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Abstract: A numerical method based on Dual Reciprocity Boundary Element Method (DRBEM) has presented to interpolate two-
dimensional data with arbitrary pattern. This method is performed without specific boundary conditions. It claimed that interpolation
function is true on the Poisson equation with unknown source function. Thesource function is estimated by radial basis functions
expansion. Finally, numerical sampling has conducted on some specificfunctions as primary functions and interpolation values of
numerical sampling have compared to primary function values in order toevaluate accuracy and precision of the method.
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1 Introduction

Numerical methods today’s are used in many branches of
science, engineering and technology as a high efficient
method to simulate and solve practical problems. One of
these methods is the interpolation method. Various
methods have introduced for the interpolation of
one-dimensional, two-dimensional and three-dimensional
data with regular or non-regular configurations [1]. A
numerical method is presented to interpolate
two-dimensional data with arbitrary pattern. It assumed
that interpolation function is valid in the Poisson equation
with unknown source function. Source function has
extended by radial basis functions (RBFs) [2,3,4,5,6]
that will be unknown expansion coefficients. Then by
using location of sampled points, a closed boundary
created. After that, Green’s theorem is used to change the
Poisson equation into integral equation and domain
integral at integral equation changes to boundary equation
by expansion of source function. Finally, the unknown
coefficients of the expanded source function and unknown
coefficients of boundary integral equation are calculated
by conventional boundary element method. The results of
interpolation with primary function values compared
together and comparisons results are reported to evaluate

the accuracy of the proposed method. Although an
interpolation technique from scattered data with specific
boundary conditions was presented by reference [7], the
current method is performed without specific boundary
conditions where is very applicable in practical problems.

2 Numerical method

It assumed that sampling has done at N points with
Xk = (xk,yk) coordinates,k ∈ {1, ...,N}, from Ū (X)
quantity as a primary function. The sampled data is
shown withUk = Ū (Xk). Interpolation function ofU (X)
that is an approximation from the primary function,
Ū (X), is considered that satisfy the following differential
equation:

∇2U (X) = Q(X) (1)

It must be notify that in equation (1) as well as the
U (X), Q(X) function is also unknown. In this equation
Q(X) plays the source role.U (X) function will be able to
calculate if Q(X) function and appropriate boundary
condition on the boundary of sampling area are known
[8]. In the following, the source function will
approximate by RBFs. Hence, the equation (1) converts to
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the appropriate integral equation and solve this integral
equation by boundary element method. At first, with
regard to the location of sampling points{Xk}, by
connecting the outer points together, the boundary of area
is formed. The closed boundary (connection of points to
each other) shows withΓ and the surrounded area by the
boundary is shown withΩ . The figure ofΓ boundary and
Ω domain is not particular and different type of figures
can shape the domain but it must be notify that finally
interpolation function is only estimated in the domain of
the formed boundary. Two types of the formed boundaries
and domains by a similar set of sampling points are
shown in Fig. 1. The differential equation (1) converts
into the integral equation after formation ofΓ boundary
and Ω domain. The second form of Green’s theorem is
used for this conversion as follows:

∫

Ω
ψ (X)∇2φ (X)−φ (X)∇2ψ (X)dΩ =

∮

Γ
ψ (X)

∂φ (X)

∂n
−φ (X)

∂ψ (X)

∂n
dΓ (2)

The two functions ofψ (X) and φ (X) are arbitrary
scalar functions and∂

/

∂n shows normal derivative of
considered quantities that is defined as follows:

∂ (.)
/

∂n = n̂.
⇀

∇(.) (3)

wheren̂ is normal vector perpendicular to theΓ boundary
and is considered outward toΩ domain. Green equation
corresponding to equation (1) is expressed as follows:

∇2G
(

X ,X ′
)

=−δ
(

X −X ′
)

(4)

whereG(X ,X ′) is Green function andδ (X −X ′) is the
Dirac delta function. In this method, there is no restriction
to choose Green function. Therefore, with regard to the
problem that is a two or three dimensional problem, the
simplest Green function will be selected. In
two-dimensional problems, Green function is considered
asG(X ,X ′) = − ln |X −X ′|/2π. Equation (2) is rewritten
for the functionsψ (X) = G(X ,X ′) andφ (X) = U (X) as
follows:

∫

Ω
G
(

X ,X ′
)

∇2U (X)−U (X)∇2G
(

X ,X ′
)

dΩ =

∮

Γ
G
(

X ,X ′
) ∂U (X)

∂n
−U (X)

∂G(X ,X ′)

∂n
dΓ (5)

By substitution equations (1) and (4) in equation (5) it
drives:

∫

Ω
G
(

X ,X ′
)

Q(X)+U (X)δ
(

X −X ′
)

dΩ =

∮

Γ
G
(

X ,X ′
) ∂U (X)

∂n
−U (X)

∂G(X ,X ′)

∂n
dΓ (6)

The second term of the left hand side of equation (6) is
calculated as follows:

∫

Ω
U (X)δ

(

X −X ′
)

dΩ =C
(

X ′
)

U
(

X ′
)

(7)

The coefficientC (X ′) for the inner and outer regions of the
Γ boundary is equal to:

C
(

X ′
)

=

{

1 X ′ ∈ Ω and X ′ /∈ Γ
0 X ′ /∈ Ω and X ′ /∈ Γ (8)

If X ′ locates on theΓ boundary,C (X ′) can be obtained
from the following equation:

C
(

X ′
)

=−
∮

Γ

∂G(X ,X ′)

∂n
dΓ , X ′ ∈ Γ (9)

Since in the equation (9) X ′ ∈Γ , so the integral in the point
X = X ′ will be singular, therefore, it’s Cauchy Principal
Value (CPV) needs to be calculated. Introducing Eq. (7) in
Eq. (6) gives:

C
(

X ′
)

U
(

X ′
)

=−
∫

Ω
G
(

X ,X ′
)

Q(X)dΩ +

∮

Γ
G
(

X ,X ′
) ∂U (X)

∂n
−U (X)

∂G(X ,X ′)

∂n
dΓ (10)

Each integrals of equation (10) can be shown as follows:

IΩ
(

X ′
)

=
∫

Ω
G
(

X ,X ′
)

Q(X)dΩ (11)

I1Γ
(

X ′
)

=
∮

Γ
G
(

X ,X ′
) ∂U (X)

∂n
dΓ (12)

I2Γ
(

X ′
)

=
∮

Γ
U (X)

∂G(X ,X ′)

∂n
dΓ (13)

By considering the integral equation (10), if Q(X) is
known in theΩ domain, alsoU (X) and∂U (X)/∂n are
known on theΓ boundary, value ofU (X ′) will be able to
calculate at any arbitrary point in theΩ domain. As a
result, Q(X) at the domain ofΩ , also U (X) and
∂U (X)/∂n on theΓ boundary must be estimate. In the
following, a numerical method to calculate these
functions based on DRBEM will provide.

Fig. 1. The formation of two different boundaries with a
uniform set of sample points.
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Fig. 2. Different point’s arrangement (A: 41, B: 49, C: 60, D: 91,
E: 106 points.)

3 Domain integral

The expressed integral in the equation (11) must be
performed on total considered domain. There will be two
problems in numerical calculation of this integral if
assume thatQ(X) is known. First,Ω domain typically
has irregular shape. Secondly, if the observing pointX ′ is
selected in theΩ domain, the integral will be singular. In
order to solve these two problems, the integral will be
converted to boundary integral by expansion ofQ(X)
function based on radial basis functions. This expansion
is expressed as follows [9,10]:

Q(X) =
N

∑
k=1

αkQ(m)
k (X ,Xk) (14)

where Q(m)
k (X ,Xk) is a m order polynomial ofRk as

follows:

Q(m)
k (X ,Xk) = Q(m)

k (Rk) =
m

∑
l=0

Rl
k, Rk = |X −Xk| (15)

In this equation,Xk shows the location of the sampling
points and summation of the equation (14) is carried out
on all these points. Coefficients ofαk in equation (14) are
unknown. In addition, it can be seen that the functions of
Q(m)

k (Rk) play role of source in the following differential
equation:

∇2U (m)
k (Rk) = Q(m)

k (Rk) (16)

U (m)
k (Rk) =

R2
k

22 +
R3

k

32 + ...+
Rm+2

k

(m+2)2 (17)

Using equations (14) and (16), integral (11) change to the
following form:

IΩ
(

X ′
)

=
N

∑
k=1

αk

∫

Ω
G
(

X ,X ′
)

∇2U (m)
k (Rk)dΩ (18)

The domain integral in the equation (18) can be
changed to boundary integral by using again the second
form of Green’s theorem:

∫

Ω
G
(

X ,X ′
)

∇2U (m)
k (Rk)dΩ =−C

(

X ′
)

U (m)
k

(

R′
k
)

+

∮

Γ
G
(

X ,X ′
) ∂U (m)

k (Rk)

∂n
−U (m)

k (Rk)
∂G(X ,X ′)

∂n
dΓ(19)

whereR′
k = |X ′−Xk|. By putting equation (19) in equation

(18) it can be derived that:

IΩ
(

X ′
)

=
N

∑
k=1

αkFk
(

X ′
)

(20)
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where:

Fk
(

X ′
)

=−C
(

X ′
)

U (m)
k

(

R′
k
)

+

∮

Γ
G
(

X ,X ′
) ∂U (m)

k (Rk)

∂n
−U (m)

k (Rk)
∂G(X ,X ′)

∂n
dΓ (21)

It can be seen thatFk (X ′) for each arbitrary point ofX ′ in
the domain ofΩ can be calculated, and the regional
integral (11) is converted into a series of boundary
integrals.

4 Boundary integrals

At first, theΓ boundary is gridding in order to calculate
the boundary integrals in equations (12) and (13).
Boundary element with index i is consider as connecting
line between any two points of the set of sampling points
that are located on theΓ boundary. As a result, the
boundary integrals (12) and (13) are converted into the
summation of integrals over each boundary element:

I1Γ
(

X ′
)

=
NB

∑
i=1

∫

Γi

G
(

X ,X ′
) ∂U (X)

∂n
dΓ (22)

I2Γ
(

X ′
)

=
NB

∑
i=1

∫

Γi

U (X)
∂G(X ,X ′)

∂n
dΓ (23)

where NB expresses the number of boundary elements.
Function of U (X) on the Γi boundary element can be
approximated as the following:

U (X)|Γi
≈

1−α
2

Ui−1+
1+α

2
Ui (24)

Parameter ofα varies in the range of[−1,1] and
parametric equation ofΓi boundary element can be
expressed byα as the following:

x(α)|Γi
≈

1−α
2

xi−1+
1+α

2
xi (25)

y(α)|Γi
≈

1−α
2

yi−1+
1+α

2
yi (26)

According to the relations (25), and (26), it can be derived
that:

dΓ =

√

(dx)2+(dy)2 =
Li

2
dα (27)

where Li is the length of theΓi boundary element. By
using the equations (24), (25), (26) and (27), I2Γ (X ′) can
be calculated. To calculate each of the integrals of
equation (22), some points (except starting and ending
points) is selected as nodes on the element ofΓi. With
regard to number of selected nodes on the element,
function of ∂U (X)/∂n can be estimated. In this study,
linear elements approximation is used. In this

approximation, 2 nodes are considered on each element.

The coordinates of the nodes are shown withX (1)
i and

X (2)
i . The values of∂U

(

X (1)
i

)

/∂n and ∂U
(

X (2)
i

)

/∂n

represented withq(1)i andq(2)i , respectively. In the linear
elements approximation,∂U (X)/∂n is expressed as
follows [8]:

∂U (X)

∂n

∣

∣

∣

∣

Γi

=W1 (α)q(1)i +W2 (α)q(2)i (28)

where weighting functions ofW1 (α) and W2 (α) are
linear functions that their functional shape are specified

with respect to the location of theX (1)
i and X (2)

i nodes.
For example, by choosing nodes at locations of 1/4 and
3/4 lengths of each element, these functions are expressed
as follows:

W1 (α) =
1−2α

2
(29)

W2 (α) =
1+2α

2
(30)

By putting the equations (25), (26), (27) and (28) in
equation (22) it derives that:

I1Γ
(

X ′
)

=
NB

∑
i=1

∫ 1

−1
G
(

X (α) ,X ′
)

{

W1 (α)q(1)i +W2 (α)q(2)i

} Li

2
dα (31)

This equation can be arranged as follows:

I1Γ
(

X ′
)

=
NB

∑
i=1

A(1)
i

(

X ′
)

q(1)i +A(2)
i

(

X ′
)

q(2)i (32)

where:

A(1,2)
i

(

X ′
)

=

∫ 1

−1
G
(

X (α) ,X ′
)

W1,2 (α)
Li

2
dα (33)

5 Solving the integral equation

By putting the equations (20), (23) and (32) in equation
(10) it derives that:

C
(

X ′
)

U
(

X ′
)

=−I2Γ
(

X ′
)

−
N

∑
k=1

αkFk
(

X ′
)

+

NB

∑
i=1

A(1)
i

(

X ′
)

q(1)i +A(2)
i

(

X ′
)

q(2)i (34)

where the coefficients ofαk, q(1)i and q(2)i are unknown.
By selecting of observation pointX ′ on each sampling
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points ofXk′ and node points ofX (1)
i′ andX (2)

i′ , equation
(34) is changed to an algebraic system of equations.
Consequently, an algebraic system of equations with
N +2NB is obtained:

−
N

∑
k=1

αkFk (Xk′)

+
NB

∑
i=1

A(1)
i (Xk′)q(1)i +A(2)

i (Xk′)q(2)i

=C (Xk′)U (Xk′)+ I2Γ (Xk′) (35)

−
N

∑
k=1

αkFk

(

X (1)
i′

)

+
NB

∑
i=1

A(1)
i

(

X (1)
i′

)

q(1)i +A(2)
i

(

X (1)
i′

)

q(2)i

=C
(

X (1)
i′

)

U
(

X (1)
i′

)

+ I2Γ

(

X (1)
i′

)

(36)

−
N

∑
k=1

αkFk

(

X (2)
i′

)

+
NB

∑
i=1

A(1)
i

(

X (2)
i′

)

q(1)i +A(2)
i

(

X (2)
i′

)

q(2)i

=C
(

X (2)
i′

)

U
(

X (2)
i′

)

+ I2Γ

(

X (2)
i′

)

(37)

wherek′ ∈ {1, ...,N} and i′ ∈ {1, ...,NB}. By solving this

system, the coefficients ofαk, q(1)i and q(2)i can be
obtained. By using these coefficients in equation (34),
value ofU (X ′) can be calculated at any arbitrary point
within a specific area.

6 Numerical result analysis

In order to evaluate the precision and accuracy of the
presented method in this paper, numerical sampling from
some specific functions has done and by using the
sampling data, interpolation has done. Then, in more than
1000 points, the interpolation values compared with the
primary function values. For this comparison, the
following parameters were calculated:

AV G =
1

NT

(

NT

∑
j=1

∣

∣Ū (X j)
∣

∣

)

ERR =
1

NT

(

NT

∑
j=1

∣

∣Ū (X j)−U (X j)
∣

∣

)

RMSE =

√

√

√

√

1
NT

(

NT

∑
j=1

(Ū (X j)−U (X j))
2

)

Table 1: Interpolation by primary function of sin(x)sin(y) for
different values ofm.

M AVG ERR RMSE R-RMSE
1 0.202 1.545e−3 2.610e−3 1.290
2 0.202 1.407e−3 2.916e−3 1.441
3 0.202 1.200e−3 2.330e−3 1.152
4 0.202 1.381e−3 2.702e−3 1.336
5 0.202 1.481e−3 2.667e−3 1.318
6 0.202 1.506e−3 2.708e−3 1.338
7 0.202 1.434e−3 2.989e−3 1.478
8 0.202 1.975e−3 4.401e−3 2.175
9 0.202 2.631e−3 6.228e−3 3.078

Table 2: Interpolation by primary function ofx2+y2 for different
values ofm.

M AVG ERR RMSE R-RMSE
1 0.633 0.032 0.042 6.634
2 0.633 0.034 0.044 6.990
3 0.633 0.048 0.063 9.886
4 0.633 0.061 0.082 12.885
5 0.633 0.028 0.04 6.339
6 0.633 0.019 0.035 5.594
7 0.633 0.023 0.043 6.724
8 0.633 0.017 0.037 5.781
9 0.633 0.207 0.251 39.669

R−RMSE = (RMSE/AV G)×100

where X j is location of estimated points andNT is the
number of theses points. These quantities express the
mean absolute of primary function at the estimated points,
mean absolute error of interpolation function to the
primary function, root mean square error, and its
percentage, respectively. At the first problem, from the
function of Ū (X) = sin(x)sin(y) sampling has done in
N = 7 × 7 points with square pattern in the interval
x ∈ [−1,1] and y ∈ [−1,1] (Figure 2-b). 24 points
(NB = 24) from the total points are located on the
boundary and 25 points (N − NB = 25) of them are
located inside the boundaries. Results of interpolation for
different values ofm (polynomial order of the expansion
Q(X) in equation14) are given at Table 1. According to
Table 1, it can be observed that the values of mentioned
quantities experience a lot of variation relative to the
parameter m. In addition, the differences of the
interpolation function is very small compared to the
primary function and the best interpolation is performed
at m = 3. At all estimation points, interpolation is done by
inverse optimal distance method according to the
following equation:

U (X) =

(

N

∑
k=1

Ukd−β
k

)

/

(

N

∑
k=1

d−β
k

)

The following results obtained from comparison of
the interpolation values with primary function values at
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Table 3: Interpolation by primary function ofx2−y2 for different
values ofm.

M AVG ERR RMSE R-RMSE
1 0.316 7.739e-3 9.758e-3 3.087
2 0.316 0.013 0.017 5.254
3 0.316 0.035 0.047 14.892
4 0.316 4.954e-3 9.48e-3 3
5 0.316 4.043e-3 6.563e-3 2.077
6 0.316 — — —
7 0.316 3.929e-3 6.481e-3 2.051
8 0.316 0.013 0.016 5.197
9 0.316 0.075 0.097 30.773

Table 4: Interpolation by primary function of sin(2x)cos(3y)for
different values ofm.

M AVG ERR RMSE R-RMSE
1 0.429 0.049 0.077 17.941
2 0.429 0.045 0.068 15.908
3 0.429 0.031 0.048 11.204
4 0.429 0.033 0.049 11.521
5 0.429 0.023 0.036 8.349
6 0.429 0.029 0.045 10.518
7 0.429 0.019 0.033 7.588
8 0.429 0.074 0.151 35.247
9 0.429 0.019 0.027 6.2

Table 5: Interpolation by different primary functions,
with optimal values of m for different sampling point
arrangements. A: sin(2x)cos(3y), B: exp

(

−4(x2+ y2)
)

, C:
sin2 (2xy)exp

(

−4(x2+ y2)
)

,
Function N M AVG ERR RMSE R-RMSE

A 49 9 0.429 0.019 0.027 6.2
A 91 8 0.385 6.052e-3 0.012 3.07
A 106 6 0.395 8.318e-3 0.016 3.989
B 41 1 0.303 4.052e-3 5.429e-3 1.79
B 60 1 0.269 8.756e-3 0.013 4.734
B 106 1 0.241 6.387e-4 1.089e-3 0.452
C 41 1 0.407 0.027 0.039 9.466
C 49 5 0.468 0.022 0.032 6.88
C 91 5 0.388 5.387e-3 8.704e-3 2.241

β = 3: ERR = 0.024, RMSE = 0.03,
R−RMSE = 14.855. By comparing these results with the
results of Table 1 it can be seen that in this problem,
interpolation by this method is more accurate than inverse
distance method. In the following, sampling is performed
on three functions of̄U1 (X) = x2 + y2, Ū2 (X) = x2 − y2

and Ū3 (X) = sin(2x)cos(3y) as primary functions at
specified locations shown in Fig. (2-a). Then,
interpolation is carried out based on this method for
different values ofm and the primary function values are
compared with the calculated values (Tables 2, 3 and 4).
The best values of interpolation for functions̄U1, Ū2 and
Ū3 are carried atm = 6, m = 7 andm = 9, respectively. In
many two-dimensional interpolation problems, location
of sampling points is sparse. One of the advantages of this

Table 6: Interpolation by different primary functions for different
sampling point arrangements using three estimators. IDM:
Inverse Distance Methodβ = 3, NNM: Nearest Neighbor
Method, MAM: Moving Average Method,

Function N AVG ERR RMSE R-RMSE
IDM

A 49 0.276 0.170 0.220 79.7
B 60 0.263 0.096 0.137 52.1
C 49 0.009 0.003 0.004 44.4

NNM
A 49 0.449 0.142 0.178 39.6
B 60 0.234 0.046 0.066 28.2
C 49 0.009 0.004 0.005 55.6

MAM
A 49 0.351 0.492 0.297 84.6
B 60 0.287 0.252 0.286 99.6
C 49 0.008 0.007 0.007 87.5

method is that the regular or scattered location of the
sampling points is not important in the interpolation
process. Furthermore, in this method after solving
equations system (35), (36) and (37) it is reachable to
calculate value of interpolation function at any arbitrary
points in the area of interest according to equation (34).
Continuity of the interpolation function is another
advantage of this method. In addition, it is obvious
according to equation (34), interpolation function and its
partial derivatives are continuous in whole of the domain.
To further investigate the results of this method,
interpolation has done with the primary functions and
different points sampling patterns. Two regular
arrangements with 49 and 91 points and three non-regular
patterns with 41, 60 and 106 points are considered (Fig.
2). The primary functions and applied arrangement type
in the sampling are described in Table (5). In all cases, the
interpolation is carried out for different values ofm from
1 to 9 and the optimal value of this parameter for each
interpolation is reported in Table (5). It observed that with
variation of primary function and pattern of sampling
points, optimal value of the parameter has changed. By
comparing of second and third lines of this table, it can be
seen that however in the 106 points arrangement, there is
large number of points but at the 91 points arrangement
there is better result due to regularity of location of
points. In addition, with regard to Fig. 2 and comparison
of fourth and fifth lines, it is clear that result of
interpolation from 41 points arrangement is better than 60
points arrangement due to asymmetric distribution of
points in 60 points arrangement. Regular arrangement of
sampling points at two last lines is selected and it shows
there is a better interpolation due to increase number of
points. Besides, Table (6) shows the results of three other
interpolation methods, i.e., Inverse Distance Method,
Nearest Neighbor Method, and Moving Average Method,
for some of the mentioned primary functions in Table (5).
Comparison of these Tables (Table 5 and Table 6)
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demonstrates that the current interpolation method, i.e,
Dual Reciprocity Boundary Element Method, has better
results based on R-RMSE parameter.

7 Conclusions

A numerical method based on Dual Reciprocity Boundary
Element Method (DRBEM) has presented to interpolate
scattered data with arbitrary pattern. Numerical sampling
has conducted on some specific functions as primary
functions and interpolation values of numerical sampling
have compared to primary function values to evaluate
accuracy and precision of the method. In some cases, the
results of other interpolation methods are compared with
this method. However, one of the advantages of this
method is that there is no difference in calculation method
of data with regular or non-regular arrangement. It is
important to mention that as much as sampling done
better, the accuracy of interpolation will increase.
Another advantage of this method is that interpolation is
done without need to any specific boundary condition.
Moreover, due to the fact that this method is based on the
boundary integral equations, everyone can attain his/her
purpose in a very short time using personal computers.
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