
β+

e2 +LH < 0,

which implies that there exist two constantsη > 0 and 0<
λ ≤ 1 such that

Φ(λ ) = eλ −α−+β+ 1
e2 eλ (r+1)+LHeλ (r+1) <−η < 0.

(29)
We consider the discrete Lyapunov functional

V(n) = |y(n)|eλn. (30)

Calculating the difference ofV(n) along the solutiony(n)
of (26), we have

∆V(n) = ∆
(

|y(n)|eλn)

= ∆ |y(n)|eλ (n+1)+ |y(n)|∆eλn

≤ −α(n)|y(n+1)|eλ (n+1)

+ β (n)|x(n− τ(n))e−γ(n)x(n−τ(n))

− x∗(n− τ(n))e−γ(n)x∗(n−τ(n))|eλ (n+1)

+
∣

∣H(n,x(n−σ(n)))−H(n,x∗(n−σ(n)))
∣

∣eλ (n+1)

+ |y(n)|
(

eλ (n+1)−eλn)

≤ |y(n)|eλ (n+1)−α(n)|y(n+1)|eλ (n+1)

+
[

β (n)|x(n− τ(n))e−γ(n)x(n−τ(n))

− x∗(n− τ(n))e−γ(n)x∗(n−τ(n))|
+

∣

∣H(n,x(n−σ(n)))−H(n,x∗(n−σ(n)))
∣

∣

]

eλ (n+1)

for all n≥ n0.
Let

M := eλn0

(

max
n∈[n0,∞)

|ϕ(n)−x∗(n)|+1

)

, ∀ n≥ n0.

Then, we claim that

V(n) = |y(n)|eλn < M, ∀ n≥ n0. (31)

Assume, on the contrarily, that there existsn∗ > n0 such
that

V(n∗)≥ M and V(n)< M, ∀ n∈ [n0− r,n∗), (32)

which implies that

V(n∗)−M ≥ 0 and V(n)−M < 0, ∀ n∈ [n0− r,n∗).
(33)

In virtue of (25), (31) and (32), we obtain

0 ≤ ∆ (V(n∗)−M) = ∆V(n∗)

≤ |y(n∗)|eλ (n∗+1)−α(n∗)|y(n∗+1)|eλ (n∗+1)

+
[

β (n∗)|x(n∗− τ(n∗))e−γ(n∗)x(n∗−τ(n∗))

− x∗(n∗− τ(n1))e
−γ(n∗)x∗(n∗−τ(n∗))|

+
∣

∣H(n∗,x(n∗−σ(n)))−H(n∗,x
∗(n∗−σ(n)))

∣

∣

]

eλ (n∗+1)

≤ |y(n∗)|eλ (n∗+1)−α(n∗)|y(n∗+1)|eλ (n∗+1)

+
β (n∗)

e2 |y(n∗− τ(n∗))|eλ (n∗+1−τ(n∗))eλτ(n∗)

+ LH
∣

∣y(n∗−σ(n∗))
∣

∣eλ (n∗+1−σ(n∗))eλσ(n∗)

≤ (eλ −α−)M+
β+

e2 Meλ (r+1)+LHMeλ (r+1)

=
[

eλ −α−+
β+

e2 eλ (r+1)+LHeλ (r+1)]M.

Thus,

eλ −α−+
β+

e2 eλ (r+1)+LHeλ (r+1) ≥ 0

which contradicts (29). Hence (31) holds. It follows that
|y(n)|< Me−λn for all n≥ n0. The proof is complete.

In what follows, we construct an example whose aim
is not standing at generality but illustrating how the main
theorems can be used.

Example 1.Consider the following Nicholson’s blowflies
model with a nonlinear harvesting term of the form

∆x(n) = −(18+cos2n)x(n+1)

+ ee−1(20+0.01|sin
√

5 n|)x(n−e2|cos
√

3 n|) (34)

× e−x(n−e2|cos
√

3 n|)

−
√

5
14

∣

∣sinn+cos
√

11n
∣

∣

x2(n−e2|cos
√

3 n|)

1+x2(n−e2|cos
√

3 n|)
,
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where

α(n) = 18+cos2n, β (n) = ee−1(20+0.01|sin
√

5 n|),

τ(n) = e2|cos
√

3 n|, γ(n) = 1

and
H(n,x) =

√
5

14

∣

∣sinn+cos
√

11n
∣

∣

x2(n)
1+x2(n)

, σ(n) = e2|cos
√

3 n|.

It is clear that

α− = 18, α+ = 19, β− = 20ee−1, β+ = 20.01ee−1,

γ+ = γ− = 1 and H+ = 0.32.

It is not difficult to show thatH satisfies Lipshitz condition
with LH = 0.32. Thus, conditions H.1–H.2 hold. LetΓ1 = e
andΓ2 = 1. Then

Γ1 = e> Γ2 = 1, (
β
γ
)+

1
α−e

≈ 2.28< e,

β−

α+
Γ1e−γ+Γ1 − H+Γ1

α+
≈ 1.00685> 1

and this shows that condition A.1 is satisfied. It remains
to check conditions A.2 and A.3. Indeed, one can see the
validity of these conditions since

β+

α−
1
e2 +

LH

α− ≈ 0.85< 1 and 1+
β+

e2 +LH ≈ 16.42< 18.

Therefore, we conclude that all assumptions of Theorem
3 and Theorem4 are fulfilled. Hence, system (34) has a
positive almost periodic solutionx∗ in B

∗={ϕ : ϕ ∈ B,
1 < ϕ(n) < e, ∀ n ∈ Z}. Moreover, if ϕ ∈ C0, then
x(n,n0,ϕ) converges exponentially tox∗ asn→ ∞.

Some Remarks

1.Due to certain biological restrictions, it is agreed that
the solutions under study in this paper are positive.
This is justified by the choice of the initial condition
in form of (7). Indeed, one can easily show that the
solutions of (4) with (7) remain positive for alln∈ Z.

2.It is worth mentioning here that most of the discrete
Nicholson’s models investigated in the literature have
involved a linear part of form∆x(n) = −α(n)x(n). In
this paper, however, we consider Nicholson’s model
of form (4) to guarantee the convergence of the series
appearing in the solution representation (22).

3.As Nicholson’s model under consideration is
involving a nonlinear harvesting term, one can easily
figure out that some of the results reported in the
literature might be no longer applicable for proving
the existence and exponential convergence of almost
periodic solutions of (4). This implies that the main
theorems of this paper improve as well as extend
some of previously obtained results among them we
list for instance [4,9,10,23].

4.The results of this paper could be generalized to
Nicholson’s model with patch structure and nonlinear
harvesting terms.
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