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Abstract: For an undirected simple graphG, a variation of toughness is defined as

τ(G) = min{
|S|

ω(G−S)−1

∣

∣

∣

ω(G−S) ≥ 2}

if G is not complete, andτ(G) = ∞ if G is complete. In this paper, we determine the connected graphfamiliesF such that every large
enough connectedF -free graph isτ-tough.
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1 Introduction

We only consider simple undirected graphs in this paper.
The notation and terminology used but undefined in this
paper can be found in [1]. The notion oftoughness was
first introduced by chvátal in [2]: if G is complete graph,
t(G) = ∞. If G is not complete,

t(G) = min{
|S|

ω(G− S)

∣

∣

∣
ω(G− S)≥ 2}

and where ω(G − S) is the number of connected
components ofG− S. A variation of toughness is defined
as

τ(G) = min{
|S|

ω(G− S)−1

∣

∣

∣
ω(G− S)≥ 2}

if G is not complete, andτ(G) = ∞ if G is complete.
Several papers contributed to the properties ofτ(G).

Enomoto [3] proved that ifτ(G) ≥ k, k|̇G| is even, and
|G| ≥ k2−1, thenG has ak-factor. Zhou [4] presented that
a graph has a fractionalk-factor if τ(G)> k wherek = 1,2.
Other related research can refer to [5], [6], [7] and [8].

For two given connected graphsG andH, we sayG is
H-free if G does not containH as an induced subgraph.
Let F be a family of connected graphs. We say a graphG

is F -free if G is H-free for eachH ∈ F . Let G be a
connected graph andτ be a positive real number. A graph
G is said to beτ-tough if τ · (ω(G − S) − 1) ≤ |S|
establishes for every cutsetS ⊆ V (G). The τ(G) is the
maximumτ for which G is τ-tough.

In this article, we first raise following problem forτ
and then solve the Problem 1.

Problem 1. Let τ be a positive real number.
Characterize the connected graph familiesF such that
every large enough connectedF -free graph isτ-tough.

The answer is expressed in the following section. The
rest of this paper is organized as follows. In next Section,
we present some definitions and show our main result. In
Section 3, we give the detail proofs for our main result.

2 Definitions and main result

For two connected graphsH1 andH2, the notionH1 � H2
denote thatH1 is an induced subgraph ofH2. If there are
two different graphsH1,H2 ∈ F such thatH1 � H2, then
we say a family of connected graphsF is redundant.
Hence, our problem is restricted to consider only
nonredundant families. LetG be the set of all
nonredundant families of connected graphs, andH(τ) be
the set of familiesF ∈ G satisfies that allF -free
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connected graphsG with |V (G)| ≥ n0 areτ-tough with a
constantn0 = n0(τ,F ). In this sense, the answer of
Problem 1 is reduced to determine all the elements in the
setH(τ).

ForF1,F2 ∈ G , if for eachH2 ∈ F2, there is anH1 ∈
F1 such thatH1 � H2, then we say thatF1 ≤F2. Clearly,
anyF1-free graph is alsoF2-free if F1 ≤ F2.

Let Y n
m be the graph obtained from identifying the

center of aK1,n with the first vertex of a path onm
vertices. The last vertex of the path is called the tail of the
Y n

m. Let Zn
m,r be the graph yielded by identifying one

vertex of a Kr with the tail of a Y n
m. Let

FA(m, l,r) = {K1,l ,Pm,Z1
1,r} and

FB(m, l,r) = {K1,l ,Y n
m+2,Z

n
1,r, · · · ,Z

n
m,r}.

Now, we define the following subsets ofG .

FA = {F ∈ G : F ≤ FA(m, l,r) for somem ≥ 4, l ≥ 3
andr ≥ 3}.

FB = {F ∈ G : F ≤ FB(m, l,r) for some
m ≥ 1, l ≥ n+2 andr ≥ 3}.

Our main result to be proved in the next section can be
stated as follows:

Theorem 1.Let τ be a positive real number. Then,
• If τ > 1, then H(τ) = FA.
• If 0< τ ≤ 1, then H(τ) = FB, where n = ⌊ 1

τ ⌋.

Before on the way to proof our main result, we should give
some useful definitions.

For v ∈ V (G), let Ni
G(v) = {w ∈ V (G) : d(v,w) = i}.

Note thatN0
G(v) = v andN1

G(v) = NG(v). We can denote
Ni(v) for Ni

G(v) if graph G is obvious from the context.
Let l andr be two positive integers. The Ramsey number
R(l,r) is the minimum positive integerR such that any
graph of order at leastR contains either an independent
set of cardinalityl or a clique of cardinalityr.

We denotev ∼ w if vw ∈ E(G) for v,w ∈ V (G). Let
S ⊆V (G) be a cutset ofG andx ∈ S. Let

CS(x) = {C : C is a component ofG− S such that
N(x)∩V (C) 6= /0}.

Define CS(X) = ∪x∈XCS(x) for X ⊆ S. We write C(x)
instead ofCS(x) if there is no ambiguity about the setS.

A nonempty setS ⊆ V (G) is a τ-tough cut if(ω(G−

S)− 1) > |S|
τ . A τ-tough cutS ⊆ V (G) is a minimalτ-

tough cut if for everyS′ ⊂ S, S′ is not aτ-tough cut. Let
S ⊆ V (G) be aτ-tough cut,x ∈ S andD ⊆ CS(x) be a set
of components. A setA ⊆ V (G) is a selection forx from
D if A ⊆ N(x) and for everyC ∈ D, |A∩V (C)| = 1. A set
A ⊆ V (G) is a selection forx if A is selection forx from
CS(x).

The following result is a direct corollary of Hall’s
marriage theorem. We will use it in the next Section.

Theorem 2.Let G be a bipartite graph with partite sets X
and Y with X = {x1, · · · ,xk}. Suppose that for all X ′ ⊆ X,
|N(X ′)| ≥ n|X ′|. Then there are pairwise disjoint subsets
Y1, · · · ,Yk of Y such that for all 1≤ i ≤ k, Yi ⊆ N(xi) and
|Yi|= n.

3 Proof of Theorem1

The process of the proof can be divided into a number of
cases.

3.1 Case τ > 1

Theorem 3.Let τ > 1. Then FA ⊆ H(τ).

Proof. Let F ∈ FA. Let m ≥ 4, l ≥ 3, andr ≥ 3 such that
F ≤ FA(m, l,r). Let G be a connectedF -free graph.
Suppose thatG is notτ-tough. Hence, there exist a cutset
S ⊆ V (G) such that|S| < τ(ω(G − S) − 1). We may
suppose thatS is minimal under inclusion.

Claim.There is a vertexy∈ N(S)−S such that|N(y)∩S|<
lτ.

Proof. On the contrary, suppose that for ally ∈ N(S)− S,
|N(y)∩ S| ≥ lτ. Let k be the number of pairs(x,C) with
x ∈ S andC ∈C(x). We have,

k = ∑x∈S |C(x)| andk = ∑C∈C(S) |N(C)∩S|.

Then|C(x)|< l for all x ∈ S sinceG is K1,l-free. We obtain

k = ∑
x∈S

|C(x)|< l|S|< lτ(ω(G− S)−1).

Let C ∈ C(S) and y ∈ V (C) ∩ N(S). Then
|N(C)∩ S| ≥ |N(y)∩ S| ≥ lτ. Therefore,|N(C)∩ S| ≥ lτ
for eachC ∈C(S), and

k = ∑
C∈C(S)

|N(C)∩S| ≥ lτ|C(S)|= lτ(ω(G− S)−1),

a contradiction. �

Let y1 be a vertex inN(S)− S as in Claim3.1 and
x0 ∈ S ∩ N(y1). Let C1 ∈ C(x0) such that y1 ∈ C1.
|C(S)|= ω(G− S)≥ 2 sinceS is a cutset. If|S|= 1, then
|C(x0)| = |C(S)| ≥ 2. Suppose|S| ≥ 2. If |C(x0)| ≤ 1,
then S′ = S − {x0} is also a cutset with
ω(G − S′) ≥ ω(G − S) by connected ofG. Thus,
τ(w(G − S′)− 1) ≥ τ(ω(G − S)− 1) > |S| > |S′|. This
contradicts the minimality of S. In conclusion,
|C(x0)| ≥ 2.

So, there exist a componentC2 ∈ C(x0) with C2 6=C1.
Let y2 ∈ N(x0)∩V (C2). We infer Nm−1(x0) = /0 by G is
Pm-free. Next, we show thatNi(x0) is bounded for all 1≤
i ≤ m−2.

N(x0) has no independent set of sizel because
{x0} ∩ N(x0) has no K1,l . Since
{y1,x0} ∩ (N(x0) − N(y1)) contains no Z1

1,r,
N(x0)− N(y1) does not contain a clique of sizer − 1.
Thus, |N(x0)− N(y2)| does not contain a clique of size
r−1 and|(N(x0)−N(y1))∩ (N(x0)−N(y2))| < 2R(l,r).
Let X = N(x0)∩N(y1)∩N(y2). Sincey1 andy2 are not in
the same components ofG − S, X and X ⊆ S have
neighbors in more than one component ofG−S. We yield
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|X | < lτ by the choose of y1, and deduce that
|N(x0)|< 2R(l,r)+ lτ.

For i ≥ 1, we show that|Ni+1(x0)| < R(l,r) · |Ni(x0)|.
Let xi ∈ Ni(x0). It is sufficient to show that
|N(xi) ∩ Ni+1(x0)| < R(l,r). Since
{xi} ∪ (N(xi) ∩ Ni+1(x0)) does not contain K1,l ,
N(xi) ∩ Ni+1(x0) has no independent set of sizel. Let
xi−1 ∈ Ni−1(x0). xi−1 = x0 if i = 1. At last,
N(xi)∩Ni+1(x0) does not contain a clique of sizer since
{xi−1,xi}∪ (N(xi)∩Ni+1(x0)) does not contain aZ1

1,r.
Therefore, we obtain that for alli ≥ 0

|Ni(x0)|< R(l,r)i−1|N(x0)|< R(l,r)i−1(2R(l,r)+ lτ).

According toNm−1(x0) = /0, we get

|V (G)| =
m−2

∑
i=0

|Ni(x0)|<
m−2

∑
i=0

(2R(l,r)+ lτ)R(l,r)i−1

= (
2R(l,r)+ lτ

R(l,r)
)(

R(l,r)m−1−1
R(l,r)−1

)

�

From the proof of Theorem3, we lead the following
more precise statement.

Theorem 4.Let τ ≥ 1. Then every FA(l,m,r)-free
connected graph G with |V (G)| ≥ n0 = n0(l,m,r, t) is

τ-tough, where n0(l,m,r, t) = (2R(l,r)+lτ
R(l,r) )(R(l,r)m−1−1

R(l,r)−1 ).

Theorem 5.Let τ > 1. Then H(τ)⊆ FA.

Proof. Let F ∈ H(t). Then, there exist a positive integer
n0 satisfies that eachF -free connected graph of order at
least n0 is τ-tough. Let n1 be an integer with
n1 ≥ max(n0,3).

Consider the familyF ′ = FA(n1,n1,n1). K1,n1 has
toughness 1

n1−1 < 1. Pn1 has toughness 1.Z1
1,n1

has
toughness 1. Hence, all the graphs inF ′ have toughness
at most 1 and so none of them isτ-tough. All the graphs
in F ′ are connected graphs of order at leastn0 by
n1 ≥ n0. Thus, no graph ofF ′ is F -free. i.e., for each
graph H ′ ∈ F ′, there exist a graphH ∈ F such that
H � H ′. By definition ofF ≤ F ′ andF ′ ∈ FA, we infer
F ∈ FA. �

3.2 Case 0< t ≤ 1

Theorem 6.Let 0 < τ ≤ 1. Then FB
n ⊆ H(τ), where n =

⌊ 1
τ ⌋.

We split the proof of theorem6 in several lemmas.

Lemma 1.Let G be a connected graph, 0 < τ ≤ 1, and S
be a minimal τ-tough cut. Then |CS(X)| > 1

τ |X | for each
nonempty X ⊆ S. In particular, |CS(x)|>

1
τ for any x ∈ S.

Proof. According to the definition ofτ-tough cut,
(ω(G− S)−1)> 1

τ |S|. Let S′ = S−X . By the minimality
of S, (ω(G − S′) − 1) ≤ 1

τ |S
′|. We have

CS(S) − CS(X) ⊆ CS′(S
′) and

ω(G − S)− |CS(X)| ≤ ω(G − S′) since each component
of G − S not in CS(X) is a component ofG − S′. This
implies

1
τ
|S|− |CS(X)| < (ω(G− S)−1)−|CS(X)|

≤ (ω(G− S)−1)≤
1
τ
|S′|

=
1
τ
(|S|− |X |).

Then, we get|CS(X)|> 1
τ |X |. �

Lemma 2.Let G be a connected graph, n ≥ 2, 0< τ ≤ 1
n ,

S be a minimal τ-tough cut and x0 ∈ S. If G is Y n
m-free for

some m ≥ 1, then Nm(x0) = /0, where m′ = 2max(n,m+
1)+m.

Proof. SupposeNm′
(x) 6= /0. Let P = x0 · xm′ be a path

satisfies thatxi ∈ Ni(x0). Note thatP is an induced path.
We use the notationv+ j = xi+ j and v− j = xi− j if v ∈ P
with v = xi. Let q = max(n,m + 1). A subsequence
v1, · · · ,vq of x0, · · · ,xm′ and setsA1, · · · ,Aq constructed
with the following properties:
(i) vi ∈ S for all 1≤ i ≤ q,
(ii) vi+1 is eitherv+1

i or v+2
i for all 1≤ i ≤ q−1,

(iii) Ai is a selection forvi for all 1≤ i ≤ q, and
(iv) |Ai −Ai+1| ≤ n−1 for all 1≤ i ≤ q−1.

Choosev1 = x0 and letA1 be any selection forx0. Let
1≤ i < q and supposev1, · · · ,vi andA1, · · · ,Ai are chosen.
We choosevi+1 andAi+1 in the following way.

By condition (ii),h≤ 2i−2≤ 2q−4 if vi = xh. Hence,
m′ = 2q+m > h+ m and v+ j

i exists for all 1≤ j ≤ m.
For j ≥ 3, the distance betweenvi andv+ j

i is j, N(vi)∩

N(v+ j
i ) = /0 andAi∩N(v+ j

i ) = /0. LetY1 = Ai∩N(v+1
i ) and

Y2 = Ai ∩N(v+2
i ).

Suppose|Y2|= 1 and lety ∈ Y2. Then,y ∼ vi, y ∼ v+2
i ,

andy 6∼ v+ j
i for all 3≤ j ≤ m−1. Since vertices ofAi and

y are in different components ofG− S, we haveN(y)∩
Ai = /0. By Lemma1, |Ai| >

1
τ ≥ n and |Ai −{y}| ≥ n.

Note thatAi −{y} is an independent set since the vertices
of Ai are in different components. But then,(Ai −{y})∪
{vi,y,v+2

i ,v+3
i , · · · ,v+m−1

i } contains aY n
m, a contradiction.

Suppose |Y2| = 0 and |Y1| ≤ 1. We get
(Ai − Y1) ∩ N(v+1

i ) = /0. Also, |Ai| ≥ n + 1 and then
|Ai − Y1| ≥ n. But (Ai − Y1) ∪ {vi,v+1

i ,v+2
i , · · · ,v+m−1

i }
contains aY n

m, a contradiction. Then, we have that either
|Y2| ≥ 2 or |Y2|= 0 and|Y1| ≥ 2.

If |Y2| ≥ 2, then v+2
i has neighbors in at least two

components ofG− S andv+2
i ∈ S. Choosevi+1 = v+2

i and
let Ai+1 be any selection forv+2

i with Y2 ⊆ Ai+1. Let
y ∈ Y2. Similarly, since
(Ai −Ai+1)∪{vi,y,v

+2
i ,v+3

i , · · · ,v+m−1
i } does not contain
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aY n
m we have|Ai −Ai+1| ≤ n−1. If |Y2|= 0 and|Y1| ≥ 2,

then v+1
i ∈ S. Choosevi+1 = v+1

i and let Ai+1 be any
selection for v+1

i with Y1 ⊆ Ai+1. Since
(Ai −Ai+1)∪{vi,v

+1
i ,v+2

i , · · · ,v+m−1
i } does not contain a

Y n
m then|Ai −Ai+1| ≤ n−1.

Claim.|Aq| ≤ 2(n−1).

Proof. For j ≥ 3, we haveAq ∩N(v− j
q ) = /0. Suppose that

Aq ∩ N(v−2
q ) 6= /0 and let y ∈ Aq ∩ N(v−2

q ). Since

(Aq −N(v−2
q ))∪{vq,y,v−2

q , · · · ,v−(m−1)
q } does not contain

a Y m
n , then |Aq − N(v−2

q )| ≤ n − 1. Since

(Aq ∩ N(v−2
q )) ∪ {v−2

q , · · · ,v−(m−1)
q } does not contain a

Y m
n , then |Aq ∩ N(v−2

q )| ≤ n − 1. Then
|Aq| = |Aq − N(v−2

q )| + |Aq ∩ N(v−2
q )| ≤

(n−1)+ (n−1)= 2(n−1).
Suppose Aq ∩ N(v−2

q ) = /0. Since

(Aq − N(v−1
q )) ∪ {vq,v−1

q ,v−2
q , · · · ,v−(m−1)

q } does not
contain a Y m

n , then |Aq − N(v−1
q )| ≤ n − 1. Since

(Aq ∩ N(v−1
q )) ∪ {v−1

q ,v−2
q , · · · ,v−m

q } does not contain a
Y m

n , then |Aq ∩ N(v−1
q )| ≤ n − 1. Then

|Aq| = |Aq − N(v−1
q )| + |Aq ∩ N(v−1

q )| ≤

(n−1)+ (n−1)= 2(n−1). �

By Lemma1, we deduce

|A1∪·· ·∪Aq| ≥ |CS(v1)∪·· ·∪CS(vq)|

= |CS(v1, · · · ,vq)|

> nq.

Furthermore, we yield

|A1∪·· ·∪Aq|

= |A1−∪q
i=2Ai|+ |A2−∪q

i=3Ai|

+ · · ·+ |Aq−1−Aq|+ |Aq|

≤ |A1−A2|+ |A2−A3|+ · · ·+ |Aq−1−Aq|+ |Aq|

≤ (n−1)(q−1)+2(n−1)= (n−1)(q+1).

Hence,(n − 1)(q + 1) > nq and thenq < n − 1, which
contradictsq = max(n,m+1). �

Lemma 3.Let G be a connected graph, n ≥ 2, 0< τ 1
n , and

S be a minimal τ-tough cut. Let X ⊆ S be a clique. If G is
{K1,l ,Zn

1,r}-free for some r ≥ 3 and l ≥ n+2, then |X | <

l(r−1).

Proof. Let Y =C(X) andYx =C(x) for anyx ∈ X .

Claim.For eachx ∈ X , there exist a setYx ⊆V (G) that is a
selection forx from some setY

′

x ⊆Yx with |Yx|= n, and so
that for allx1,x2 ∈ X(x1 6= x2), Y

′

x1
∩Y

′

x2
= /0.

Proof. Let G′ be the bipartite graph with vertex set
V (G′) = X ∪ Y and edge set
E(G′) = {(x,C) : x ∈ X ,C ∈Yx}. By X ⊆ S and Lemma1,
for all X ′ ⊆ X , we have |NG′(X ′)| = |C(X ′)| > n|X ′|.
Applying Theorem 2 toG′, for eachx ∈ X there exist a set

Y
′

x ⊆ Yx with |Y
′

x | = n and for all x1,x2 ∈ X(x1 6= x2),
Y

′

x1
∩Y

′

x2
= /0. For eachx ∈ X , letYx ⊆V (G) be a selection

for x fromY
′

x . Then, the claim holds. �

Let x ∈ X . If |X − N(Yx)| ≥ r − 1 then
Yx ∪ {x} ∪ (X − N(Yx)) contains aZn

1,r, a contradiction.
Then for all x ∈ X , |X − N(Yx)| < r − 1. Suppose that
|X | ≥ l. Let x1, · · · ,xl ∈ X . If there exist a vertex
x ∈ X −∪l

i=1(X −N(Yxi)), then for all 1≤ i ≤ l, we have
N(x) ∩ Yxi 6= /0. Note that theYxi ’s are selections from
pairwise disjointY

′

xi
’s, henceN(x) ∪ ∪l

i=1Yxi contains a
K1,l , a contradiction. ThusX = ∪l

i=1(X − N(Yxi)). But
|X |= | ∪l

i=1 (X −N(Yxi))|< l(r−1). �

Lemma 4.Let G be a connected graph, n ≥ 2, 0< τ ≤ 1
n ,

S be a minimal τ-tough cut and x0 ∈ S. Let X ⊆ N(x0) be
a clique and q = r(l +1). If G is Zn

1,r-free for some r ≥ 3,
then |X |< q.

Proof.LetX1 =X−S andX2=X∩S. We have|X2|< l(r−
1) by Lemma3. Let Y0 be a selection forx0. By Lemma
1, |Y0| ≥ n+1. LetY be any subset ofY0 with |Y |= n+1.
SinceX1∩S = /0, then there exist a componentC of G− S
with X1 ⊆ V (C). Let Y ′ = Y ∩V (C). Then |Y ′| ≤ 1 and
|Y −Y ′| ≥ n. By X1 ⊆ V (C), there are no edges between
Y −Y ′ andX1. We inferX1 < r since(Y −Y ′)∪{x0}∪X1
does not contain aZn

1,r. Thus,|X |= |X1|+ |X2|< r+ l(r−
1)< r(l +1) = q. �

Lemma 5.Let G be a connected graph, n ≥ 2, 0< τ ≤ 1
n ,

S be a minimal τ-tough cut, and x0 ∈ S. Let x1 ∈ N(x0) and
X ⊆ N(x1)∩N2(x0) be a clique. If G is {Zn

1,r,Z
n
2,r}-free for

some r ≥ 3, then |X |< q, where q = r(l +1).

Proof. If x1 ∈ S, then |X | < r(l + 1) by Lemma4. We
suppose thatx1 6∈ S. Let X1 = X − S andX2 = N ∩ S. We
get |X2| < l(r − 1) from Lemma3. Let Y0 be a selection
for x0. Then |Y0| ≥ n + 1 By Lemma1. Let Y be any
subset ofY0 with |Y |= n+1.

SinceX1∩S= /0, then there exist a componentC of G−
S satisfies thatX1 ⊆ V (C). Supposex1 ∈ V (C). Let Y ′ =
Y ∩V (C). Then|Y ′| ≤ 1 and|Y −Y ′| ≥ n. Moreover, since
x1 ∈ V (C) andX1 ⊆ V (C), there are no edges betweenx1
andY −Y ′, and no edges betweenX1 andY −Y ′. But by
(Y −Y ′)∪{x0,x1}∪X1 does not contain aZn

2,r, we obtain
|X1| < r. Hence,|X | = |X1|+ |X2| < r + l(r − 1) < r(l +
1) = q. �

Lemma 6.Let G be a connected graph, n ≥ 2, 0< τ ≤ 1
n ,

S be a minimal τ-tough cut, x0 ∈ S, i ≥ 0 and q = r(l +1).
If G is {K1,l,Zn

1,r, · · · ,Z
n
i+1,r}-free for some r ≥ 3 and l ≥

n+2, then |Ni+1(x0)|< |Ni(x0)| ·R(l,q).

Proof. Let xi ∈ Ni(x0). Note thatxi = x0 if i = 0. We infer
N(xi)∩Ni+1(x0) does not contain an independent set of
size at leastl since {xi} ∪ (N(xi) ∩ Ni+1(x0)) does not
contain aK1,l . Let X ⊆ N(xi)∩Ni+1(x0) be a clique. Let
P = x0 · · ·xi be a path fromx0 to xi such that for all
0≤ j ≤ i, x j ∈ N j(x0). Note thatP is an induced path. Let
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k = max{ j : 0≤ j ≤ i andx j ∈ S}. Such an indexk exists
by x0 ∈ S. If k = i or k = i−1 then the result draws from
Lemma4 and Lemma5 respectively by takingxk as the
x0 in the corresponding lemma.

Suppose thatk ≤ i−2. LetY be a selection forxk. By
Lemma1, we get|Y | ≥ n+ 1. Let P′ be the subpath of
P going fromxk to xi. ThenP′ is a shortest path fromxk
to xi, |N(Y )∩P| ⊆ {xk,xk+1,xk+2}, and |N(Y )∩X | = /0.
Let Y1 = Y ∩N(xk+1) andY2 = Y ∩N(xk+2). We deduce
that none ofxk+1 andxk+2 is in S and hence|Y1| ≤ 1 and
|Y2| ≤ 1.

Suppose that|Y2| = 1 and lety ∈ Y2. We obtain|X | <
r < r(l +1) = q since(Y −{y})∪{xk,y,xk+2, · · · ,xi}∪X
does not contain aZn

i−k+1,r. Hence, we suppose|Y2| = 0.
Since|Y1| ≤ 1, then|Y −Y1| ≥ n. But then, according to
(Y −Y1)∪ {xk,xk+1,xk+2, · · · ,xi} ∪ X does not contain a
Zn

i−k+1,r, we yield that|X | < r < q. So, we conclude that

|N(xi)∩Ni+1(x0)|< R(l,q). �

Proof of Theorem 6. Let F ∈ FB
n , m ≥ 1, l ≥ n+ 2,

andr ≥ 3 such thatF ≤ FB
n (m, l,r). Let G be anF -free

connected graph. Suppose thatG is notτ-tough. Then,G
has aτ-tough cut. We supposeS is a minimalτ-tough cut.
Let x0 ∈ S.

Notice thatG is Zn
i,r-free for all i ≥ m+ 1 sinceG is

Y n
m+2-free. We can infer thatG is Zn

i,r-free for alli≥ 1. Note

thatτ ≤ 1
n by n = ⌊τ⌋. Hence,G satisfies all the conditions

of Lemmas2 and6.
Let m′ = 2 ·max(n,m+ 1) +m. Using Lemma2, we

haveNm′
(x0) = /0. Thus, it is sufficient to show thatNi(x0)

is bounded for each 1≤ i ≤ m′ − 1. Let q = r(l + 1). By
Lemma6, |Ni+1(x0)| < R(l,q) · |Ni(x0)| for all i ≥ 0. We
obtain|Ni(x0)| < R(l,q)i−1 for all i ≥ 1. SinceNm′

(x0) =

/0, we infer|Ni(x0)|< R(l,q)m′−2 for all 1≤ i ≤ m′−1.�

Theorem 7.Let 0 < τ ≤ 1. Then H(τ) ⊆ FB
n , where n =

⌊ 1
τ ⌋.

Proof.LetF ∈H(τ). Then there exist a positive integern0
such that everyF -free connected graph of order at leastn0
is τ-tough. Letn1 be an integer withn1 ≥ max(n0,n+2).

Consider the familyF ′ = Fn(n1,n1,n1). Note that
F ′ ∈ FB

n . K1,n1 has toughness 1
n1−1. Y n

n1+2 has toughness
1
n . Zn

m,n1
has toughness1n for all 1≤ m ≤ n1. Thus, all the

graphs inF ′ have toughness at most1
n . Sincen = ⌊ 1

τ ⌋,
thenτ >

1
n and so no graph ofF ′ is τ-tough. Just as in

Theorem 5, we obtainF ∈ FB
n . �
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