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We investigate the photon statistics of the field emitted from a semiconductor microcav-
ity containing a quantum well within the quantum trajectory approach. A dynamical
behavior of the autocorrelation function depending of the system parameters is dis-
cussed.
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1 Introduction

The nonclassical properties of the light emitted from cavities containing one or more
two-level atoms coupled to a single mode of the electromagnetic field of an optical res-
onator have been investigated by several authors in the context of QED [4, 39].

Cavity QED systems are of current interest both for fundamental aspects and potential
applications [40]. This field of fundamental research aims to obtain a better understanding
of matter-radiance coupling. As for its applications, we hope to be able to manufacture
optical devices with exceptional properties for quantum computing [1, 44, 48, 53]. Cavity
QED are systems with high quality factor allowing the establishment of the strong coupling
regime. Strong coupling regime is observed when the cavity mode is nearly resonant with
a narrow optical transition of the active medium. If the coupling frequency corresponding
to a single photon is larger than the relaxation frequencies of the medium and of the cavity,
then the so-called vacuum Rabi splitting is observed [40]. The degeneracy between the
cavity resonance and the medium is lifted and two lines appear in the reflection or in the
transition spectrum of the system. A great deal of works have been done, both theoretically
and experimentally, in order to gain a deep understanding of two nonclassical proprieties of
the electromagnetic field emitted from Cavity QED systems. Namely, photon antibunching
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and squeezing. Photon antibunching is defined by a nonclassical form for the degree of
second-order coherence [32]. Squeezing is defined by reduced quantum fluctuations, below
those for vacuum state, in one quadrature phase amplitude of the field [31]. Beyond atomic
physics cavity QED is now a subject of much interest in condensed matter physics [3, 20,
21]. Phenomena which are linked to quantum electrodynamics [25,41,42,50], such as Rabi
splitting, have been observed in semiconductor microcavity [45, 51]. Recently, theoretical
and experimental studies brought the proof of squeezing in Semi-conductor microcavities
with quantum wells [13, 14, 22, 30, 34, 38, 47].

Squeezing and antibunching are complementary aspects of the non-classical field. The
squeezing is linked to the wave aspect of light and reveals the subpoissonian variance of
the electromagnetic field while antibunching is linked to the particle aspect of light and
reveals the anticorrelation of pairs in photodetections [5, 6, 10]. Whereas the autocorrela-
tion function, measuring the correlation between pairs of photodetection, was intensively
studied in the atomic physics [5, 9,46], few works examined it in the semiconductor cavity
QED [11, 12, 14, 16, 18, 19, 23, 34, 37, 43]. In our previous paper [12], we have explored
the dynamical behavior of the autocorrelation function in weakly pumped semiconductor
cavity QED. This paper extends our previous study beyond the weak excitation regime,
where an analytic expression can no more be derived, using the Monte Carlo wavefunction
approach ( known in atom physics as the quantum trajectory method) [5,52]. The quantum
trajectory approach was developed initially in the field of atomic physics by Carmichael
and his co-worker [2]. It describes the dissipative dynamics of an open quantum system
using two complementary processes: A nonunitary time evolution by an effective non-
Hermitian operator and quantum jumps whose outcomes are determined by random num-
bers [2,5,52]. In this paper, we apply this powerful numeric technique in order to explore in
the strong coupling regime, the photon statistics of the emitted electromagnetic field from
a cavity semiconductor microcavity containing quantum well. We simulate the autocorre-
lation function for different sets of parameters in order to show the effect of each system
parameters.

2 Model

The considered system is a semiconductor microcavity made of a set of Bragg’s mirrors.
The internal two sides of the Bragg’s mirrors are separated by a distance which is of the
order of the wavelength λ. Inside the microcavity there is a quantum well localized in a
position which corresponds to most of the electromagnetic field. This system is driven with
a resonant Laser field.

We restrict the study to the case of semiconductors with two bands. The electromag-
netic field can excite an electron of the valence band to the conduction band by creating
a hole in the valence band. The electron and the hole interact by giving excitonic states,
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which are similar to the bound states of hydrogen atoms. The state 1S which is the low
bound state (fundamental state) has the greatest oscillator strength. For this reason we take
into account only this state for the exciton - photon interaction. The photonic and excitonic
modes are quantified along the normal direction to the microcavity. Invariance by transla-
tion implies that the excitons with parallel wave vector K// can couple only with photons
with equally parallel wave vectors k// = K//. This work deals only with the case of nor-
mal incident pumping mode irradiating the microcavity. This limits the excitation only to
one cavity photonic mode with parallel wave vector k// = 0. Furthermore the effects of the
spins are neglected. In this case an effective Hamiltonian for the coupled exciton-photon
system in the cavity can be written as [2, 7, 8, 11, 12, 16, 18, 19, 23, 24, 26, 36, 37, 43, 49, 52]

H = ~ωpha
+
a + ~ωexcb

+b + ~g
(
a
+
b + b+a

)
+ ~α′b+b+bb

− ~r′g′ (b+b+ba + h.c.
)

+ ~(ε′eiωLta
+ + h.c) + Hrel. (2.1)

The first two terms of the Hamiltonian correspond to the energies of free photon and
exciton, where a and b are respectively the annihilation operators of photonic and excitonic
modes verifying [

a, a
+]

= 1 and
[
b, b+

]
= 1. (2.2)

ωexc, ωph are the frequencies of the photonic and excitonic modes of the cavity. The third
term corresponds to the coupling between an exciton and a photon with g the coupling con-
stant. The fourth term describes the exciton-exciton scattering due to Coulomb interaction.
The fifth term represents the saturation of the interaction photon-exciton. The sixth term is
the pump term from the laser outside the cavity, where ε′and ωL are respectively the am-
plitude and the frequency of the pumping Laser. The last term Hrel give rise to relaxation
of the main exciton and photon modes. In the rotating frame with frequency ωL and when
the pumping laser, the cavity and the excitons are all in resonance (ωL = ωexc = ωph ),
the Hamiltonian describing the total system can be written as

H = ~g′
(
a
+
b + b+a

)
+ ~α′b+b+bb− r~g′

(
a
+
b+bb + b+b+ab

)
~(ε′a+ + ε′a) + Hrel

= HI + Hrel. (2.3)

The parameter α′, which represents the strength of the interaction between excitons, has
the following expression [8]

α′ ' 3Eexaex

S
, (2.4)

where S is the quantization area, aex and Eex represent respectively the two dimensional
excitonic Bohr radius and Binding energy.

The non-linear term describing the saturation effects, the third term in the Hamiltonian,
can be neglected. It is shown that it gives rise to small corrections as compared to the
exciton-exciton scattering [49].
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For simplicity, we transform the photonic operators a and a
+respectively into a = ia

and a+ = −ia
+
, the commutation relation does not change [a, a+] = 1, so that a and a+

can be considered as creation and annihilation operators. We introduce a dimensionless
‘normalized’ time

t =
τtime

τc
, (2.5)

where τc is the round trip time in the cavity. We normalize all the characteristic constants
of the system to 1/τc as

g = g′τc, ε = ε′τc, and α = α′τc. (2.6)

Applying the standard methods of the quantum theory of damping [17, 35], where the
thermal bath is supposed to be at T = 0K, the master equation is

∂ρ

∂t
= −iα

[
b+b+bb, ρ

]
+ g

[(
a+b− b+a

)
, ρ

]
+ ε

[(
a+ − a

)
, ρ

]
+

∂ρ

∂t

⌋
diss

, (2.7)

where ∂ρ/∂tcdiss represents the dissipation term associated with Hrel. It describes the
dissipation due to the excitonic spontaneous emission rate γ/2 and to the cavity dissipation
rate κ

∂ρ

∂t
cdiss = κ

(
2aρa+ + a+aρ + ρa+a

)
+

γ

2
(
2bρb+ + b+bρ + ρb+b

)
. (2.8)

3 Autocorrelation Function and Quantum Trajectories

We now turn our attention to the calculation of the autocorrelation function g(2)(t).
Quantum mechanically, the autocorrelation function is defined as [15, 28, 29, 33]

g(2)(τ) =
〈a+ (0) a+ (τ) a (τ) a (0)〉

〈a+a〉2 , (3.1)

where g(2)(τ) is proportional to the probability of detecting one photon at time t and an-
other one at time t + τ , not necessarily emitted after the first one. In the weak excitation
regime analytic expression has been derived [12]. Beyond this regime only numerical meth-
ods can be used in order to study the dynamical behavior of the autocorrelation function.
We simulate this evolution using quantum trajectory approach. The quantum trajectory
approach describes the dissipative dynamics of an open quantum system using two com-
plementary processes: A nonunitary time evolution by an effective non-Hermitian operator
and quantum jumps whose outcomes are determined by random numbers [2, 5, 52]. The
non-Hermitian Hamiltonian can be directly derived from the master equation [5,12,33]. In
our case the non-Hermitian Hamiltonian has the following expression

H̃ = HI − i~κa+a− i~
γ

2
b+b. (3.2)
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The conditioned wave function |Ψc (t)〉 satisfies a coherent evolution interrupted by
instantaneous collapses at the time of excitonic dissipation or photonic emission. Between
two collapses, the wave function evolution is governed by the Schrödinger equation with
the non-Hermition Hamiltonian

d |Ψc (t)〉
dt

=
H̃

i~
|Ψc (t)〉 . (3.3)

The wave function |Ψc (t)〉 can be expanded into a superposition of tensor product of
pure excitonic and photonic states

|Ψc (t)〉 =
∑

l=0,m=0

Alm |lm〉 , (3.4)

where |lm〉 is the state with l photons and m excitons in the cavity. In this coherent evolu-
tive regime, the amplitudes Alm satisfy for l 6= 0 and m 6= 0 the equations

d

dt
Alm = ε

(√
lAl−1,m −

√
l + 1Al+1,m

)

+ g
(√

l (m + 1)Al−1,m+1 −
√

m (l + 1)Al+1,m−1

)

− im (m− 1) αAlm −
(
κl +

mγ

2

)
Alm,

d

dt
A00 = −εA10,

d

dt
A0m = −εA1,m − g

√
mA1,m−1 − im(m− 1)αA0m − mγ

2
A0m,

d

dt
Al0 = ε

(√
lAl−1,0 −

√
l + 1Al+1,0

)
+ g

√
lAl−1,1 − κlAl,0.

(3.5)

It is worth noting that the conditioned wave function is unnormalized.
Photon emissions and exciton dissipations occur at random times at rate determined by

the conditioned wave function |Ψc (t)〉 . The photon emission occurs at rate

rph = 2κ
〈Ψc (t)| a+a |Ψc (t)〉√

〈Ψc (t)| Ψc (t)〉 (3.6)

and is accompanied by the wave function collapses

|Ψc (t)〉 → Jph |Ψc (t)〉 , (3.7)

where Jph =
√

2κa is the photonic jump operator.
The excitonic dissipations occur at the rate

rex = γ
〈Ψc (t)| b+b |Ψc (t)〉√

〈Ψc (t)| Ψc (t)〉 (3.8)

and is accompanied also by the wave function collapses

|Ψc (t)〉 → Jex |Ψc (t)〉 , (3.9)
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where Jph =
√

γb represents the excitonic jump operator.
The autocorrelation function can be computed by the Quantum Monte Carlo simulation.

In this case, the autocorrelation function is then written as a quotient of two ensemble time
averages [27]

g(2)(τ) =
〈a+ (tk) a+ (tk + τ) a (tk + τ) a (tk)〉c(

〈a+ (tl) a (tl)〉c
)2 , (3.10)

where tk represent a set of times when photon emissions occur, tl are the sample times
which are chosen to avoid the intervals immediately after the jump times tk. This ensures
that both averages are taken in the steady state. Overbar denotes the average of an ensemble
of sampling times tk.

Figures 3.1-3.4 show the autocorrelation function as a function of the time delay for
different sets of parameters. The nonlinear coefficient α, is evaluated from [24] to be
1.5× 10−9 in the inverse round trip time for an active area of 0.1 mm2.
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Figure 3.1: Autocorrelation function g(2) as a function of the delay τ with the photon-exciton cou-
pling constant g = 10, laser pump amplitude ε = 10, exciton non-linearity α = 1.5× 10−9, cavity
loss rate κ = 0.5 and excitonic dissipation rate γ/2 = 0.5.

Figures 3.1 and 3.2 correspond to strong coupling regime with two different values of
excitonic dissipations γ/2 = 0.5 (Fig 3.1) and γ/2 = 0.05 (Fig 3.2). We have taken, for
these plots, the exciton-photon coupling constant g = 10, the amplitude of the laser pump
ε = 10 and the cavity dissipation rate κ = 0.5 in the unit of the inverse round trip time.
The calculated photon average number and exciton average number inside the cavity are
respectively 21.79 photons and 19, 57 excitons for the first plot, 23.36 photons and 23.46
excitons for the second plot.
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Figure 3.2: Autocorrelation function g(2) as a function of the delay τ with the photon-exciton cou-
pling constant g = 10, laser pump amplitude ε = 10,exciton non-linearity α = 1.5 × 10−9, cavity
loss rate κ = 0.5 and excitonic dissipation rate γ/2 = 0.05.

Figure 3.3 describes the autocorrelation function dynamics in the moderately strong
coupling regime with g = 2, ε = 10 and γ/2 = κ = 0.5. The calculated photon average
number and exciton average number inside the cavity are respectively 23.77 photons and
19.94 excitons.
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Figure 3.3: Autocorrelation function g(2) as a function of the delay τ with the photon-exciton cou-
pling constant g = 2, laser pump amplitude ε = 10, exciton non-linearity α = 1.5 × 10−9, cavity
loss rate κ = 0.5 and excitonic dissipation rate γ/2 = 0.5.
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Figure 3.4 corresponds to the variation of the autocorrelation function versus time delay
for the moderate pumping regime ε = 1. This plot is computed with coupling constant
g = 10, excitonic dissipation rate γ/2 = 1 and cavity dissipation rate κ = 0.5. The
calculated average of the photon and exciton numbers are respectively 16.18 photons and
15.98 excitons.
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Figure 3.4: Autocorrelation function g(2) as a function of the delay τ with the photon-exciton cou-
pling constant g = 10, laser pump amplitude ε = 1,exciton non-linearity α = 1.5 × 10−9, cavity
loss rate κ = 0.5 and excitonic dissipation rate γ/2 = 0.5.

From these simulations we can deduce that our system exhibits a small antibunching
effect (g(2)(0) < 1) in the strong coupling regime. This non classical effect is almost
insensitive to the variation of the excitonic dissipation rate (See Fig 3.1 and Fig 3.2) com-
pared to the other parameters variation. When the pump field amplitude ε decreases or the
coupling constant g increases, the antibunching effect increases. This can be explained by
the fact that by increasing the coupling constant g the effect of the non linear interaction
(excitonic interaction) becomes more effective and induces more photon anticorrelations.
By increasing the pump amplitude ε, the average number of photons inside the cavity, on
one side, increases with high sensitivity compared to the other parameters variation, and
on the other side the anticorrelation of photons increases with lower sensitivity. Since the
autocorrelation function is a quotient of the photon correlation term to the square aver-
age of the mean average number of photons, the antibunching effect decreases with the
increase of pump amplitude ε. Furthermore These simulations show that in the moderate
coupling regime (Fig 3.3) and moderate pump amplitude (Fig 3.4), the system loses the
anticorrelation behavior (g(2) (τ) < 1 ) in finite and small time delay.
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4 Conclusion

In this work, we have studied the dynamical behavior of the autocorrelation function of
the light emitted from driven optical semiconductor microcavity containing quantum well.
The system is pumped with non-weak laser amplitude in the strong coupling regime. Using
the quantum trajectory method we have analyzed the effect of the system parameters vari-
ation. We have shown that this system exhibits a small antibunching effect. By increasing
the coupling photon-exciton or decreasing the pump amplitude, this non classical effect
increases.
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