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Abstract: A characterization of the exponential distribution based on equidistribution conditions for maxima of random samples with
consecutive sizesn−1 andn for an arbitrary and fixedn ≥ 3 is proved. This solves an open problem stated recently in Arnold and
Villasenor [3].
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1 Introduction

Characterizations of the exponential distribution are abundant. Comprehensive surveys can be found in Ahsanullah and
Hamedani [1], Arnold and Huang [2], and Johnson, Kotz, and Balakrishnan [5]. Recently, Arnold and Villasenor [3]
obtained a series of characterizations based on random sample of size two. They also identified a list of conjectures for
possible extensions of their results to larger samples. In this work we confirm that one of these conjectures is true for
a sample of any fixed sizen ≥ 2. Note that in Yanev and Chakraborty [8] the case of random sample of size three was
considered.

Let X1,X2, . . .Xn, n ≥ 2 be a random sample from an exponentially distributed parent X . It is known that

max{X1,X2, . . .Xn−1}+
1
n

Xn
d
= max{X1,X2, . . .Xn}, (1)

where
d
= denotes equality in distribution. We writeX ∼ exp(λ ) if the probability density function (pdf) ofX equals

fX (x) = λe−λxI(x> 0). Our goal is to prove that (1), under analyticity assumptions on the cumulative distribution function
(cdf) F of X , is a sufficient condition forX to be exponential.

Theorem Let X be a non-negative continuous random variable with pdff . If f is analytic in a neighborhood of zero
and (1) holds true, thenX ∼ exp(λ ) with someλ > 0.

Wesołowski and Ahsanullah [7] and more recently Castaño-Martinez et al. [4] proved characterizations of probability
distributions in the context of random translations. The characterization (1) above can be deduced from their results (see
Corollary 1 in Wesołowski and Ahsanullah [7] and Corollary 3 in Castãno-Martinez et al. [4]). However, our proof is
different from theirs in not referring to uniqueness results for integral equations. The direct approach we follow may also
be used in obtaining some more general results, a possibility which we will explore in the future.

2 Preliminaries

Define for all non-negative integersn, i, and any real numberx

Hn,i(x) :=
n

∑
j=0

(−1) j
(

n
j

)

(x− j)i.
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It is known, (e.g., Ruiz [6]) that for all integersn ≥ 0 and all realx

Hn,i(x) =

{

n! if i = n;
0 if 0 ≤ i ≤ n−1. (2)

DefineGm(x) := Fm(x) f (x) for m ≥ 1 and denote byg(i)(x) for i ≥ 1 theith derivative of a functiong(x); g(0)(x) := g(x).

Lemma 1 Let X be a continuous random variable with cdfF satisfyingF(0) = 0. If for 0≤ r ≤ m−1

f (r)(0) =

[

f ′(0)
f (0)

]r−1

f ′(0), (3)

then for 0≤ i ≤ 2m

G(i)
m (0) =

[

f ′(0)
f (0)

]i−m

f m+1(0)Hm,i(m+1). (4)

Proof. Case 0 ≤ i ≤ m− 1. In this case (2) impliesHm,i(m+1) = 0. On the other hand, in the left-hand side of (4), we

haveG(i)
m (0) = 0 because each term in the expansion ofG(i)

m (0) has a factorF(0) = 0.

Case i = m. From (2) it follows that (4) is equivalent to

G(m)
m (0) = m! f m+1(0). (5)

We shall prove (5) by induction. If m = 1, then (5) follows from the definition ofG(x) and the assumptionF(0) = 0.
Assuming that (5) is true form = k, we will prove it form = k+1. SinceGk+1(x) = F(x)Gk(x) andF(0) = 0, we have

G(k+1)
k+1 (0) =

k+1

∑
j=0

(

k+1
j

)

F( j)(0)G(k+1− j)
k (0)

= F(0)G(k+1)
k (0)+(k+1)F(1)(0)G(k)

k (0)

= (k+1) f (0)k! f k+1(0)

= (k+1)! f k+2(0),

where we have used thatG(r)
k (0) = 0 for 0≤ r ≤ k−1 and the induction assumptionG(k)

k (0) = k! f k+1(0).

Case m < i ≤ 2m. Suppose we have proved (4) for m = 1,2, . . .k. We want to prove it form = k+1. Observe that

G(i)
k+1(0) =

i

∑
j=0

(

i
j

)

F( j)(0)G(i− j)
k (0).

SinceG(r)
k (0) = 0 for 0≤ r ≤ k−1, making use of (3) and the induction assumption, we obtain

G(i)
k+1(0) =

k

∑
j=1

(

i
j

)

f ( j−1)(0)G(i− j)
k (0)+

i

∑
j=k+1

(

i
j

)

f ( j−1)(0)G(i− j)
k (0) (6)

=
k

∑
j=1

(

i
j

)[

f ′(0)
f (0)

] j−2

f ′(0)

[

f ′(0)
f (0)

]i− j−k

f k+1(0)Hk,i− j(k+1)

=

[

f ′(0)
f (0)

]i−k−1

f k+2(0)
i

∑
j=1

(

i
j

)

Hk,i− j(k+1),
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where in the last equality we used that (2) impliesHk,i− j(k+1) = 0 for j = i+1, ...,k. Further, we have
i

∑
j=1

(

i
j

)

Hk,i− j(k+1) =
k

∑
r=0

(−1)r
(

k
r

) i

∑
j=1

(

i
j

)

(k+1− r)i− j

=
k

∑
r=0

(−1)r
(

k
r

)

[

(k+2− r)i − (k+1− r)i]

= (k+2)i −

[

(k+1)i +

(

k
1

)

(k+1)i
]

+

[(

k
1

)

ki +

(

k
2

)

ki
]

+ ...+(−1)k
[(

k
k−1

)

2i +2i
]

+(−1)k+1

= (k+1)i −

(

k+1
1

)

(k+1)i + ...+(−1)k
(

k+1
k

)

2i +(−1)k+1

=
k+1

∑
j=0

(−1) j
(

k+1
j

)

(k+2− j)i = Hk+1,i(k+2).

The lemma’s claim follows by induction, taking into account(6).
The identity below may be of independent interest.

Lemma 2 For any integersm ≥ 0 andk ≥ 0
m

∑
j=0

(k+2)m− jHk, j(k+1) =
m

∑
j=0

(

m+1
j+1

)

Hk, j(k+1). (7)

Proof. The left-hand side of (7) equals
m

∑
j=0

(k+2)m− j
k

∑
i=0

(−1)i
(

k
i

)

(k+1− i) j =
k

∑
i=0

(−1)i
(

k
i

)

(k+2)m
m

∑
j=0

(

k+1− i
k+2

) j

(8)

=
k

∑
i=0

(−1)i
(

k
i

)

1
i+1

[

(k+2)m+1− (k+1− i)m+1]

=
k

∑
i=0

(−1)i
(

k+1
i+1

)

1
k+1

[

(k+2)m+1− (k+1− i)m+1]

= −
(k+2)m+1

k+1

k+1

∑
r=1

(−1)r
(

k+1
r

)

+
1

k+1

k+1

∑
r=1

(−1)r
(

k+1
r

)

(k+2− r)m+1

= −
(k+2)m+1

k+1

[

k+1

∑
r=0

(−1)r
(

k+1
r

)

−1

]

+
1

k+1

[

k+1

∑
r=0

(−1)r
(

k+1
r

)

(k+2− r)m+1− (k+2)m+1

]

=
1

k+1

k+1

∑
r=0

(−1)r
(

k+1
r

)

(k+2− r)m+1.

For the right-hand side of (7) we obtain
m

∑
j=0

(

m+1
j+1

) k

∑
i=0

(−1)i
(

k
i

)

(k+1− i) j =
k

∑
i=0

(−1)i
(

k
i

) m

∑
j=0

(

m+1
j+1

)

(k+1− i) j

=
k

∑
i=0

(−1)i
(

k
i

)

1
k+1− i

m

∑
j=0

(

m+1
j+1

)

(k+1− i) j+1

=
1

k+1

k

∑
i=0

(−1)i
(

k+1
i

)m+1

∑
r=1

(

m+1
r

)

(k+1− i)r

=
1

k+1

k

∑
i=0

(−1)i
(

k+1
i

)

[

m+1

∑
r=0

(

m+1
r

)

(k+1− i)r −1

]

=
1

k+1

k

∑
i=0

(−1)i
(

k+1
i

)

(k+2− i)m+1−
1

k+1

[

k+1

∑
i=0

(−1)i
(

k+1
i

)

− (−1)k+1

]

=
1

k+1

k+1

∑
r=0

(−1)r
(

k+1
r

)

(k+2− r)m+1,
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which equals (8). The proof of the lemma is complete.
Next lemma (see also Arnold and Villaseñor [3]) will play a crucial role in the proof of the theorem. In private

communications, P. Fitzsimmons pointed out to us that the assumption of analyticity of the density functionf is missing
in [3].

Lemma 3 If F(0) = 0, the pdf f is analytic in a neighborhood of 0, and

f (k)(0) =

[

f ′(0)
f (0)

]k−1

f ′(0), k = 1,2, . . . , (9)

thenX ∼ exp{λ} for someλ > 0.
Proof. For the Maclaurin series off (x), we have forx > 0

f (x) =
∞

∑
k=0

f (k)(0)
k!

xk = f (0)+
∞

∑
k=1

[

f ′(0)
f (0)

]k−1

f ′(0)
xk

k!
= f (0)exp

{

f ′(0)
f (0)

x

}

. (10)

Since f (x) is a pdf, we havef ′(0)/ f (0)< 0. Denotingλ =− f ′(0)/ f (0)> 0 and setting the integral of (10) from 0 to∞
to be 1, we obtainλ = f (0). Therefore,f (x) = λe−λxI(x > 0), i.e.,X ∼ exp{λ}.

3 Proof of the theorem

Equation (1) can be written as
∫ x

0
fXn/n(y) fmax{X1,...,Xn−1}(x− y)dy = n(n−1) f (x)

∫ x

0
Gn−2(y)dy.

This is equivalent to
∫ x

0
n f (ny)(n−1)Fn−2(x− y) f (x− y)dy = n(n−1) f (x)

∫ x

0
Gn−2(y)dy,

which simplifies to
∫ x

0
f (ny)Gn−2(x− y)dy = f (x)

∫ x

0
Gn−2(y)dy. (11)

Differentiating the left-hand side of (11) with respect tox, we obtain

d
dx

∫ x

0
f (ny)Gn−2(x− y)dy = f (nx)Gn−2(0)+

∫ x

0
f (ny)G′

n−2(x− y)dy.

Differentiating the last equation 2n−3 times, we obtain

d2n−2

dx2n−2

∫ x

0
f (ny)Gn−2(x− y)dy =

2n−3

∑
i=0

n2n−3−i f (2n−3−i)(x)G(i)
n−2(0)+

∫ x

0
f (ny)G(2n−2)

n−2 (x− y)dy. (12)

On the other hand, applying to the right-hand side of (11) the Leibnitz product rule of differentiation, we have

d2n−2

dx2n−2

[

f (x)
∫ x

0
Gn−2(y)dy

]

=
2n−3

∑
i=0

(

2n−2
i+1

)

f (2n−3−i)(x)G(i)
n−2(x)+ f (2n−2)(x)

∫ x

0
Gn−2(y)dy (13)

Therefore, the equation (11), taking into account (12) and (13), becomes

2n−3

∑
i=0

n2n−3−i f (2n−3−i)(x)G(i)
n−2(0)+

∫ x

0
f (ny)G(2n−2)

n−2 (x− y)dy (14)

=
2n−3

∑
i=0

(

2n−2
i+1

)

f (2n−3−i)(x)G(i)
n−2(x)+ f (2n−2)(x)

∫ x

0
Gn−2(y)dy.
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Settingx = 0 and taking into account thatG(i)
n−2(0) = 0 for 0≤ i ≤ n−3, we obtain that (14) is equivalent to

2n−4

∑
i=n−2

n2n−3−i f (2n−3−i)(0)G(i)
n−2(0) =

2n−4

∑
i=n−2

(

2n−2
i+1

)

f (2n−3−i)(0)G(i)
n−2(0).

For i = n−2, we havef (n−1)(0)G(n−2)
n−2 (0) = f (n−1)(0) f n−1(0)(n−2)!. Thus, the equation above can be written as

[

nn−1−

(

2n−2
n−1

)]

f (n−1)(0) f n−1(0)(n−2)! =
2n−4

∑
i=n−1

[(

2n−2
i+1

)

−n2n−3−i
]

f (2n−3−i)(0)G(i)
n−2(0). (15)

In view of Lemma 3, to complete the proof it suffices to show

f (r)(0) =

[

f ′(0)
f (0)

]r−1

f ′(0), r = 1,2, . . . (16)

Assume (16) for all 1≤ r ≤ n−2. We shall prove it forr = n−1, i.e.,

f (n−1)(0) =

[

f ′(0)
f (0)

]n−2

f ′(0), r = 1,2, . . . (17)

It follows from Lemma 1 withm = n−2 that forn−1≤ i ≤ 2n−4

f (2n−3−i)(0)G(i)
n−2(0) =

[

f ′(0)
f (0)

]i−n+2

f n−1(0)Hn−2,i(n−1). (18)

Substituting (18) in the right-hand side of (15) we obtain

[

nn−1−

(

2n−2
n−1

)]

f (n−1)(0)(n−2)! =

[

f ′(0)
f (0)

]n−2

f ′(0)
2n−4

∑
i=n−1

[(

2n−2
i+1

)

−n2n−3−i
]

Hn−2,i(n−1).

To establish (18) we need to prove

[

nn−1−

(

2n−2
n−1

)]

=
2n−4

∑
i=n−1

[(

2n−2
i+1

)

−n2n−3−i
]

Hn−2,i(n−1)

or equivalently
2n−4

∑
i=n−2

n2n−3−iHn−2,i(n−1) =
2n−4

∑
i=n−2

(

2n−2
i+1

)

Hn−2,i(n−1). (19)

Since (2) impliesHn−2,i(n−1) = 0 for 0≤ i ≤ n−3 and fori = 2n−3 we haven2n−3−i =
(2n−2

i+1

)

= 1, we obtain that (19)
is equivalent to

2n−3

∑
i=0

n2n−3−iHn−2,i(n−1) =
2n−3

∑
i=0

(

2n−2
i+1

)

Hn−2,i(n−1),

which follows from Lemma 3 withm = 2n−3. This completes the induction argument and thus proves (16). Referring to
(16) and Lemma 2 we complete the proof of the theorem.
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